説明

空気圧装置ステーションの排気温調整システム

【課題】発熱する真空ポンプやブロア等が収納された空気圧装置ステーションからの排気を利用して、工場室内の空調を好適に補助することができる空気圧装置ステーションの排気温調整システムを提供すること。
【解決手段】空気圧装置によって加熱された収納ボックス内を、外気を取り入れて冷却すべく、その収納ボックス内で実質的に下方から上方へ流れる冷却用空気流を発生させて排気する送風装置と、冷却用空気流を通過させて冷却すべく設けられた水冷式の冷却器(エアステーション1に内蔵)と、その冷却器へ冷水を供給するクーラーユニット2と、冷却器へ供給する冷水の温度を調整するように水温を制御する水温制御手段と冷却器へ供給する冷水の流量を調整するように流量を制御する流量制御手段との少なくとも一方が設けられている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、真空ポンプやブロア等の負圧や正圧の空気圧を生じさせる空気圧装置を収納する空気圧装置ステーションの排気温調整システム及び工場室内の空調システムに関する。
【背景技術】
【0002】
従来、真空ポンプやブロア等の空気圧装置は、重量物であり、工場内の床面上に個々に設置されている。また、これらの空気圧装置は、空気を圧縮する機能を有することで発熱する。このため、一般的には熱が発散するように、空気圧装置は周りを囲わないで設置されている。
【0003】
一方、これらの空気圧装置は、空気を減圧又は加圧する際に騒音が発生する。
これに対して、本出願人は、真空ポンプ等の発熱体を個々に収納する二重構造の防音ボックスを提案してある(特許文献1、特許文献2参照)。
この防音ボックスによれば、防音ボックスの内部と二重構造をした壁内部とに亘って気体を送風ファンで強制的に循環させて冷却すると共に、壁の内面に沿って吸音材を被着して防音している。また、特許文献2の防音ボックスでは、冷却空気の流れを均等に二方向に分流した後に吹き付けるように構成したので機器を均一に冷却することができる。
【特許文献1】実開昭63−22000号公報(第1頁、第1図)
【特許文献2】実公平5−42480号公報(第1頁、第1図)
【発明の開示】
【発明が解決しようとする課題】
【0004】
空気圧装置ステーションの排気温調整システムに関して解決しようとする問題点は、従来、発熱する真空ポンプやブロア等の被収納物を好適に収納できるものが、背景技術の欄に記載したようなものに限定され、一般的には提案されてこなかったこと起因する。
空気圧装置ステーション内の真空ポンプやブロア等の発熱体を冷却した空気は、工場室内内に排出されるか、ダクトを介して室外に排出されることになる。しかし、従来は、発熱体であって重量のある被収納物をボックス内で複数収納するという技術的思想がほとんどなく、その排気(排熱等)を利用するための提案がなされていなかった。
【0005】
そこで本発明の目的は、発熱する真空ポンプやブロア等の被収納物が収納された空気圧装置ステーションからの排気を利用して、工場室内の空調を好適に補助することができる空気圧装置ステーションの排気温調整システムを提供することにある。
【課題を解決するための手段】
【0006】
本発明は、上記目的を達成するために次の構成を備える。
本発明にかかる空気圧装置ステーションの排気温調整システムの一形態によれば、真空ポンプやブロア等の負圧や正圧の空気圧を生じさせる空気圧装置と、該空気圧装置を複数収納すると共に閉鎖空間に収納することで防音する収納ボックスと、前記空気圧装置によって加熱された前記収納ボックス内を、外気を取り入れて冷却すべく、該収納ボックス内で実質的に下方から上方へ流れる冷却用空気流を発生させて排気する送風装置と、前記冷却用空気流を通過させて冷却すべく設けられた水冷式の冷却器と、該冷却器へ冷水を供給するクーラーユニットと、前記冷却器へ供給する冷水の温度を調整するように水温を制御する水温制御手段と、前記冷却器へ供給する冷水の流量を調整するように流量を制御する流量制御手段との少なくとも一方が設けられたことを特徴とする。
【0007】
また、本発明にかかる空気圧装置ステーションの排気温調整システムの一形態によれば、前記水温制御手段は、冷却水の温度を検出する水温検出装置による検出データ等に基づいて前記クーラーユニットの水温を制御することを特徴とすることができる。
【0008】
また、本発明にかかる空気圧装置ステーションの排気温調整システムの一形態によれば、前記流量制御手段は、冷却水の流量を検出する流量検出装置による検出データ等に基づいて制御弁の開閉を調整することで流量を制御することを特徴とすることができる。
【0009】
また、本発明にかかる工場室内の空調システムの一形態によれば、工場室内の空調を行うべく設けられた一般的な空調装置と、工場室内の空調の補助装置としても機能する目的で設置された前記の空気圧装置ステーションの排気温調整システムとを備えることを特徴とすることができる。
【0010】
また、本発明にかかる工場室内の空調システムの一形態によれば、前記工場が、室内の温度や湿度の管理が必要な印刷工場であることを特徴とすることができる。
【発明の効果】
【0011】
本発明にかかる空気圧装置ステーションの排気温調整システムによれば、発熱する真空ポンプやブロア等の被収納物が収納された空気圧装置ステーションからの排気を利用して、工場室内の空調を好適に補助することができるという特別有利な効果を奏する。
【発明を実施するための最良の形態】
【0012】
以下、本発明にかかる排気温調整システムを備える空気圧装置ステーションについて最良の形態例を添付図面(図1〜20)に基づいて詳細に説明する。
図1は、本発明にかかる空気圧装置ステーションを概念的に説明する斜視図である。
図1では、空気圧装置10が載置される棚状支持部30を、複数段に設けた空気圧装置ステーションを示してある。
この空気圧装置10とは、真空ポンプやブロア等の負圧や正圧の空気圧を生じさせる装置のことであり、コンプレッサー装置も含まれる。
そして、空気圧装置10を除いた空気圧装置ステーションの構成が、空気圧装置の収納ボックスとなっている。
【0013】
20は収納ボックスであり、空気圧装置10を複数収納すると共に閉鎖空間に収納することで防音する。矩形のボックスであり、前面(正面)が開く構造となっている。本形態例では、観音開きに開放する一対の扉22、22が設けられている。
40は送風装置であり、空気圧装置10によって加熱された収納ボックス20内を冷却すべく、その収納ボックス20内で実質的に下方から上方への一方向へ流れる冷却用空気流を発生させる。本形態例では、軸流ファン(有圧換気扇)が採用されている。
【0014】
収納ボックス20の壁部の内面には吸音材24が設けられている。壁部の内面とは、収納ボックス20を構成する少なくとも側壁の内側の面であり、扉22の内面も含む。つまり、冷却用空気流の流れに影響のない部分の内面を対象とし、極力多くの部分に吸音材24を配することで、防音性能を向上させればよい。
吸音材24としては、スポンジ状の樹脂材から成る所定厚さのシート状部材を採用できる。この吸音材24は、壁部の内面を被覆するように、接着或いは別途の取付け手段によって固定されていればよい。なお、収納ボックス20の壁部に組み込めれば、ゴム等の他の材質で他の形態の吸音材24を用いても良いのは勿論である。
【0015】
また、収納ボックス20内には、高さ方向の中途部に空気圧装置10が載置される棚状支持部30が少なくとも一段設けられている。本形態例では、三段の棚状支持部30が設けられている。そして、その棚状支持部30は冷却用空気流の流れを許容するように開放部31を有している。
このように複数段の棚状支持部30によって、複数の空気圧装置10を立体的に好適に収納することができる。従って、それらの設置スペースを小さくできる効果がある。
また、棚状支持部30には開放部31があるため、冷却空気がスムースに流れ、収納ボックス20内を好適に冷却できる。また、通気抵抗を低く抑えることができ、送風装置40の負担を軽減できる。
【0016】
この送風装置40は、各空気圧装置10が載置された位置よりも上側に、空気を下側から吸引して上側へ吐出するように設けられている。
これにより、各空気圧装置10によって加熱された空気の上昇気流といっしょに、下から上への一方向の冷却用空気の流れを好適に発生させることができる。つまり、対流現象と送風装置40による空気の流れを一致させて、効率良く送風することができる。
また、後述する構成要素を含めて各構成が直列に配置された状態となり、冷却用空気流の妨げとなる要素が少なく、送風装置40の送風ロスが小さい効果もある。
【0017】
50は冷却手段であり、冷却用空気流の流路中の各空気圧装置10が載置される位置よりも上側に設けられ、空気圧装置10の発熱によって加熱された空気を冷却する。これにより、室内に排気をしても室内温度を上昇させないで、室内環境を好適に維持できる。
この冷却手段50は、冷却用空気流の流路中における送風装置40の下側に配置されている。つまり、各空気圧装置10より風下で、送風装置40より風上に配されている。これにより、送風装置40が加熱されることがなく、過熱による送風装置40の不具合の発生を防止できる。
【0018】
また、この冷却手段50は、水冷式の冷却器50a(図14〜17参照)とすることができる。専用に設置されたクーラーユニットによって供給される冷却水や、工場内で用意されている冷却水を好適に利用することができる。
水冷式の冷却器50aによれば、水量・水温を変えることにより、排出する空気の冷却度合い(温度)を適宜調整できる。また、従来は発生した熱を空調によって除去していたが、工業用水を利用できるため、ランニングコストの大幅な削減になる。
【0019】
11はホースであり、空気圧装置10からの加圧空気を外部の作業装置に供給するために設けられているものと、空気圧装置10によって外部の作業装置から空気を吸引するように減圧空気を供給するために設けられているものがある。
12は接続口であり、ホース11が内側から接続されており、収納ボックス20の前面の下部に配設されている。この接続口12を介して、各空気圧装置10に連結されているホース11と、外部で空気圧を利用して仕事をする作業装置とを接続できることができる。なお、接続口12は収納ボックス20の後面に配設されてもよい。
【0020】
そして、これらのホース11が、冷却用空気流の流路中の各空気圧装置10が載置される位置よりも下側を通るように配管されている。
これにより、特に空気圧装置10からの加圧空気を外部の装置に供給する際の加熱された加圧空気を冷却することができる。空気圧装置10のアフタークーラーとなり、好適な加圧空気を排出できる。
なお、接続口12の配設位置は、収納ボックス20の前面に限定されるものでなく、収納ボックス20の後面であってもよい。
【0021】
次に、空気圧装置ステーション(以下、「エアーステーション」と記す場合がある。)の排気温調整システムについて、図2及び図3に基づいて説明する。図2は空気圧装置ステーションの排気温調整システムのブロック図であり、図3は冷却ステップのフローを示す説明図である。
この空気圧装置ステーション(エアーステーション1)の排気温調整システムによれば、エアーステーション1の冷却器50a(図14等参照)へ供給する冷水の温度を調整するように水温を制御する水温制御手段と、冷却器50aへ供給する冷水の流量を調整するように流量を制御する流量制御手段との少なくとも一方が設けられている。
【0022】
図2及び図3に示すように、2はクーラーユニットであり、冷却器50aへ冷水を供給するように工場室内の外に設けられている。
3は給水流路側のバルブであり、4は戻し流路側のバルブである。また、6は流量計であり、7は水温計である。さらに、5はバイパスバルブであり、冷却水をエアーステーション1へ流さないときなど、冷却水の供給を短絡させることで流量制御ができる。
【0023】
図4は、周囲温度と冷却水の流量を一定とし、冷却水の温度変化に対する冷却器50a(コンデンサ)を通過した排気の温度変化を示すグラフであり、横軸が冷却水の温度(℃)、縦軸が排気の温度(℃)である。
このグラフによれば、冷却水の温度が上昇すると、排気の温度も線形的に比例して上昇することがわかる。このため、このグラフからは、冷却水の温度によって、排気の温度を容易に予測できる。そして、その排気が放出される室内温度の変化も予測可能である。
従って、前記の水温制御手段によれば、エアーステーション1の排気温度及び室内温度を適宜に制御することができる。
【0024】
クーラーユニット2によって供給された冷却水の温度(水温)が、水温検出装置(水温計7)によって検出され、排気温度や室内温度の状況により、水温制御手段(図示せず)によって水温を制御することで、排気温度及び室内温度を調整できる。つまり、この空気圧装置ステーションの排気温調整システムによれば、室内空調の補助的手段として好適に用いることができる。
この水温制御手段は、手動制御、或いはフィードバック制御等のコンピュータプログラム制御によって操作されればよく、その操作方法は特に限定されるものではない。
さらに、この水温制御手段は、冷却水の流量や室内温度等の水温以外にかかるセンサーの検出データに基づいても制御されるようにしてもよい。
【0025】
図5は、周囲温度と冷却水の温度を一定とし、冷却水の流量変化に対する冷却器50a(コンデンサ)を通過した排気の温度変化を示すグラフであり、横軸が冷却水の流量(L/min.)、縦軸が排気の温度(℃)である。
このグラフによれば、冷却水の流量が多くなると、排気の温度が線形的に比例して下降することがわかる。このため、このグラフからは、冷却水の流量によって、排気の温度を容易に予測できる。そして、その排気が放出される室内温度の変化も予測可能である。
従って、前記の流量制御手段によれば、エアーステーション1の排気温度及び室内温度を適宜に制御することができる。
【0026】
クーラーユニット2によって供給された冷却水の流量が、流量検出装置(流量計6)によって検出され、排気温度や室内温度の状況により、流量制御手段によって流量を制御することで、排気温度及び室内温度を調整できる。つまり、この空気圧装置ステーションの排気温調整システムによれば、室内空調の補助的手段として好適に用いることができる。
この流量制御手段は、冷却水の流路8に設けられた電磁弁等の制御弁(水量制御弁3、4、5)によって構成することができる。
また、この流量制御手段は、手動制御、或いはフィードバック制御等のコンピュータプログラム制御によって操作されればよく、その操作方法は特に限定されるものではない。
さらに、この流量制御手段は、冷却水の温度や室内温度等の流量以外にかかるセンサーの検出データに基づいて制御されるようにしてもよい。
【0027】
なお、図6は、空気圧装置の負荷変化における冷却器50a(コンデンサ)を通過した排気の温度変化を示すグラフであり、横軸が空気圧装置の負荷変化(kw)、縦軸が排気の温度(℃)である。冷却水の温度や流量が一定の場合、空気圧装置ステーションに内蔵された空気圧装置の全体の負荷が大きくなると、排気の温度が線形的に比例して上昇する。
従って、空気圧装置の負荷変化に対しては、適宜に冷却水の温度や流量を変化させて、排気の温度を制御すればよい。
【0028】
以上のように構成された空気圧装置ステーションの排気温調整システムによれば、工場室内の空調を行うべく設けられた一般的な空調装置に対して、工場室内の空調の補助装置としても機能する目的で設置することができる。つまり、工場室内の空調システムの一部として好適に利用できる。
特に、室内の温度や湿度の管理が必要な印刷工場において有効である。
【0029】
例えば、水冷式の空気圧装置ステーションに内蔵されるドライポンプやブロアは、印刷工場において、紙の吸着や送りについては負圧源として、紙のさばきについては正圧源として利用される。
その印刷工場における一般的に理想とされる印刷環境は、気温が25℃で湿度が55%とされている。これに対して、本形態例の水冷式の空気圧装置ステーションによれば、水を媒体にしてポンプやブロアの排熱と熱交換を行い、通常は、排熱による温度上昇をゼロとして対応している。
従って、排気をダクトで室外へ排気する必要がなく、局所的に効率よく熱交換がなされ、空冷による場合のような大きな送風装置を要しないため、排熱の処理を効率よく行なうことができる。
【0030】
そして、冷却水の流れを止めたり、水温を上げることで、排気の温度を上げて排熱を利用し、工場室内の暖房として利用できる。空気圧装置の負荷によって異なるが、室温が25℃の際に30〜45℃の温風を排出し、室内に供給できる。
また、水温を下げたり、冷却水の流量を多くすることで、冷却空気(冷風)を排出し、室内に供給できる。つまり、冷房として利用できる。
このような空調機能を、工場室内にある一般的な空調装置と共に利用することで、全体としてエネルギー効率のよい空調システムを構築できるのである。
【0031】
次に、本発明にかかる棚状構造及び空気圧装置収納ボックスについて最良の形態例を添付図面(図7〜12)に基づいて詳細に説明する。
図7は、本発明にかかる収納ボックスの棚状支持部の一形態を説明する斜視図である。図8はラダーの形態例を示す平面図、図9はラダーの形態例を示す側面図、図10はラダーの形態例を示す正面図である。また、図11は収納ボックスのラック構造全体の骨組みを説明する斜視図である。また、図12は棚状支持部が収納ボックスを構成する支柱に支持される構造を説明する斜視図である。
【0032】
この収納ボックス20は、真空ポンプやブロア等の複数の被収納物を立体的に収納できるようにその被収納物が載置される棚状支持部30を備え、正面が開放可能に設けられた直方体状の箱体21である(図1及び図11等参照)。
また、この箱体21は、被収納物が載置される棚状支持部30を備える直方体状の枠体によって構成された棚状構造を骨組みとし、その直方体状の枠体の周囲が壁材で囲まれ、正面が開閉可能な箱体状に設けられている。
本形態例では、被収納物が空気圧装置10であり、空気圧装置ステーションに用いる収納ボックスとなっている。
【0033】
棚状支持部30は、箱体21の前部及び後部にそれぞれ配されて水平に且つ左右方向へ延びる一対のビーム60、60と、その一対のビーム60、60に架け渡されるべく前後方向へ延びる共に左右方向には空気の上下方向の流れを許容する間隙が生じる巾に設けられた渡たし部材であって被収納物(空気圧装置10)が載置されるラダー70とを備える。
【0034】
ビーム60は、二面の水平面61、62を上下段違いに有するように上下の水平板部61a、62aとその上下の水平板部61a、62aを一体的に繋ぐ部位である立板部63とによって階段状に設けられている。
また、このビーム60は、箱体21内にあって、上側の水平面61が外側に位置すると共に下側の水平面62が内側に位置するように配設されている。
【0035】
ラダー70は、上面部71が全面的に平坦な水平面に設けられ、その上面部71の両端部にはそれぞれ平板状に延設されてビーム60の上側の水平面61に受けられる延長平板部73を備える。また、このラダー70は、下面部72の両端部がそれぞれビーム60の下側の水平面62に受けられるように設けられている。
【0036】
以上のようなビーム60とラダー70から成る棚状支持部30によれば、ラダー70の上面全面が平坦な水平面となり、取付け作業や交換作業の際に空気圧装置10を容易に出し入れできる。また、空気圧装置10の保守管理の際にも、上面全面が平坦で障害となる部分がないため作業がし易い。
また、ラダー70が、ビーム60の上側の水平面61と下側の水平面62との両方によって受けられて支持されている。このため、耐荷重強度を確保でき、重量物である空気圧装置10を好適に支持できる。
この効果は、被収納物が載置される棚状支持部30を備える直方体状の枠体によって構成された棚状構造のみによっても生じるものである。他の重量物装置の収納用の棚状構造として応用可能な構造となっている。
【0037】
そして、ラダー70の上面部71には、左右方向に2列で且つ前後方向に長い被収納物取付け用の長孔78が設けられている。また、被収納物取付け用の長孔78は、ラダー70の長手方向である前後方向に断続的に複数が設けられている。
この被収納物取付け用の長孔78を用いて、被収納物をラダー70にボルトとナットなどの固着手段によって固定する。
このように、被収納物取付け用の長孔78が設けられていることで、空気圧装置10等の取り付けのための自由度が、左右方向及び前後方向の両方について大幅に向上する。
従って、種々の空気圧装置10等の被収納物を、収納ボックス20内に自由に配置して収納することができ、共用性や汎用性を向上できる。例えば、仕様変更や新規追加等で搭載するポンプやブロアが変更となった場合でも柔軟に対応できる。
【0038】
次に、ラダー70のビーム60への装着構造について説明する。
箱体21の外側から雄ネジ35を締め付けてビーム60にラダー70を固定すべく、ビーム60の立板部63に開口する貫通孔65が設けられ、ラダー70の両端部であって延長平板部73の下側に雌ネジ部75が設けられている。
この形態例においては、雄ネジ35がボルトであって、雌ネジ部75がプロジェクションナットである。
また、立板部63に開口した貫通孔65が左右方向に長い長孔に設けられている。これによれば、左右方向(図7の矢印参照)の位置調整が可能であり、ラダー70を所望の位置に容易に固定することができる。
【0039】
また、ビーム60は、金属板材を階段状に折り曲げて形成することができる。なお、この階段状とは、図2に明らかなように断面クランク状或いは断面鉤形状と表現できる形状になっている。
ラダー70は、下面が開いた断面コの字状に折り曲げられた金属板材から形成され、ラダー70の両端部であって延長平板部73の下側に形成される端面部77は、金属部材の側板部74を内側へ折り曲げて形成されている。端面部77には、貫通孔が開いており、その裏側にプロジェクションナット(雌ネジ部75)が溶接されている。
以上のようにビーム60とラダー70は、金属板材を折り曲げて形成できるため、容易に製造できる。
また、側板部74の両端部を除く部分74aは、下側が切り欠かれた形態になっており、被収納物のための搭載用スペースを大きくしている。また、74bは小孔であり、配線を固定するためのブラケット等を装着するためなどに用いられる。
【0040】
また、本形態例では、一対のビーム60、60の各両端が、箱体21の左右方向の両側部にそれぞれ配されて水平に且つ前後方向へ延びる一対の側部ビーム80、80に、ボルト82を含む固定手段によって固定されている。そして、その一対の側部ビーム80、80が箱体21を構成する4本の支柱25に固定されることで、棚状支持部30が箱体21内の所望の高さ位置に設けられている。棚状支持部30の高さ位置の調整は、支柱25の高さ方向に所定の間隔をおいて多数設けられている取付け孔25aと、ボルト81を含む固定手段によって、側部ビーム80を支柱25の所望の高さ位置に固定することによってなされる。
これによれば、一対のビーム60、60と一対の側部ビーム80、80とによって、矩形の枠体33から構成される棚状支持部30が形成されることになり、箱体21の強度を向上できる。従って、被収納物を好適に支持できる。
【0041】
以上に説明した空気圧装置収納ボックス20によれば、ラダー70を、一対のビーム60、60に単純に載せるようにして配置できるため、簡単に取り付けることができる。
また、真空ポンプやブロア等は、ブレードやベアリング等の消耗部品の定期的な交換が必要であり、その際には、設置場所から取り外すことを要する。本形態例の空気圧装置収納ボックス20によれば、上述したように、棚状支持部30のラダー70上面がフラットであるため、そのような作業を、通常のリフターを使うことによって簡単に行なうことができる。
【0042】
以上、空気圧装置10に用いられる棚構造及び収納ボックス20について説明してきたが、本発明はこれに限定されるものではなく、他の被収納物、特に重量物を収納する際において好適に適用できる。
【0043】
次に、図13〜17に基づいて、空気圧装置ステーションの空気圧装置10から排気される加熱空気の処理について説明する。
図13は収納ボックス20内での各空気圧装置10の配置及び各配管等を説明する正面図である。図14〜17は収納ボックス20内での特定の空気圧装置10の配置及び配管等を説明する側面図である。
【0044】
図13に示すように、13は排気用配管であり、各空気圧装置10からの廃棄すべき高温の加熱空気を導いて排気させる管路である。その排気用配管13の排気口が、冷却用空気流の流路中の各空気圧装置10が載置された位置よりも上側で且つ冷却手段50の下側に設けられている。
このように、各空気圧装置10が載置された位置よりも上側で加熱空気が排気されることで、空気圧装置10が過熱されることで発生する不具合を防止できる。特に、各空気圧装置10に使用されている軸受の寿命を大幅に延ばすことができ、ランニングコスト(特に保全費用)を低減できる。
【0045】
以下、図14〜17に基づいて特定の空気圧装置10にかかる配管について詳細に説明する。
図14は、図13のA矢視図であり、空気作業装置から空気を吸引する減圧を発生させる真空ポンプ装置10aの配管(減圧空気の吸引配管と加熱空気の排気用配管)について示してある。なお、図中の矢印は空気の流れを示している。
ホース11aは、真空ポンプ装置10aによって空気を外部の空気作業装置から吸引する配管となっている。このホース11aの下側の部分が、冷却用空気流の流路中の各空気圧装置10が載置される位置よりも下側を実質的に水平に通るように配管されている。
また、排気用配管13aは、真空ポンプ装置10aからの廃棄すべき高温の加熱空気を導いて排気させる管路となっている。
【0046】
そして、排気用配管13aの排気口15aは、冷却用空気流の流路中の各空気圧装置が載置された位置よりも上側で且つ冷却手段(水冷式の冷却器50a)の下側に配置されている。図14に示す形態例では、冷却器50aの直下に設けられた小ボックス部26内に、排気口15が開口されている。
小ボックス部26は、上面が冷却器50aに連通するように開放されており、下面には開口26aが設けられている。これにより、冷却用空気流が流れるようになっている。また、この小ボックス部26内の内部空間は、冷却用空気が下から上へ流れる際に排気口15から排気された加熱空気と混合されるミキシング空間27となっている。加熱空気は高温になっており、冷却用空気と混合・希釈されて熱が分散され、冷却効率が向上される。
【0047】
図15は、図13のA矢視図であり、加圧空気を空気作業装置へ供給するポンプ装置10bの配管(加圧空気の供給配管と加熱空気の排気用配管)について示してある。
ホース11bは、ポンプ装置10bからの加圧空気を外部の空気作業装置へ供給する配管となっている。このホース11bの下側部分が、冷却用空気流の流路中の各空気圧装置10が載置される位置よりも下側を水平に通るように配管されている。このように配管されているため、前述したようにアフタークーラーの効果がある。
また、排気用配管13bは、ポンプ装置10bからの廃棄すべき高温の加熱空気を導いて排気させる管路となっている。
【0048】
そして、排気用配管13bの少なくとも一部が、冷却用空気流によって冷却されるべく、その冷却用空気流の流路中の各空気圧装置10が載置された位置よりも上側で且つ冷却手段(水冷式の冷却器50a)の下側に配置されている。図15に示す形態例では、前述した小ボックス部26のミキシング空間27内に、排気用配管13bの上部13zが配管されている。このように配管されている排気用配管13bの上部13zは、冷却用空気流によって強制的に冷却される。
なお、この排気用配管13bの上部13zの先端には、排気される加熱空気の排気圧を調整できる調整弁17が設けられている。本形態例では、小ボックス部26の外側に排気圧を調整する際のバネ圧を変更するための操作部17aが露出しており、小ボックス部26の内側に排気口15bが位置するように配置されている。
前述したように排気用配管13bの上部13zが冷却用空気流によって冷却されるから、調整弁17の操作部17aが高温になることを防止でき、作業者は好適に操作できる。
【0049】
図16は、図13のA矢視図であり、空気作業装置から空気を吸引する減圧を発生させるブロア装置10cの配管(減圧空気の吸引配管と加熱空気の排気用配管)について示してある。
このように配管することで、図14に示した形態例とは空気圧装置が真空ポンプ装置10aとブロア装置10cとで相違するが、同様の作用効果を得ることができる。
【0050】
図17は、図13のB矢視図であり、加圧空気を空気作業装置へ供給するブロア装置10dの配管(加圧空気の供給配管と加熱空気の排気用配管)について示してある。
このように配管することで、図15に示した形態例とは空気圧装置がポンプ装置10bとブロア装置10dとで異なるが、同様の作用効果を得ることができる。なお、本形態例では、冷却用空気流によって冷却される排気用配管の部分がないことや、調整弁の代わりに安全弁18を設けたという構成の点でも、図15の形態例とは相違する。
【0051】
次に、ボックス構造内部への塵埃の侵入を抑えるように、空気中のダストを捕捉する粗塵フィルタについて図面に基づいて説明する。
図18は粗塵フィルタ90の折り畳み可能な状態を示す斜視図であり、図19は平面的に伸ばした状態の平面図である。また、図20はフィルタ単体90A同士の連結形態の一例を示す断面図である。
【0052】
この粗塵フィルタ90は、ボックス構造内部への塵埃の侵入を抑えるものであって、ボックス構造の内側に設けられた一対のガイド溝93、93間に挿入されて装着可能な平板状に設けられると共に、ガイド溝93に嵌るように、外縁が棒状材によって枠状に形成された枠棒94と、その枠棒94に張られた濾材95とによって構成されるフィルタ単体90Aの複数が、平面的に連結された状態で並設されて折り畳むことが可能に設けられている。
本形態例の粗塵フィルタ90は、挿入方向について折り畳むことができるため、メンテナンススペースを小さくすることができる。
【0053】
また、図20に示すように、96は連結部材であり、弾性によって拡開可能に形成されて枠棒94に外嵌めされる一対の嵌め部97、97と、その一対の嵌め部97、97を繋ぐように設けられると共に折り返し可能な柔軟性を有する繋ぎ部98とから構成されている。これによって、フィルタ単体90A同士が連結されて粗塵フィルタ90が構成されている。本形態例では、3枚のフィルタ単体90Aが連結された形態となっているが、装着される場所に応じて2枚又は4枚以上としてもよいのは勿論である。
なお、95aは濾材95の縫い付け部であり、
また、図19に示すように、99は取っ手であり、粗塵フィルタ90の引き出し作業を簡単に行なうことができるように、枠棒94の手前中央部に濾材95上に重ねて縫い付けられている。
なお、94aは補強棒(図19参照)であり、95aは濾材の縫い目部(図20参照)である。
【0054】
嵌め部97は、断面円形の枠棒94に嵌る断面C字状の部分97aと、そのC字状の部分97aから両側に連続して設けられ、枠棒94に嵌る際に案内するテーパ状の部分97bとによって構成されている。また、この嵌め部97は、プラスチック等の弾性のある材質によって設けられている。このため、図19に示すように、濾材95の端部が巻かれた枠棒94を、嵌め部97に矢印方向へスライドさせるように押し込むことで、簡単に連結することができる。なお、図19における二点鎖線は、フィルタ単体90Aが嵌め部97に対してスライドされて嵌め込まれる中途位置の状態を示している。
また、繋ぎ部98は、折り返すことができる柔軟性があって、濾材の部分よりも空気の通気性のない材料によって設けられているとよい。例えば、ゴム材によって形成されている。
【0055】
この粗塵フィルタ90は、図1に示すように冷却用空気流の流路中の各空気装置10が載置された位置より下側であって空気を取り入れる吸入口19の上側に、収納ボックス20の水平断面を占めるように実質的に水平に設置されている。
このため、フィルタ面積を広範囲に取ることができ、通気抵抗を小さく抑えることができるから、冷却空気の風量を好適に確保できる。また、粗塵フィルタ90は板状であるため薄型で、しかも水平配置(横置き)である。そのため、収納ボックス20内での設置スペースが小さく、ボックス構造をコンパクトにすることができる。
これに対して、脚92の高さ分に相当する部分に、鉛直配置(縦置き)のフィルタを周囲を巡らすように配設することも考えられるが、寸法的な制約があって濾過面積を十分に大きく取ることが難しい。
【0056】
また、図13〜17に示した形態例では、空気圧装置10と外部の装置とを接続するためのホース11a、11bが、粗塵フィルタ90の設置位置よりも下側を通るように配管されている。つまり、粗塵フィルタ90の下に各ホース11a、11bが配されている。
冷却用の空気が、各ホース11a、11b間の隙間を通った後で粗塵フィルタ90を流れることになり、好適な整流効果が生じ、通気抵抗を低くすることができる。これによって、複数の空気圧装置10に対して、冷却用空気をバランス良く流すことができ、冷却効率を向上させることができる。
【0057】
本形態例の吸入口19は、収納ボックス20の最下面に設けられ、脚92の高さ分(図1参照)が床面から離れていることで、空気の流通部が確保されている。収納ボックス20の底面のほぼ全面が広く吸入口19となっており、通気抵抗を低く抑えることのできる構造になっている。
また、この粗塵フィルタ90は、板状で且つ折り畳み可能に設けられ、図19のように平板状に広げられた状態で水平方向へ差し込まれて設置されるように設けられている。本形態例では、図1に示すように、収納ボックス20の前面に水平に設けられたスリット状の差込口91から差し込まれる。このため、場所を取らずに交換及び保管できる。なお、フィルタ粗塵90の折り曲げ部(繋ぎ部98)はゴム又は布材で設けることができる。また、フィルタ素材としては、例えば、合成樹脂繊維製の網目が複数層重なった形態の濾材95を用いることができる。この濾材95によれば、周辺部を枠棒94に掛け回して縫い付けることで張った状態に形成できる。
【0058】
この粗塵フィルタ90によれば、収納ボックス20の下方から上方へ流れる冷却用空気流の上流に配置され、吸入するほこり等を取ることができる。これにより、収納ボックス20内に内蔵されているポンプやブロアが好適に保護される。勿論、ポンプやブロア自体にもそれぞれにフィルタが装着されているが、その前段階でほこりを取ることができるためである。
本形態例のようなエアーステーションは、例えば、印刷や製本等の紙を扱う工場内で、紙の吸着やさばきを行なうために設置される。そのような印刷工場等では、紙粉や印刷直後に紙に噴射してインクの貼り付きを防止するパウダー(トウモロコシの粉等)がほこりとなる。このため、本形態例のように粗塵フィルタ90を好適に設けることで、エアーステーションに内臓されたポンプやブロア等の空気圧装置を好適に保護できる。
【0059】
また、粗塵フィルタ90の目詰まりを検知するための装置及び警報装置を装備してもよい。例えば、冷却空気が粗塵フィルタ90を通過した直後の部分に相当する側面フレームにバイメタル式の温度検出器を設け、その検出器によって発せられた信号に基づいて作動するパトライト等の警報装置を、作業者が視認等できる位置に設けることができる。これによれば、仮に粗塵フィルタ90が目詰まりし、収納ボックス20内の温度が上昇した際に警報を発することになり、装置の安全性にも寄与する。
【実施例1】
【0060】
次に、図21に基づいて、本発明にかかる空気圧装置ステーションの他の形態例(実施例1)を説明する。この空気圧装置ステーションは、前述した形態例と同様に水冷式の冷却器(水冷コンデンサ)を備える。また、前述した形態例とは、冷却用空気流が下降流である点で相違する。以下、その相違点を中心に詳細に説明する。
28はダクトであり、各空気装置10の排気用配管13が接続されている。このため、そのダクト28内へ、安全弁からの排気を含む高温の排気が集中的に流入する(図21に示す矢印を参照)。なお、ダクト28(図21及び図22参照)の内部空間では、排気された加熱空気が、外部から流入する冷却用空気と混合されて希釈される。このため、このダクト28の内部空間によれば、図14〜16に示したミキシング空間27と同様に排気の熱を分散して冷却効率を向上できる。また、このダクト28は、水冷コンデンサ50aの外側(冷却用空気流の流れについて水冷コンデンサ50aの上流側)に配設されている。そして、収納ボックス20の最下部に送風機(有圧換気扇40)が配設されている。
【0061】
このように構成されているため、有圧換気扇40によって空気が吸引されると、ダクト28内の加熱された空気は、水冷コンデンサ50aを通って熱交換されて冷却される。また、水冷コンデンサ50aでは、外気を取り入れて熱交換できるように外界に開いて配置されている。
このため、排気が水冷コンデンサ50aによって熱交換されて冷却された後の空気と、外気が水冷コンデンサ50aによって冷却された後の空気とが、下降流(ダウンフロー)の冷却用空気流(風)となって、空気圧装置10(ポンプ10aやブロア10c)の表面に沿って流れる。これにより、ポンプ10aやブロア10cを好適に冷却できる。このとき、給気仕様の有圧換気扇40が最下部に配置されているため、整流された風が流れやすく、冷却効率を高めることができる利点もある。
そして、有圧換気扇40によって、ポンプ10aやブロア10cを冷却した後の空気を、収納ボックス20の外へ排出できる(図21に示す白矢印を参照)。
なお、有圧換気扇40は、羽根車の回転方向と羽根の取付け向きを変更することで、風の流れを簡単に変えることができ、排気仕様、給気仕様のどちらでも対応できる。このため、空気圧装置ステーションの稼動条件に応じて風の流れ方向を変更することは、容易に行うことができる。
【実施例2】
【0062】
次に、図22に基づいて、本発明にかかる空気圧装置ステーションの他の形態例(実施例2)を説明する。この空気圧装置ステーションは、実施例1とは、有圧換気扇40の配置が相違する。
図22に明らかなように、本実施例では、有圧換気扇40が、水冷コンデンサ50aの内側に設置されている。この有圧換気扇40は、空気圧装置10によって加熱された収納ボックス20内を冷却すべく、その収納ボックス20内を下降する冷却用空気流(ダウンフロー)を発生させる(図22に示す矢印を参照)。これによっても、実施例1と同様にポンプ10aやブロア10cを好適に冷却し、所要の低温となった空気を収納ボックス20の外へ排気できる。
【実施例3】
【0063】
次に、図23に基づいて、本発明にかかる空気圧装置ステーションの他の形態例(実施例3)を説明する。この空気圧装置ステーションは、以上に説明した形態例とは、冷却用空気流を循環流とする内部循環型にした点が相違する。
55は循環用の空気流路であり、冷却用空気流を収納ボックス20内で循環させるための通路である。本実施例では、収納ボックス20とその収納ボックス20を内蔵するキャビネット(外部収納ボックス56)とによって二重構造に設けられることで、循環用の空気流路55が形成されている。つまり、内部の収納ボックス20の外面と外部収納ボックス56の内面との間に設けられた空間が循環用の空気流路55となっている。
循環用の空気通路55は、これに限らず、内部の収納ボックス20の上端部と下端部とを連通すべく、その収納ボックス20の外部に設けられた通路であればよい。従って、配管(ダクト)によって循環用の空気流路55を構成してもよい。
【0064】
この実施例では、収納ボックス20の最下部に送風装置(有圧換気扇40)が配設されている。この有圧換気扇40によれば、最下部から空気を噴き上げるように冷却用空気流を発生させている。
これにより、空気圧装置10を複数収納する収納ボックス20内で実質的に下方から上方へ流れる冷却用空気流(上昇流)が生じており、前述したように空気圧装置10を効果的に冷却できる。
また、収納ボックス20内を通過した後の空気は、ダクト28内へ吐出された空気圧装置10の排気と共に、水冷コンデンサ50aを通過して冷却され、循環用の空気流路55を下降して循環する(図23に示す矢印参照)。なお、空気が水冷コンデンサ50aの内側から外側へ流れるため、ダクト28は水冷コンデンサ50aの内側に設けられている。
これにより、収納ボックス20内の加熱された空気を効率良く好適に冷却できる。
なお、有圧換気扇40の設置場所は、本実施例に限定されず、基本的循環空気通路中の他の位置に設置してもよい。但し、有圧換気扇40が高温の空気に曝されることで不具合が生じることを防止するため、空気圧装置10の直上に設置する場合は注意が必要である。
【実施例4】
【0065】
次に、図24に基づいて、本発明にかかる空気圧装置ステーションの他の形態例(実施例4)を説明する。この空気圧装置ステーションは、実施例3とは、循環する冷却用空気流が収納ボックス20内において下降流(ダウンフロー)となっている点が相違する。
この実施例でも、収納ボックス20の最下部に有圧換気扇40が配設されている。この有圧換気扇40によれば、収納ボックス20内の空気を吸引して循環用の空気流路55へ吐出させる。そして、循環用の空気流路55を通過した空気は、ダクト28内へ吐出された空気圧装置10の排気と共に、水冷コンデンサ50aを通過して冷却され、収納ボックス20内へ再度流入して循環する(図24に示す矢印参照)。なお、空気が水冷コンデンサ50aの外側から内側へ流れるため、ダクト28は水冷コンデンサ50aの外側に設けられている。
これによっても、収納ボックス20内の加熱した空気圧装置10を冷却用空気流によって好適に冷却できる。
【0066】
このような収納ボックス20と外部収納ボックス56の二重構造によれば、空気圧装置10から発生する運転音を二重に遮断でき、静音化性能を向上できる。また、密閉キャビネット構造が実現でき、空気圧装置10の運転音を漏らさないことで静音化性能を向上できる。
また、有圧換気扇40は閉回路中に設置してあって、空気が循環されるため、収納ボックス20から塵埃を吸い込まない。このため、有圧換気扇40が吸い込んだ塵埃を含む空気を外部へ放出することがない。従って、周囲の環境を汚染しないという利点がある。
さらに、排気を空気圧装置ステーションの外へ出さないため、排気を整流するスペースが不要となり、設置スペースを小さくできる。また、循環する空気に対しては、周囲(外気)の温度等が変化してもその影響が小さく、安定的な運転ができる。反対に、周囲の環境に及ぼす影響を小さくできるため、エネルギー消費を全体として低減できる利点もある。
【0067】
ところで、空気圧装置ステーション内部の密閉度が高くなると、その内部の圧力が、ポンプ10aやブロア10c等の空気圧装置10の運転によって変動することになる。これに対しては、その圧力を一定に保つダンパ等の調整装置を設けることができる。
さらに、空気圧装置ステーション内部が密閉されるため、外界の影響を受けない代わりに空気圧装置10の運転状況の影響を直接的に受け、その内部の環境が変動しやすくなる。これに対しては、空気圧装置ステーション内部の空気圧装置10や循環空気が過熱したり、冷え過ぎないように、冷水の温度管理や水量管理をする適正な制御装置を設けることができる。
また、空気圧装置ステーション内部で塵埃が発生する場合は、その塵埃を除去するフィルタ装置を設けてもよい。
【0068】
以上に説明した形態例及び実施例の空気圧装置ステーションは、例えば、印刷工場等の温度管理を必要とする工場室内に好適に設置することができる。
印刷工場では、印刷用紙の吸着や搬送を行う装置を稼動するため、多くの真空ポンプやブロア等の空気圧装置を使用している。また、品質の高い印刷のためには、室温を一定の例えば25℃に維持することを要する。
本発明にかかる空気圧装置ステーションによれば、複数の空気圧装置を好適に収納できると共に、温度管理等を好適に行って室内環境を好適な状態に維持できるため、印刷工場等の工場室内の課題を好適に解決できる。
【0069】
以上、本発明につき好適な形態例を挙げて種々説明してきたが、本発明はこの形態例に限定されるものではなく、発明の精神を逸脱しない範囲内で多くの改変を施し得るのは勿論のことである。
【図面の簡単な説明】
【0070】
【図1】本発明に係る空気圧装置ステーションの形態例を示す斜視図である。
【図2】空気圧装置ステーションの排気温調整システムのブロック図である。
【図3】図2のシステムにかかる冷却ステップのフローを示す説明図である。
【図4】冷却水の温度変化と排気の温度変化の関係を示すグラフである。
【図5】冷却水の流量変化と排気の温度変化の関係を示すグラフである。
【図6】空気圧装置の負荷変化と排気の温度変化の関係を示すグラフである。
【図7】本発明に係る収納ボックスの棚状支持部の一形態を示す斜視図である。
【図8】本発明に係る棚状構造のラダーの形態例を示す平面図である。
【図9】図8のラダーの側面図である。
【図10】図8のラダーの正面図である。
【図11】本発明に係る収納ボックスのラック構造の一形態を示す斜視図である。
【図12】本発明に係る収納ボックスの棚状支持部の一形態を示す斜視図である。
【図13】本発明に係る空気圧装置ステーションの一形態例を示す正面図である。
【図14】本発明に係る空気圧装置ステーションの一形態例を示す側面図である。
【図15】本発明に係る空気圧装置ステーションの一形態例を示す側面図である。
【図16】本発明に係る空気圧装置ステーションの一形態例を示す側面図である。
【図17】本発明に係る空気圧装置ステーションの一形態例を示す側面図である。
【図18】空気圧装置ステーション用のフィルタの一形態例を示す斜視図である。
【図19】図18のフィルタの広げた状態を示す平面図である。
【図20】フィルタ単体同士の連結形態の一例を示す断面図である。
【図21】本発明に係る空気圧装置ステーションの第1実施例を示す側面図である。
【図22】本発明に係る空気圧装置ステーションの第2実施例を示す側面図である。
【図23】本発明に係る空気圧装置ステーションの第3実施例を示す側面図である。
【図24】本発明に係る空気圧装置ステーションの第4実施例を示す側面図である。
【符号の説明】
【0071】
1 エアーステーション
2 ユニットクーラー
3、4、5 バルブ
6 流量計
7 水温計
10 空気圧装置
11 ホース
12 接続口
13 排気用配管
15 排気口
20 収納ボックス
21 箱体
24 吸音材
25 支柱
30 棚状支持部
31 開放部
40 送風装置(有圧換気扇)
50 冷却手段
50a 冷却器(水冷コンデンサ)
55 循環用の空気流路
56 外部収納ボックス
60 ビーム
61 上側の水平面
61a 水平板部
62 下側の水平面
62a 水平板部
63 立板部
65 貫通孔
70 ラダー
71 上面部
72 下面部
73 延長平板部
74 側板部
75 雌ネジ部
77 端面部
80 側部ビーム
90 粗塵フィルタ
90A フィルタ単体
93 ガイド溝
94 枠棒
95 濾材
96 連結部材
97 嵌め部
98 繋ぎ部

【特許請求の範囲】
【請求項1】
真空ポンプやブロア等の負圧や正圧の空気圧を生じさせる空気圧装置と、
該空気圧装置を複数収納すると共に閉鎖空間に収納することで防音する収納ボックスと、
前記空気圧装置によって加熱された前記収納ボックス内を、外気を取り入れて冷却すべく、該収納ボックス内で実質的に下方から上方へ流れる冷却用空気流を発生させて排気する送風装置と、
前記冷却用空気流を通過させて冷却すべく設けられた水冷式の冷却器と、
該冷却器へ冷水を供給するクーラーユニットと、
前記冷却器へ供給する冷水の温度を調整するように水温を制御する水温制御手段と、前記冷却器へ供給する冷水の流量を調整するように流量を制御する流量制御手段との少なくとも一方が設けられたことを特徴とする空気圧装置ステーションの排気温調整システム。
【請求項2】
前記水温制御手段は、冷却水の温度を検出する水温検出装置による検出データ等に基づいて前記クーラーユニットの水温を制御することを特徴とする請求項1記載の空気圧装置ステーションの排気温調整システム。
【請求項3】
前記流量制御手段は、冷却水の流量を検出する流量検出装置による検出データ等に基づいて制御弁の開閉を調整することで流量を制御することを特徴とする請求項1又は2記載の空気圧装置ステーションの排気温調整システム。
【請求項4】
工場室内の空調を行うべく設けられた一般的な空調装置と、
工場室内の空調の補助装置としても機能する目的で設置された請求項1、2又は3記載の空気圧装置ステーションの排気温調整システムとを備えることを特徴とする工場室内の空調システム。
【請求項5】
前記工場が、室内の温度や湿度の管理が必要な印刷工場であることを特徴とする請求項4記載の工場室内の空調システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate


【公開番号】特開2008−255810(P2008−255810A)
【公開日】平成20年10月23日(2008.10.23)
【国際特許分類】
【出願番号】特願2007−96074(P2007−96074)
【出願日】平成19年4月2日(2007.4.2)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.パトライト
【出願人】(000103921)オリオン機械株式会社 (450)
【Fターム(参考)】