説明

積層体

【課題】精密な位置決めができ、作成後の剥離がスムースで、かつ作成過程で剥離することのないデバイス作成用の積層体を提供する。
【解決手段】少なくとも無機層とポリイミドフィルムから構成されてなる積層体であって、該積層体は、ガラス板、セラミック板、シリコンウエハから選ばれた一種の無機層の一面と、芳香族テトラカルボン酸類と芳香族ジアミン類との反応によって得られる線膨張係数が、フィルムの長さ方向と幅方向でいずれも−5ppm/℃〜+10ppm/℃であるプラズマ処理されたポリイミドフィルムの一面とが、接着剤層を介することなく貼り合わされた積層体であって、無機層とポリイミドフィルム層との間にシランカップリング層を有し、積層体のフィルムと無機層との180度剥離強度が0.5N/cm以上3N/cm以下であり、ポリイミドフィルムの無機層と接している側の表面から少なくとも3μmの部分には20nm以上長径を持つ粒子は入っていないことを特徴とする積層体。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子デバイス作成などに使用される積層体であって、線膨張係数が低めの特定範囲にある、耐熱性と絶縁性に優れた薄いポリイミドのフィルムとそれとほぼ同程度の線膨張係数を有するガラス板、セラミック板、シリコンウエハから選ばれた一種の無機層とが積層された寸法安定性と耐熱性と絶縁性に優れた積層体に関する。
【背景技術】
【0002】
ポリイミドフィルムは、−269℃〜300℃までの広い温度範囲での物性変化が極めて少ないために、電気および電子分野での応用、用途が拡大している。電気分野では、例えば車両用モーターや産業用モーター等のコイル絶縁、航空機電線および超導電線の絶縁等に使用されている。一方、電子分野では、例えばフレキシブルプリント基板や、半導体実装用フィルムキャリヤーのベースフィルム等に利用されている。このようにポリイミドフィルムは、種々の機能性ポリマーフィルムの中でも極めて信頼性の高いものとして、電気および電子分野で広く利用されている。
【0003】
また、情報通信機器(放送機器、移動体無線、携帯通信機器等)、レーダーや高速情報処理装置などといった電子部品の基材の材料として、従来、セラミックが用いられていた。セラミックからなる基材は耐熱性を有し、近年における情報通信機器の信号帯域の高周波数化(GHz帯に達する)にも対応し得る。しかし、セラミックはフレキシブルでなく、薄くできないので使用できる分野が限定される。
そのため、有機材料からなるフィルムを電子部品の基材として用いる検討がなされ、ポリイミドからなるフィルム、ポリテトラフルオロエチレンからなるフィルムが提案されている。ポリイミドからなるフィルムは耐熱性に優れ、また、強靭であるのでフィルムを薄くできるという長所を備えている。
これらのポリイミドフィルムは、一般的に線膨張係数が大きく温度変化による寸法変化が著しくて微細な配線をもつ回路の製造に適さない点等が問題となり、使用できる分野が限定される。このように、耐熱性、高機械的物性、フレキシブル性を具備した基材用として十分な物性のフィルムは未だ得られていない。
引張弾性率を高くしたポリイミドフィルムとして、ベンゾオキサゾール環を主鎖に有するポリイミドからなるポリイミドベンゾオキサゾールフィルムが提案されている(特許文献1参照)。このポリイミドベンゾオキサゾールフィルムを誘電層とするプリント配線板も提案されている(特許文献2、特許文献3参照)。
これらのベンゾオキサゾール環を主鎖に有するポリイミドからなるポリイミドベンゾオキサゾールフィルムは、引張破断強度、引張弾性率で改良され、線膨張係数において満足し得る範囲のものとなっているが、その優れた機械的物性の反面で、薄くすればするほど取り扱い上も困難となり、機械的、力学的に不十分であるなどの課題を有していた。
【0004】
これらのポリイミドフィルム上に熱可塑性樹脂などの接着剤層を設け他の構造補強物を設ける試みもなされているが、構造上の改良においては満足し得ても、これら熱可塑性樹脂の耐熱性の低さは折角のポリイミドフィルムの耐熱性を台無しにする傾向を有していた。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平06−056992号公報
【特許文献2】特表平11−504369号公報
【特許文献3】特表平11−505184号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
電子デバイス作成時に、精密な位置決めをして、多層に薄膜作成、回路形成など行なうことができる積層体を提供する。
電子デバイス作成時に、精密な位置決めをして、多層に薄膜作成、回路形成など行なう際、寸法安定性に劣る形状の変わるフィルムではデバイス作成のための位置決め困難の為、寸法安定性に優れた固い基板に固定し、デバイス作成後にこの固い基板を剥がす方法において、フィルムと基板との剥離がスムースに実施できかつプロセス通過において剥離することのない剥離強度を有する積層体が求められていた。これによって、従来の電子デバイス作成プロセスをそのまま使い、フィルム上のデバイス作成が安定的に精度よく実施することができる。
また、ウエハ上にワニスを塗り、その後に剥がしてフィルム化した場合は、ウエハに同心円状の膜厚分布が出来るが、別途作成したフィルムを貼る場合にはウエハ、ガラスなどの狭い面積での膜厚はきわめて同一性が高く、回路製作に適している。さらに、フィルムの表と裏での構造の違いから、剥がしたときに反りのでるフィルムとなること、適度な剥離強度を維持し剥離を持ち、フィルムとして物性を保たせる事が難しく、別途作成したフィルムを貼る場合にはウエハ、ガラスなどの狭い面積での膜厚はきわめて同一性が高く、先に回路を作った後で貼り付けることも、貼り付けた後で、回路を作成することも可能となり、回路製作に適している。
【課題を解決するための手段】
【0007】
本発明者らは鋭意検討した結果、線膨張係数が低めの特定範囲にあり、耐熱性、フレキシブル性をより高いレベルで具備したポリイミドのフィルムとほぼ同程度の線膨張係数を有するガラス板、セラミック板、シリコンウエハから選ばれた一種の無機層(第3の発明においてはガラス板、セラミック板、シリコンウエハ、金属から選ばれた一種の無機層)とが積層された耐熱性と絶縁性に優れた積層体とが、電子デバイス作成などに使用される際に極めて有意であることを見出した。
すなわち本願発明は、以下の構成からなる。
1.少なくとも無機層とポリイミドフィルムから構成されてなる積層体であって、該積層体は、ガラス板、セラミック板、シリコンウエハから選ばれた一種の無機層の一面と、芳香族テトラカルボン酸類と芳香族ジアミン類との反応によって得られる線膨張係数が、フィルムの長さ方向と幅方向でいずれも−5ppm/℃〜+10ppm/℃であるプラズマ処理されたポリイミドフィルムの一面とが、接着剤層を介することなく貼り合わされた積層体であって、無機層とポリイミドフィルム層との間にシランカップリング層を有し、積層体のフィルムと無機層との180度剥離強度が0.5N/cm以上3N/cm以下であり、ポリイミドフィルムの無機層と接している側の表面から少なくとも3μmの部分には20nm以上長径を持つ粒子は入っていないことを特徴とする積層体。
2.該シランカップリング層の厚さが100nm以下であることを特徴とする1.記載の積層体。
3.ポリイミドフィルムが芳香族テトラカルボン酸類とベンゾオキサゾール構造(骨格)を有する芳香族ジアミン類との反応によって得られるポリイミドフィルムであることを特徴とする1.〜2.いずれかに記載の積層体。
4.ポリイミドフィルムの厚さが1μm〜50μmであることを特徴とする1.〜3.いずれかに記載の積層体。
5.少なくとも無機層とポリイミドフィルムから構成されてなる積層体の製造方法であって、30℃〜300℃の線膨張係数が、フィルムの長さ方向と幅方向でいずれも−5ppm/℃〜+10ppm/℃であり、かつポリイミドフィルムの無機層と接している側の表面から少なくとも3μmの部分には20nm以上長径を持つ粒子は入っておらず、該無機層はガラス板、セラミック板、シリコンウエハから選ばれた一種の無機層の少なくとも一面をシランカップリング処理してなり、該ポリイミドフィルムと、該無機層のシランカップリング処理された面とを重ね合わせ、両者を加圧によって積層することを特徴とする1.〜4.いずれかに記載の積層体の製造方法。
【発明の効果】
【0008】
本願発明のガラス板、セラミック板、シリコンウエハから選ばれた一種の無機層と、芳香族テトラカルボン酸類と芳香族ジアミン類との反応によって得られるポリイミドの線膨張係数が−5ppm/℃〜+10ppm/℃であるプラズマ処理されたフィルムとが、接着剤層を介することなく積層された積層体であって、積層体のフィルムと無機層との180度剥離強度が0.5N/cm以上3N/cm以下であり、さらにポリイミドフィルムの無機層と接している側の表面から少なくとも3μmの部分には20nm以上長径を持つ粒子は入っていない積層体は、絶縁性で可撓性、耐熱性を兼ね備えた薄いフィルムに回路などを形成し、さらに電子部品を搭載して電子デバイスを作成する時に、薄いフィルムであっても寸法安定性に優れた無機基板に積層され固定されていることで精密な位置決めができ、多層に薄膜作成、回路形勢など行なうことができ、デバイス作成後にこの無機基板を剥がす際にも、フィルムと基板との剥離がスムースに実施できかつプロセス通過において剥離することのない剥離強度を有する積層体であるため、従来の電子デバイス作成プロセスをそのまま使うことが可能であり、フィルム上のデバイス作成が安定的に精度よく実施することができ、絶縁性で可撓性、耐熱性を兼ね備えた薄いフィルムに回路などを形成した電子デバイス作成などに極めて有意義である。
【発明を実施するための形態】
【0009】
本発明の積層体におけるポリイミドのフィルムにおけるポリイミドの種類は、芳香族テトラカルボン酸類と芳香族ジアミン類との反応によって得られるポリイミドのフィルムが線膨張係数(フィルムの長さ方向と幅方向でいずれも)が−5ppm/℃〜+10ppm/℃となるポリイミドであれば特に限定されないが、芳香族テトラカルボン酸類(無水物、酸、およびアミド結合性誘導体を総称して類という、以下同)と芳香族ジアミン類(アミン、およびアミド結合性誘導体を総称して類という、以下同)とを反応させて得られるポリアミド酸溶液を流延、乾燥、熱処理(イミド化)してフィルムとなす方法で得られるポリイミドフィルムである。これらの溶液に用いられる溶剤としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどが挙げられる。
本発明におけるポリイミドは、下記の芳香族ジアミン類と芳香族テトラカルボン酸(無水物)類との組み合わせが好ましい例として挙げられる。
A.ピロメリット酸残基を有する芳香族テトラカルボン酸類、ベンゾオキサゾール構造(骨格)を有する芳香族ジアミン類との組み合わせ。
B.フェニレンジアミン骨格を有する芳香族ジアミン類とビフェニルテトラカルボン酸骨格を有する芳香族テトラカルボン酸類との組み合わせ。
中でも特にA.のベンゾオキサゾール構造を有する芳香族ジアミン残基を有するポリイミドの組み合わせが好ましい。
ベンゾオキサゾール構造を有する芳香族ジアミン類の分子構造は特に限定されるものではなく、具体的には以下のものが挙げられる。
【0010】
【化1】

【0011】
【化2】

【0012】
【化3】

【0013】
【化4】

【0014】
【化5】

【0015】
【化6】

【0016】
【化7】

【0017】
【化8】

【0018】
【化9】

【0019】
【化10】

【0020】
【化11】

【0021】
【化12】

【0022】
【化13】

【0023】
これらの中でも、合成のし易さの観点から、アミノ(アミノフェニル)ベンゾオキサゾールの各異性体が好ましく、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾールがより好ましい。ここで、「各異性体」とは、アミノ(アミノフェニル)ベンゾオキサゾールが有する2つアミノ基が配位位置に応じて定められる各異性体である(例;上記「化1」〜「化4」に記載の各化合物)。これらのジアミンは、単独で用いてもよいし、二種以上を併用してもよい。
【0024】
本発明においては、全ジアミンの30モル%以下であれば下記に例示されるジアミン類を一種または二種以上を併用しても構わない。そのようなジアミン類としては、例えば、4,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]スルフィド、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、m−フェニレンジアミン、o−フェニレンジアミン、p−フェニレンジアミン、m−アミノベンジルアミン、p−アミノベンジルアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホキシド、3,4’−ジアミノジフェニルスルホキシド、4,4’−ジアミノジフェニルスルホキシド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、ビス[4−(4−アミノフェノキシ)フェニル]メタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,3−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、1,3−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、1,4−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2,3−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2−[4−(4−アミノフェノキシ)フェニル]−2−[4−(4−アミノフェノキシ)−3−メチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)−3−メチルフェニル]プロパン、2−[4−(4−アミノフェノキシ)フェニル]−2−[4−(4−アミノフェノキシ)−3,5−ジメチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)−3,5−ジメチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、ビス[4−(4−アミノフェノキシ)フェニル]スルフィド、ビス[4−(4−アミノフェノキシ)フェニル]スルホキシド、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、1,3−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、4,4’−ビス[(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,1−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、1,3−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、3,4’−ジアミノジフェニルスルフィド、2,2−ビス[3−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、ビス[4−(3−アミノフェノキシ)フェニル]メタン、1,1−ビス[4−(3−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(3−アミノフェノキシ)フェニル]エタン、ビス[4−(3−アミノフェノキシ)フェニル]スルホキシド、4,4’−ビス[3−(4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[3−(3−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4−{4−(4−アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4−ビス[4−(4−アミノフェノキシ)フェノキシ−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)フェノキシ−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−トリフルオロメチルフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−フルオロフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−メチルフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−シアノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、3,3’−ジアミノ−4,4’−ジフェノキシベンゾフェノン、4,4’−ジアミノ−5,5’−ジフェノキシベンゾフェノン、3,4’−ジアミノ−4,5’−ジフェノキシベンゾフェノン、3,3’−ジアミノ−4−フェノキシベンゾフェノン、4,4’−ジアミノ−5−フェノキシベンゾフェノン、3,4’−ジアミノ−4−フェノキシベンゾフェノン、3,4’−ジアミノ−5’−フェノキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジビフェノキシベンゾフェノン、4,4’−ジアミノ−5,5’−ジビフェノキシベンゾフェノン、3,4’−ジアミノ−4,5’−ジビフェノキシベンゾフェノン、3,3’−ジアミノ−4−ビフェノキシベンゾフェノン、4,4’−ジアミノ−5−ビフェノキシベンゾフェノン、3,4’−ジアミノ−4−ビフェノキシベンゾフェノン、3,4’−ジアミノ−5’−ビフェノキシベンゾフェノン、1,3−ビス(3−アミノ−4−フェノキシベンゾイル)ベンゼン、1,4−ビス(3−アミノ−4−フェノキシベンゾイル)ベンゼン、1,3−ビス(4−アミノ−5−フェノキシベンゾイル)ベンゼン、1,4−ビス(4−アミノ−5−フェノキシベンゾイル)ベンゼン、1,3−ビス(3−アミノ−4−ビフェノキシベンゾイル)ベンゼン、1,4−ビス(3−アミノ−4−ビフェノキシベンゾイル)ベンゼン、1,3−ビス(4−アミノ−5−ビフェノキシベンゾイル)ベンゼン、1,4−ビス(4−アミノ−5−ビフェノキシベンゾイル)ベンゼン、2,6−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾニトリルおよび上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てがハロゲン原子、炭素数1〜3のアルキル基またはアルコキシル基、シアノ基、またはアルキル基またはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換された炭素数1〜3のハロゲン化アルキル基またはアルコキシル基で置換された芳香族ジアミン等が挙げられる。
【0025】
<芳香族テトラカルボン酸無水物類>
本発明で用いられる芳香族テトラカルボン酸無水物類としては、具体的には、以下のものが挙げられる。
【0026】
【化14】

【0027】
【化15】

【0028】
【化16】

【0029】
【化17】

【0030】
【化18】

【0031】
【化19】

【0032】
これらのテトラカルボン酸二無水物は単独で用いてもよいし、二種以上を併用してもよい。
【0033】
芳香族テトラカルボン酸類と芳香族ジアミン類とを反応(重合)させてポリアミド酸を得るときに用いる溶媒は、原料となるモノマーおよび生成するポリアミド酸のいずれをも溶解するものであれば特に限定されないが、極性有機溶媒が好ましく、例えば、N−メチル−2−ピロリドン、N−アセチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリックアミド、エチルセロソルブアセテート、ジエチレングリコールジメチルエーテル、スルホラン、ハロゲン化フェノール類等があげられる。これらの溶媒は、単独あるいは混合して使用することができる。溶媒の使用量は、原料となるモノマーを溶解するのに十分な量であればよく、具体的な使用量としては、モノマーを溶解した溶液に占めるモノマーの重量が、通常5〜40重量%、好ましくは10〜30重量%となるような量が挙げられる。
【0034】
ポリアミド酸を得るための重合反応(以下、単に「重合反応」ともいう)の条件は従来公知の条件を適用すればよく、具体例として、有機溶媒中、0〜80℃の温度範囲で、10分〜30時間連続して撹拌および/または混合することが挙げられる。必要により重合反応を分割したり、温度を上下させてもかまわない。この場合に、両モノマーの添加順序には特に制限はないが、芳香族ジアミン類の溶液中に芳香族テトラカルボン酸無水物類を添加するのが好ましい。重合反応によって得られるポリアミド酸溶液に占めるポリアミド酸の重量は、好ましくは5〜40重量%、より好ましくは10〜30重量%であり、前記溶液の粘度はブルックフィールド粘度計による測定(25℃)で、送液の安定性の点から、好ましくは10〜2000Pa・sであり、より好ましくは100〜1000Pa・sである。
【0035】
重合反応中に真空脱泡することは、良質なポリアミド酸溶液を製造するのに有効である。また、重合反応の前に芳香族ジアミン類に少量の末端封止剤を添加して重合を制御することを行ってもよい。末端封止剤としては、無水マレイン酸等といった炭素−炭素二重結合を有する化合物が挙げられる。無水マレイン酸を使用する場合の使用量は、芳香族ジアミン類1モル当たり好ましくは0.001〜1.0モルである。
重合反応により得られるポリアミド酸溶液から、ポリイミドフィルムを形成するためには、ポリアミド酸溶液を支持体上に塗布して乾燥することによりグリーンフィルム(自己支持性の前駆体フィルム)を得て、次いで、グリーンフィルムを熱処理に供することでイミド化反応させる方法が挙げられる。支持体へのポリアミド酸溶液の塗布は、スリット付き口金からの流延、押出機による押出し、等を含むが、これらに限られず、従来公知の溶液の塗布手段を適宜用いることができる。
【0036】
本発明におけるポリイミドのフィルムにおいては、そのポリイミド中に滑剤を添加・含有せしめて、層(フィルム)表面に微細な凹凸を付与し層(フィルム)の接着性などを改善することが好ましい。滑剤としては、無機や有機の0.03μm〜0.8μm程度の平均粒子径を有する微粒子が使用でき、具体例として、酸化チタン、アルミナ、シリカ、炭酸カルシウム、燐酸カルシウム、燐酸水素カルシウム、ピロ燐酸カルシウム、酸化マグネシウム、酸化カルシウム、粘土鉱物などが挙げられる。
これらの微粒子はフィルムに対して好ましくは、0.20〜2.0質量%の範囲で含有させることが必要である。微粒子の含有量が0.20質量%未満であるときは、接着性の向上がそれほどなく好ましくない。一方2.0質量%を超えると表面凹凸が大きくなり過ぎ接着性の向上が見られても平滑性の低下を招くなどによる課題を残し好ましくない。
後述する接着剤層を薄くするためには、滑材の粒子径は接着剤層厚に比べ同程度かそれ以下である事が望ましい。ただし、無機層と接している側のポリイミド層少なくとも3μmの部分には20nm以上長径を持つ粒子は入っていない。このことにより、無機層と接している側のポリイミド層は平滑となり、平滑な無機層との原子レベルで見た接触確率が上がり、接着に好適となる。また好ましくは、無機層と接している側のポリイミド層の5μm以上の部分が20nm以上長径を持つ粒子は入っていない事が好ましい。
【0037】
本発明におけるポリイミドのフィルムの厚さは、特に限定されるものではないが、1μm〜50μmが好ましく、更に好ましくは、39μm〜3μmである。これらのフィルムの厚さ斑も20%以下であることが好ましい。1μm以下では、厚さの制御が困難であり、無機層と剥がす事が困難となる。50μm以上では、フィルムの作成が困難であり、剥がすときに、フィルムの折れ曲がりなどがおきやすい。これらのフィルムを使用することで、センサーなどの素子の高性能化や電子部品の軽小短薄に大きく貢献できる。
【0038】
本発明におけるポリイミドのフィルムの30から300℃の間の平均の線膨張係数は、−5ppm/℃〜+10ppm/℃であり、好ましくは、−3ppm/℃〜+5ppm/℃である。この範囲から外れると、無機基板との線膨張係数の大きさの差が大きくなる為、熱を加えるプロセス中にフィルムと無機層が剥がれ易くなり、使用困難である。
【0039】
本発明におけるシランカップリング剤は、特に限定されるものではないが、アミノ基或はエポキシ基を持ったものが、好ましい。シランカップリング剤の具体例としては、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリルーN−(1,3−ジメチルーブチリデン)プロピルアミン、2−(3,4−エポキシシクロへキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシランビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、トリス-(3- トリメトキシシリルプロピル)イソシアヌレートなどが挙げられる。
このうち好ましいものとしては、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3―トリエトキシシリルーN−(1,3−ジメチルーブチリデン)プロピルアミン、2−(3,4−エポキシシクロへキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。
【0040】
本発明におけるカップリング剤の処理方法としては、カップリング剤の溶液を基体に塗布乾燥し、熱処理する方法、ポリイミドフィルム作成時に添加し、フィルム作成と同時にカップリング剤処理する方法を例示出来る。
【0041】
本発明におけるガラス板としては、石英ガラス、高ケイ酸ガラス(96%シリカ)、ソーダ石灰ガラス、鉛ガラス、アルミノホウケイ酸ガラス、ホウケイ酸ガラス(パイレックス(登録商標))、ホウケイ酸ガラス(無アルカリ)、ホウケイ酸ガラス(マイクロシート)、アルミノケイ酸塩ガラスが含まれる。中でも線膨張係数が5ppm/℃以下のものが望ましく、液晶用ガラスのコーニング1753、旭硝子AN100などが望ましい。
本発明におけるセラミック板としては、
AL2O3、Mullite、AlN、SiC、結晶化ガラス、Cordierite、Spodumene、Pb-BSG+CaZrO3+Al2O3、 Crystallized glass+Al2O3、 Crystallized Ca-BSG, BSG+Quartz、 BSG+ Quartz, BSG+ Al2O3、 Pb-BSG+Al2O3、 Glass−ceramic、ゼロデュア材などの基盤用セラミックスが含まれる。
本発明におけるシリコンウエハとしては、n型或はp型にドーピングされたシリコンウェハー、イントリンシックシリコンウェハー全てが含まれ、また、シリコンウェハーの表面に酸化シリコン層や、各種薄膜が堆積されたシリコンウェハーも含まれる。
シリコンウエハのほか、ゲルマニウム、シリコンーゲルマニウム、ガリウム−ヒ素、アルミニウム−ガリウム−インジウム、窒素−リン−ヒ素−アンチモンがよく用いられている。InP(インジウム燐)、InGaAs、GaInNAs、LT、LN、ZnO(酸化亜鉛)やCdTe(カドミウムテルル)、ZnSe(セレン化亜鉛) などの汎用の半導体ウエハが含まれる。
【0042】
本発明におけるプラズマ処理は、特に限定されるものではないが、真空中でのRFプラズマ処理、マイクロ波プラズマ処理、大気圧プラズマ処理、コロナ処理などがあり、フッ素を含むガス処理、イオン源を使ったイオン打ち込み処理、PBII法を使った処理、フレーム処理、イトロ処理なども含める。これらの中でも真空中でのRFプラズマ処理、マイクロ波プラズマ処理、大気圧プラズマ処理が好ましい。
【0043】
本発明における加圧方法としては、大気中での通常のプレス或は真空中でのプレスが挙げられるが、全面の安定した剥離強度を得る為には、真空中でのプレスが好ましい。真空度は通常の油回転ホ゜ンフ゜による真空で充分であり、10Torr以下程度あれば充分である。サンプルを押す好ましい圧力としては、1MPaから20MPa更に好ましくは 3から10MPaである。
圧力が高いと、基板を破損する恐れがあり、圧力が低いと、密着しない部分が出る場合がある。好ましい温度としては150℃から400℃、更に好ましくは250℃から350℃で、温度が高いとフィルムにダメージを与え、温度が低いと密着力が弱い。
【0044】
本発明のガラス板、セラミック板、シリコンウエハから選ばれた一種の無機層と、芳香族テトラカルボン酸類と芳香族ジアミン類との反応によって得られるポリイミドフィルムの線膨張係数が−5ppm/℃〜+10ppm/℃であるフィルムとが、接着剤層を介することなく積層された積層体であって、積層体のフィルムと無機層との180度剥離強度が0.5N/cm以上3N/cm以下である積層体の積層方法は、特に限定はされるものではないが、好ましくは、芳香族テトラカルボン酸類と芳香族ジアミン類との反応によって得られる前記線膨張係数のポリイミドフィルムの面を、プラズマ処理し、一方で、ガラス板、セラミック板、シリコンウエハから選ばれた一種の無機層をシランカップリング処理し、ポリイミドフィルムのプラズマ処理面と無機層のシランカップリング処理面とを重ね合わせ、両者を真空プレスによって積層する方法である。本発明においてはポリイミドフィルムの、無機層と接している側の表面から少なくとも3μmの部分には20nm以上長径を持つ粒子は入っておらず、表面粗さがP-V値で15nm以下より好ましくは10nm以下である面で積層することで、より強固に両者が密着する。ポリイミドフィルムの張り合わされた面が表面粗さで、P-V値で2nm以下のものを、作成して、維持することは困難である為に、実質のポリイミドフィルムの張り合わされた面は表面粗さで、P-V値で2nm以上となる。
ガラス板、セラミック板、シリコンウエハの線膨張係数が0ppm/℃〜+5ppm/℃程度であり、ポリイミドの線膨張係数が−5ppm/℃〜+10ppm/℃であるフィルムと積層することで両者の線膨張係数の乖離が殆ど無く、そのため無機基板に積層された状態で電子デバイス作成時の高温に曝された際にも両者の剥離やフィルムの歪みが発生せず、精度よくデバイスを作成し得る。また本発明においては、無機基板とポリイミドフィルムとの両者間の180度剥離強度が0.5N/cm以上3N/cm以下であることによって、デバイス作成時の熱や応力によって剥がれずかつ無機基板を剥がす際に無理な力を要せずに実施でき、安定的なデバイス作成が実施できる。180度剥離強度を1.5N/cm以上より好ましくは2N/cm以上更に好ましくは3N/cm以上とすることによって、デバイス作成時の熱や応力によって剥がれず、かつ180度剥離強度を10N/cm以下より好ましくは5N/cm以下更に好ましくは3N/cm以下とすることで、ポリイミドフィルムを無理な応力をためる事無く、剥がして利用することも出来る。安定的なデバイス作成が実施できる。また、異物の存在が剥離強度に影響を及ぼすので180度剥離強度を向上させるためには、好ましくは、シランカップリング剤の塗布・乾燥・フィルムのプラズマ処理・フィルムの重ね合わせ・真空プレスまでの工程をクリーンルーム内で、より好ましくはクラス1000のクリーンルーム内で実施して異物の付着を防止する方法や、事前にスピンコーターを使用して基板をエタノール等の有機溶剤で洗浄する方法などの、付着した異物を除去する方法をとることが効果的である。
【0045】
本発明の無機層とポリイミドフィルムの間には無機層とも、ポリイミド層とも組成の違う層が存在するが、接着剤層はない。本発明でいう接着剤層はSiの成分重量比15%以下のものをさす。また、本発明では、無機層とポリイミドフィルムの間が、0.4μm以上あるものは対象としていない。あるのはシランカップリング剤に由来するSiを10重量%以上多く含むもののみである。シランカップリング剤層を用いることで中間層を薄くできるので加熱中の脱ガス成分が少なく、ウェットプロセスにおいても溶出しにくく、仮に溶出が起きても微量にとどまるという効果が出る。ただし、シランカップリング剤に由来する層は、耐熱性がある酸化ケイ素成分が多く、400度程度の温度での耐熱性があり、このシランカップリング剤由来する層は0.4μm未満、通常作成すると、0.2μm以下程度となり、使用する範囲として100nm以下(0.1μm以下)望ましくは、50nm以下、更に望ましくは10nmである。極力シランカップリング剤が少ないことを望むプロセスでは、5nm以下でも使用可能である。1nm以下では、剥離強度が低下或は、部分的に付かない部分が出る恐れがあるため、1nm以上であることが望ましい。
【実施例】
【0046】
以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は以下の実施例によって限定されるものではない。なお、以下の実施例における物性の評価方法は以下の通りである。
【0047】
1.ポリアミド酸の還元粘度(ηsp/C)
ポリマー濃度が0.2g/dlとなるようにN−メチル−2−ピロリドン(又は、N,N−ジメチルアセトアミド)に溶解した溶液をウベローデ型の粘度管により30℃で測定した。(ポリアミド酸溶液の調製に使用した溶媒がN,N−ジメチルアセトアミドの場合は、N,N−ジメチルアセトアミドを使用してポリマーを溶解し、測定した。)
2.ポリイミドフィルムなどの厚さ
マイクロメーター(ファインリューフ社製、ミリトロン1245D)を用いて測定した。
3.ポリイミドフィルムの引張弾性率、引張破断強度および引張破断伸度
測定対象のポリイミドフィルムを、流れ方向(MD方向)および幅方向(TD方向)にそれぞれ100mm×10mmの短冊状に切り出したものを試験片とした。引張試験機(島津製作所製、オートグラフ(R) 機種名AG−5000A)を用い、引張速度50mm/分、チャック間距離40mmの条件で、MD方向、TD方向それぞれについて、引張弾性率、引張破断強度及び引張破断伸度を測定した。
【0048】
4.180度剥離強度
JIS C6471 の180度剥離法に従って、試料の剥離強度は下記条件で180度剥離試験を行うことで求めた。
装置名 ; 島津製作所社製 オートグラフAG−IS
測定温度 ; 室温
剥離速度 ; 50mm/min
雰囲気 ; 大気
測定サンプル幅 ; 1cm
5.線膨張係数(CTE)
測定対象のポリイミドフィルムを、流れ方向(MD方向)および幅方向(TD方向)において、下記条件にて伸縮率を測定し、30℃〜45℃、45℃〜60℃、…と15℃の間隔での伸縮率/温度を測定し、この測定を300℃まで行い、全測定値の平均値をCTEとして算出した。
機器名 ; MACサイエンス社製TMA4000S
試料長さ ; 20mm
試料幅 ; 2mm
初荷重 ; 34.5g/mm
昇温開始温度 ; 25℃
昇温終了温度 ; 400℃
昇温速度 ; 5℃/min
雰囲気 ; アルゴン
6.PV値測定
表面形態の計測は表面物性評価機能付走査型プローブ顕微鏡(エスアイアイ・ナノテクノロジー株式会社製SPA300/SPI3800N)を使用した。計測はDFMモードで行い、カンチレバーはエスアイアイ・ナノテクノロジー株式会社製DF3又はDF20を使用した。スキャナーはFS−20Aを使用し、走査範囲は2μm四方、測定分解能は512×512ピクセルとした。計測像については二次傾き補正を行った後、装置付属のソフトウエアでPV値を算出した。
7.シランカップリング剤層厚さの測定法
シランカップリング層厚さはSiウェハーに作成した膜厚を測定した。
膜厚測定法は、エリプソメトリーにて行い、測定器はPhotal社製FE-5000を使用した。この測定器のハード仕様は以下の通りである。
反射角度範囲 45から80°、波長範囲 250から800nm、波長分解能1.25nm、スポット径 1mm、tanΨ 測定精度±0.01、cosΔ 測定精度±0.01、方式回転検光子法。
測定は偏向子角度 45°、入射 70°固定、検光子は11.25°刻みで0〜360°、250〜800nmの測定を行った。
非線形最小2乗法によるフィッティングで、膜厚を求めた。このとき、モデルとしては、Air/薄膜/Siのモデルで、
n=C3/λ+C2/λ2+C1
k=C6/λ+C5/λ2+C4
の式で波長依存C1〜C6を求めた。
【0049】
〔製造例1〜2〕
(ポリアミド酸溶液A1〜A2の作成)
窒素導入管,温度計,攪拌棒を備えた反応容器内を窒素置換した後、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾール223質量部、N,N−ジメチルアセトアミド4416質量部を加えて完全に溶解させた後、ピロメリット酸二無水物217質量部、コロイダルシリカをジメチルアセトアミドに分散してなるスノーテックス(DMAC−ST30、日産化学工業製)をシリカが表1記載量になるように加え、25℃の反応温度で24時間攪拌すると、褐色で粘調なポリアミド酸溶液A1〜A2が得られた。
【0050】
【表1】

【0051】
〔製造例3〜4〕
(ポリアミド酸溶液B1〜B2の作成)
窒素導入管,温度計,攪拌棒を備えた反応容器内を窒素置換した後、1,3−ビス(4−アミノフェノキシ)ベンゼン(BPDA)を入れ、N,N-ジメチルアセトアミドを導入し、均一になるようによく攪拌した後、ピロメリット酸二無水物(PMDA)をBPDAに当量になるように入れ、コロイダルシリカをジメチルアセトアミドに分散してなるスノーテックス(DMAC−ST30、日産化学工業製)をシリカが表2記載量になるよう加え、25℃の反応温度で24時間攪拌すると、褐色で粘調なポリアミド酸溶液B1〜B2が得られた。
【0052】
〔製造例5〕
(ポリアミド酸溶液Cの作成)
窒素導入管,温度計,攪拌棒を備えた反応容器内を窒素置換した後、ピロメリット酸無水物(PMDA)、4,4'ジアミノジフェニルエーテル(ODA)を当量で入れ、N、N−ジメチルアセトアミドに溶解し、コロイダルシリカをジメチルアセトアミドに分散してなるスノーテックス(DMAC−ST30、日産化学工業製)をシリカが表2記載量になるよう加え、25℃の反応温度で24時間攪拌すると、褐色で粘調なポリアミド酸溶液Cが得られた。
【0053】
【表2】

【0054】
〔ポリイミドフィルムの作成1〜6〕
製造例で得たポリアミド酸溶液を、ダイコーターを用いて鏡面仕上げしたステンレススチール製の無端連続ベルト上に塗布し(塗工幅1240mm)、90〜115℃にて10分間乾燥した。乾燥後に自己支持性となったポリアミド酸フィルムを支持体から剥離して両端をカットし、それぞれのグリーンフィルムを得た。
得られたこれらのグリーンフィルムを、ピンシートが並んだ際にピン間隔が一定となるようにピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンにさしこむ事により把持し、フィルムが破断しないように、かつ不必要なタルミ生じないようにピンシート間隔を調整し、最終ピンシート間隔が1140mm、となるように搬送し、第1段が170℃で2分、第2段として230℃で2分、第3段485℃で6分の条件で加熱を施して、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、フィルムの両端部の平面性が悪い部分をスリッターにて切り落とし、ロール状に巻き上げ、褐色を呈するフィルム1〜フィルム6のそれぞれのポリイミドフィルムを得た。得られた各ポリイミドフィルムの特性などの測定結果を表3に記載する。
【0055】
〔ポリイミドフィルムの作成7〕
ポリアミド酸溶液A1を、ポリエチレンテレフタレート製フィルムA−4100(東洋紡績株式会社製)の無滑剤面上に、コンマコーターを用いてコーティングし、110℃にて5分間乾燥後、支持体から剥がさずにポリアミド酸フィルムA1層と支持体との積層体をロール状に巻き取った。得られたポリアミド酸フィルムA1層の厚みはポリイミドフィルムになった後30μmであった。
得られたポリアミド酸フィルムA1層と支持体との積層体のロール状物を製膜機の巻きだし部に取り付け、上記のポリアミド酸溶液A2をポリイミドフィルムになった後8μmとなるように、コンマコーターを用いてポリアミド酸フィルムA1層面にコーティングし、110℃にて20分間乾燥することで、2層構成のポリアミド酸フィルムを得た。この多層ポリアミド酸フィルムを支持体から剥離後、3つの熱処理ゾーンを有するピンテンターに通し、一段目150℃×2分、2段目220℃×2分、3段目475℃×4分間の熱処理を行い、500mm幅にスリットして、多層ポリイミドフィルムを得た。得られたフィルムをフィルム7とした。
得られたポリイミドフィルムの特性などの測定結果を表3に記載する。
【0056】
【表3】

【0057】
<実施例1〜6>
《 実施例1》
シランカップリング剤(3−アミノプロピルトリメトキシシラン)は、イソプロピルアルコールによって1%に希釈後、洗浄、乾燥済みのSiウエハをスピンコーターにて3000rpmにて回転させそこに滴下させることで、全面を濡らした。滴下後30秒後に回転を止めると、見た目乾燥していた。これを130℃のホットプレート上で1分おき、その後に真空プレスを行なった。真空プレスは、ロータリーポンプにて真空に引き、10+2Pa以下の真空度にて、10MPaの圧力で、300℃、10分のプレスを行なった。真空プレスを行なう前に、ポリイミドフィルム5を使用して、このフィルムを真空プラズマ処理を行った。真空プラズマ処理は平行平板型の電極を使ったRIEモードRFプラズマによる処理で、真空チャンバー内に酸素ガスを導入して、13.54MHzの高周波電力を導入することで処理時間は3分行なった。評価結果などを表4に示す。
【0058】
《実施例2》
無機層をガラス板にした以外は実施例1と同じようにして実施した。評価結果などを表4に示す。
【0059】
《実施例3》
ポリイミド層を5μmのフィルム3にした以外は実施例1と同じようにして実施した。評価結果などを表4に示す。
【0060】
《実施例4》
シランカップリング剤(3−アミノプロピルトリメトキシシラン)は、イソプロピルアルコールによって1%に希釈後、ポリイミドフィルム1をこの液に浸漬した。3分浸漬後に、フィルムを取り出し、概略乾かした後に130℃の熱風乾燥機にて5分更に加熱乾燥させた。その後に洗浄し、次に200℃に加熱したヒーター付きのウエハ用真空吸着盤にて、乾燥済みのSiウエハを真空吸着した後にシランカップリング剤液に浸漬後加熱乾燥させたポリイミドフィルム5を吸着盤上のウエハにローラーにて押さえつけ貼り付けを行い、ウエハ外周形状にポリイミドフィルムを切断した後、真空プレスを行なった。真空プレスは、ロータリーポンプにて真空に引き、10+2Pa以下の真空度にて、10MPaの圧力で、300℃、10分のプレスを行なった。真空プレスを行なう前に、ポリイミド層は、真空プラズマ処理を行った。評価結果などを表5に示す。
【0061】
《実施例5》
ポリイミド層をフィルム4にした以外は実施例1と同じようにして実施した。評価結果などを表5に示す。
【0062】
《実施例6》
ポリイミド層をフィルム7にしてA1面を貼付け面とした以外は実施例1と同じようにして実施した。評価結果などを表5に示す。
【0063】
【表4】

【0064】
【表5】

【0065】
<比較例1〜7>
《比較例1》
真空プレスを行なう前に、ポリイミド層は、真空プラズマ処理を行わない以外は、実施例1と同様にして実施した。評価結果などを表6に示す。
【0066】
《比較例2》
真空プレスを行なう前に、シランカップリング剤をSiウエハ層に使わない以外は実施例1と同じにした。評価結果などを表6に示す。
【0067】
《比較例3》
無機層をガラス板にした以外は比較例1と同様にして実施した。評価結果などを表6に示す。
【0068】
《比較例4》
使用するフィルムをフィルム2にした以外は比較例1と同様にして実施した。評価結果などを表7に示す。
【0069】
《比較例5》
使用するフィルムをフィルム5にした以外は比較例1と同様にして実施した。評価結果などを表7に示す。
【0070】
《比較例6》
無機層をガラス板にして、使用するフィルムをフィルム6にした以外は比較例1と同様にして実施した。評価結果などを表7に示す。
【0071】
《比較例7》
ポリイミド層をフィルム7にしてA2面を貼付け面とした以外は実施例1と同様にして実施した。評価結果などを表7に示す。
【0072】
【表6】

【0073】
【表7】

【産業上の利用可能性】
【0074】
本発明の積層体は、極小薄のデバイス構造体などに有効に使用でき、無機基板上にポリイミドフィルムを積層した状態で、極薄の絶縁性、耐熱性、寸法安定性に優れたポリイミドフィルム上に、精度よく回路やデバイス形成ができ、それ故に、TAB、COF、インターポーザー、センサー基板、表示デバイス基板、プローブ、集積回路用基板、セラミック基板とポリイミド基板の複合基板、金属放熱板付き基板、金属補強基板、ガラスベース基板、ガラス基板利用の表示素子への付加基板およびこれらの回路上に薄膜デバイス、薄膜センサー、電子素子を付け加えることで出来る複合デバイスなどに有効に使用できる。
さらに、必要に応じて、無機基板と剥がすことにより、微細な回路の作成された、ポリイミドフィルムを得る事が出来るため、TAB、COF、インターポーザー、センサー基板、表示デバイス基板、プローブ、集積回路用基板、セラミック基板とポリイミド基板の複合基板、金属放熱板付き基板、金属補強基板、ガラスベース基板、ガラス基板利用の表示素子への付加基板およびこれらの回路上に薄膜デバイス、薄膜センサー、電子素子を付け加えることで出来る複合デバイスなどに有効に使用できる。
これらの極小薄のセンサーなどのデバイス構造体の製造にとってきわめて有意義であり、産業界への寄与は大きい。

【特許請求の範囲】
【請求項1】
少なくとも無機層とポリイミドフィルムから構成されてなる積層体であって、該積層体は、ガラス板、セラミック板、シリコンウエハから選ばれた一種の無機層の一面と、芳香族テトラカルボン酸類と芳香族ジアミン類との反応によって得られる線膨張係数が、フィルムの長さ方向と幅方向でいずれも−5ppm/℃〜+10ppm/℃であるプラズマ処理されたポリイミドフィルムの一面とが、接着剤層を介することなく貼り合わされた積層体であって、無機層とポリイミドフィルム層との間にシランカップリング層を有し、積層体のフィルムと無機層との180度剥離強度が0.5N/cm以上3N/cm以下であり、ポリイミドフィルムの無機層と接している側の表面から少なくとも3μmの部分には20nm以上長径を持つ粒子は入っていないことを特徴とする積層体。
【請求項2】
該シランカップリング層の厚さが100nm以下であることを特徴とする請求項1記載の積層体。
【請求項3】
ポリイミドフィルムが芳香族テトラカルボン酸類とベンゾオキサゾール構造(骨格)を有する芳香族ジアミン類との反応によって得られるポリイミドフィルムであることを特徴とする請求項1〜2いずれかに記載の積層体。
【請求項4】
ポリイミドフィルムの厚さが1μm〜50μmであることを特徴とする請求項1〜3いずれかに記載の積層体。
【請求項5】
少なくとも無機層とポリイミドフィルムから構成されてなる積層体の製造方法であって、30℃〜300℃の線膨張係数が、フィルムの長さ方向と幅方向でいずれも−5ppm/℃〜+10ppm/℃であり、かつポリイミドフィルムの無機層と接している側の表面から少なくとも3μmの部分には20nm以上長径を持つ粒子は入っておらず、該無機層はガラス板、セラミック板、シリコンウエハから選ばれた一種の無機層の少なくとも一面をシランカップリング処理してなり、該ポリイミドフィルムと、該無機層のシランカップリング処理された面とを重ね合わせ、両者を加圧によって積層することを特徴とする請求項1〜4いずれかに記載の積層体の製造方法。

【公開番号】特開2012−232594(P2012−232594A)
【公開日】平成24年11月29日(2012.11.29)
【国際特許分類】
【出願番号】特願2012−168417(P2012−168417)
【出願日】平成24年7月30日(2012.7.30)
【分割の表示】特願2010−512862(P2010−512862)の分割
【原出願日】平成21年12月16日(2009.12.16)
【出願人】(000003160)東洋紡株式会社 (3,622)
【Fターム(参考)】