説明

空間フィルタ処理を行う撮像方法及びその撮像装置

【課題】撮影画像の低周波成分を除去する際のカットオフ周波数を、量子化誤差等の高周波ノイズを効果的かつ確実に低減できるように設定した撮像装置及びその撮像方法を提供する。
【解決手段】光学系からの光を受光して撮像し、撮像出力である画像データを処理する画像処理手段段が、光学系の開口数によって決定されるカットオフ周波数より高い周波数成分を画像データから除去する空間フィルタ処理を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は顕微鏡等の高倍率の画像撮影に好適な撮像方法及びその撮像装置に関し、特に光学系の開口数NAから決定されるカットオフ空間周波数より高い周波数成分を除去する空間フィルタ処理を行うようにした撮像方法及びその撮像装置に関する。
【背景技術】
【0002】
従来、撮像装置として、撮像光学系を通じて入射される光をCCD(charge−Coupled Device)で光電変換し出力するものが知られている。例えば特開2004−289786号公報(特許文献1)には、図10に示すように、撮像部101及び画像処理部110を具備した撮像装置100が開示されている。撮像部101は、撮像対象からの入射光を受光して光電変換する撮像手段として機能するものであり、例えばCCDカメラが用いられる。撮像部101にはCCDが撮像素子として用いられ、そのCCDの前方には撮像光学系が設置されている。
【0003】
画像処理部110は、撮像部101から出力される撮影画像を画像処理する画像処理手段としての機能を有しており、空間フィルタ111及びD/A変換部112で構成されている。空間フィルタ111は撮影信号の空間周波数における所定の低周波成分を除去し、撮影映像における高輝度部の周辺のハレーションを低減する空間フィルタである。D/A変換部112は、空間フィルタ111の出力信号をデジタル信号からアナログ信号に変換し、映像信号として出力する。
【0004】
空間フィルタ111としては、離散フーリエ変換処理、低周波除去処理及び逆離散フーリエ変換処理を行うもの、或いは1次元デジタルフィルタ又は2次元デジタルフィルタを用いて撮影画像の空間周波数における低周波成分を除去するものが用いられる。
【0005】
上述の特許文献1に記載の撮像装置は、撮影映像における高輝度部の周辺のハレーションを低減するために、撮影信号の空間周波数における所定の低周波成分を除去するものであるが、撮影画像をデジタル変換する際に混入する量子化誤差を低減するために、撮影信号の高周波成分を除去する撮像装置も知られている。
【特許文献1】特開2004−289786号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
上述の特許文献1に記載の撮影画像の低周波成分を除去するようにした撮像装置や、量子化誤差を低減するために撮影画像の高周波成分を除去するようにした撮像装置では、除去する際のカットオフ空間周波数の決定は、経験や勘に基づいて行われることが多い。このようにカットオフ空間周波数を経験や勘に基づいて決定していたのでは、量子化誤差を効果的に低減することができず、適切な撮影ができないという問題がある。
【0007】
本発明は上述のような事情によりなされたものであり、本発明の目的は、撮影画像の低周波成分を除去する際のカットオフ空間周波数を、量子化誤差等の高周波ノイズを効果的かつ確実に低減できるように設定する空間フィルタ処理を行う撮像方法及びその撮像装置を提供することにある。
【課題を解決するための手段】
【0008】
本発明は、光学系からの光を受光して撮像し、撮像出力である画像データを画像処理する撮像方法に関し、本発明の上記目的は、前記光学系の開口数NAによって定まるカットオフ空間周波数より高い周波数成分を前記画像データから除去して空間フィルタ処理を行うことによって達成される。
【0009】
本発明は、光学系からの光を受光して撮像し、撮像出力である画像データを画像処理する撮像方法に関し、本発明の上記目的は、前記画像データを離散フーリエ変換して第1画像データを生成し、前記第1画像データから前記光学系の開口数NAによって定まるカットオフ空間周波数より高い周波数成分を除去して第2画像データを生成し、前記第2画像データを逆離散フーリエ変換して第3画像データを生成して出力することによって空間フィルタ処理を行うことにより、或いは前記画像データに1次元デジタルフィルタ処理を行い、前記光学系の開口数NAによって定まるカットオフ空間周波数より高い周波数成分を前記画像データから除去することによって空間フィルタ処理を行い、或いは前記画像データに2次元デジタルフィルタ処理を行い、前記光学系の開口数NAによって定まるカットオフ空間周波数より高い周波数成分を前記画像データから除去することによって空間フィルタ処理を行い、或いは前記撮像を複数の撮像素子により行い、前記複数の撮像素子は互いの距離が、前記光学系の開口数NAによって定まるカットオフ空間周波数の2倍になるように配置され、前記画像データから前記カットオフ空間周波数より高い周波数成分を除去して空間フィルタ処理を行うことにより、或いは撮像素子を走査することにより前記画像データを生成し、前記撮像素子が受光する点間の距離が前記光学系の開口数NAによって定まるカットオフ空間周波数の2倍になるように、前記撮像素子の走査速度及び前記撮像素子の受光の時間間隔を設定し、前記画像データが前記カットオフ空間周波数より高い周波数成分を含まないように空間フィルタ処理を行うことによって達成される。
【0010】
また、本発明は、光学系からの光を受光して撮像し、撮像出力である第1画像データを画像処理する撮像方法に関し、本発明の上記目的は、撮像素子を走査することにより前記第1画像データを生成し、前記光学系の開口数NAに基づいてカットオフ空間周波数を決定し、前記撮像素子が受光する点間の距離が前記カットオフ空間周波数の2倍となるデータを前記第1画像データから間引いて第2画像データを生成し、前記第2画像データが前記カットオフ周波数より高い周波数成分を含まないようにして空間フィルタ処理を行うことによって達成され、更に前記開口数NAを外部から入力することによって、或いは前記画像データ若しくは前記第1画像データの光強度がピーク値から略半分になる位置までをスポット像とし、前記スポット像から前記スポット像の直径dを算出し、前記開口数NAを
NA=cλ/πd
(ただし、cは(2J(x))=0.5(J(x)は第1種ベッセル関 数の最小の解であり、約1.61634の定数、λは光の波長である。)
によって求めることによって、或いは前記画像データの若しくは前記第1画像データの前記スポット像の第1暗環をエッジ抽出法等で抽出し、前記第1暗環の直径dを求め、前記開口数NAを
NA=cλ/πd
(ただし、cは(2J(x))=0(J(x)は第1種ベッセル関数) の最小の解であり、約3.832の定数、λは光の波長である。)
によって求めることによって、より効果的に達成される。
【0011】
更に、本発明は、光学系からの光を受光して撮像する撮像手段と、前記撮像手段から出力される画像データを画像処理する画像処理手段とを具備した撮像装置に関し、本発明の上記目的は、前記画像処理手段が、前記光学系の開口数NAによって定まるカットオフ空間周波数より高い周波数成分を前記画像データから除去する空間フィルタを具備することによって、或いは前記画像処理手段が、前記画像データを離散フーリエ変換して第1画像データを生成するフーリエ変換部と、前記光学系の開口数NAに基づいて定まるカットオフ空間周波数より高い周波数成分を前記第1画像データから除去して第2画像データを生成する空間フィルタと、前記第2画像データを逆離散フーリエ変換して第3画像データを生成して出力する逆フーリエ変換部とを具備することによって、或いは前記画像処理手段が前記画像データに1次元デジタルフィルタ処理を行い、前記光学系の開口数NAによって定まるカットオフ空間周波数より高い周波数成分を前記画像データから除去する機能を具備することによって、或いは前記画像処理手段が前記画像データに2次元デジタルフィルタ処理を行い、前記光学系の開口数NAによって定まるカットオフ空間周波数より高い周波数成分を前記画像データから除去する機能を具備することによって、或いは前記撮像手段は複数の撮像素子から成り、前記複数の撮像素子は互いの距離が前記光学系の開口数NAによって定まるカットオフ空間周波数の2倍になるように配置され、前記カットオフ空間周波数より高い周波数成分が前記画像データから除去されることによって、或いは前記撮像手段は撮像素子で成り、前記撮像素子を走査することにより前記画像データを生成し、前記撮像素子が受光する点間の距離が、前記光学系の開口数NAによって定まるカットオフ空間周波数の2倍になるように、前記撮像素子の走査速度及び前記撮像素子の受光の時間間隔を設定して前記走査を行い、前記画像データが前記カットオフ空間周波数より高い周波数成分を含まないようにすることによって、或いは前記撮像手段が、撮像素子を走査することにより前記第1画像データを生成して出力する手段で成り、前記画像処理手段は、前記光学系の開口数NAに基づいてカットオフ空間周波数を決定する機能と、前記撮像素子が受光を行う点間の距離が前記カットオフ空間周波数の2倍となるデータを前記第1画像データから間引いて第2画像データを生成する機能とを具備し、前記第2画像データが前記カットオフ空間周波数より高い周波数成分を含まないようにすることによって達成される。
【発明の効果】
【0012】
本発明によれば、撮影画像から高周波の成分を除去する際のカットオフ空間周波数を光学系の開口数NAに基づいて客観的な数式で決定しているので、光学系を通過する光の情報は維持し、下流で混入する種々の高周波ノイズを効果的かつ確実に低減することができ、適切な撮影画像を生成することができる。
【発明を実施するための最良の形態】
【0013】
本発明は、CCD等の撮像素子に結像した光には光学系の開口数NAから決められるカットオフ空間周波数より高い空間周波数は含まれていないので、カットオフ空間周波数より高い空間周波数成分の信号はノイズとみなすことができることに着眼している。
本発明では、量子化誤差等の高周波ノイズを効果的かつ確実に低減できるように、光学系からの光を受光して撮像した画像データの画像処理において、光学系の開口数NAによって定まるカットオフ空間周波数より高い周波数成分を画像データから除去して空間フィルタ処理を行うようにしている。空間フィルタ処理は1次元又は2次元デジタルフィルタ処理、撮像素子の走査速度や受光の時間間隔の設定で行っている。
【0014】
以下、本発明の実施形態について図面を参照して説明する。
【0015】
本発明に係る撮像装置は、図1に示されるように光学系1からの入射光を受光する撮像部2と、撮像部2から出力される画像データIM1を処理する画像処理部3とから構成されており、画像処理部3から出力される画像データIM2は、光学系1の開口数NAによって定まるカットオフ空間周波数より高い周波数成分が除去されている。光学系1は、例えば顕微鏡等の高倍率の像を形成するための光学系であり、1枚又は複数枚のレンズの組み合わせから成り、撮像対象及び光学系1を透過した光が撮像部2に入射する。撮像部2には、光学系からの入射光を受光し光電変換するための撮像手段としての撮像素子が備えられており、撮像素子としては例えば1次元又は2次元のCCDカメラが用いられる。
【0016】
画像処理部3には空間フィルタ部31が備えられ、撮像部2から出力された画像データIM1を入力し、画像処理されカットオフ空間周波数より高い周波数成分が除去された画像データIM2を出力するようになっている。空間フィルタ部31は、入力された画像データIM1のカットオフ空間周波数より高い周波数成分を除去するもので、量子化誤差等の高周波ノイズを効果的に低減するために、本発明ではカットオフ空間周波数は光学系1の開口数NAに基づいて定まる最大空間周波数を用いる。即ち、光の波長をλとすると、最大空間周波数fは下記数1によって与えられる。
(数1)
=2NA/λ
図2に示されるように、空間フィルタ部31からの出力信号IMS、つまり画像データIM1からカットオフ空間周波数(f)より高い周波数成分を除去されたデジタル信号をアナログ信号に変換するために、画像処理部3にD/A変換部32を具備するようにしても良い。なお、図2に示される実施形態では、デジタル信号の画像データIM1を空間フィルタ部31で処理してからD/A変換部32でアナログ信号に変換するようにしているが、画像データIM1がアナログ信号であり、空間フィルタ部31での空間フィルタ処理をデジタル信号によって行う場合、A/D変換部を空間フィルタ部31の前に挿入し画像データIM1をデジタル信号に変換してから空間フィルタ部31で画像データを処理するようにしても良い。また、D/A変換部及びA/D変換部は本発明に必須のものではなく、撮像部2からの画像データIM1の形態或いは画像処理部3の出力である画像データIM2の利用形態に応じて適宜設ければ良い。
【0017】
本発明の第1実施形態では、空間フィルタ部31は図3に示すように、撮像部2からの画像データIM1を離散フーリエ変換するフーリエ変換部311と、離散フーリエ変換された画像データIMS1からカットオフ空間周波数より高い周波数成分の除去を行う空間フィルタ312と、空間フィルタ312で高周波数成分を除去された画像データIMS2を逆離散フーリエ変換して画像データIMSを出力する逆フーリエ変換部313とで構成されている。
【0018】
図4(A)〜(D)はこのような空間フィルタ処理の過程を示しており、各過程における画像が示されている。先ず、図4(A)に示す撮像部2からの原画像10がフーリエ変換部331で離散フーリエ変換され、図4(B)に示す画像11となり、原画像10におけるスポット10Aは、離散フーリエ変換された画像11では4隅に分離され、図4(B)に示す符号部11Aになる。そして、空間フィルタ312が画像11に対して高周波成分の除去を行うと、図4(C)に示すような画像12が得られ、図4(B)の符号11Bに現れているノイズが低減され、図4(C)の符号12Bに示されるようになる。この画像12をフーリエ変換部313で逆離散フーリエ変換すると、高周波成分のノイズが除去された 図4(D)に示すような画像13が得られる。ここで、除去される高周波成分のカットオフ周波数は、前記数1で与えられる最大空間周波数fである。
【0019】
一方、空間フィルタ部31において、1次元デジタルフィルタ処理又は2次元デジタルフィルタ処理を行うようにしても良い(第2実施形態)。
【0020】
1次元デジタルフィルタ処理では例えば図5に示されるような3画素のオペレータ(マスク)を用い、2次元デジタルフィルタ処理では図6に示されるような9画素のオペレータ(マスク)を用いる。共に画像データの平滑化を行い、前記数1で与えられる最大空間周波数fより高い周波数成分を除去することができる。図5及び図6のフィルタのタップ数は“3”であるが、このフィルタのタップ数はできるだけ大きくすることが好ましい。
【0021】
図7に示される第3実施形態では、撮像部2を構成する多数の撮像素子2Aを複数箇所に配設し、撮像素子2A間の距離を前記数1で与えられる最大空間周波数fの2倍程度にすることにより、撮像素子2Aで生成される画像データIM3に対して最大空間周波数fより高い周波数成分が除去されるようにしている。撮像素子2Aは2次元のエリア素子であっても、線状のリニア素子であっても良く、リニア素子の場合には空間的若しくは時間的に走査する必要がある。また、撮像素子2AはCCDであっても良い。
【0022】
撮像素子2Aは、光学系1からの入射光を受光するために2次元平面内に配設され、互いの距離が最大空間周波数fの2倍になるように配設される。このようにすることによって、画像処理部3に送られる画像データに、最大空間周波数fより高い周波数成分が含まれないようにすることができる。
【0023】
また、図8に示される第4実施形態では、単一の撮像素子2Aが、光学系1からの入射光を受光するために2次元平面内を走査することにより、画像処理部3に画像データIM4を送るようにしている。2次元平面内の走査は、線状の走査を少しずつ空間的若しくは時間的にずらして繰り返し行うことによって実現できる。
【0024】
本実施形態では、撮像素子2Aが光学系1からの入射光を受光する点間の距離が前記数1で与えられる最大空間周波数fの2倍になるように、撮像素子2Aの走査速度と撮像素子2Aが受光を行う時間間隔(サンプリング間隔)とを設定する。ナイキスト・シャノンのサンプリング定理にあるように、このようにすることによって撮像素子2Aによって生成される画像データIM4が、最大空間周波数fより高い周波数成分を含まないようにすることができる。
【0025】
また、撮像素子2Aの走査速度と撮像素子2Aが受光を行う時間間隔を任意に設定した場合でも、画像処理部3において、受光された点間の距離が最大空間周波数fの2倍になるデータのみを間引くようにして、間引かれたデータのみから画像データIM2を生成することによって、画像データIM2が最大空間周波数fより高い周波数成分を含まないようにしても良い。
【0026】
光学系1の開口数NAは撮像部2に予め設定しておいても良いが、開口数NAは光学系1の絞り等の条件によって変化するため、計算して求めた開口数NAを外部からその都度入力するようにしても良い。また、光学系の開口数NAが完全に既知でない場合には、想定できる開口数NAのうち、最大の開口数NAを用いてカットオフ空間周波数を決めても良い。例えば観察対象の光の開口数NA1が未知であり、顕微鏡などの測定装置の光学系の結像部における最大実効開口数NA2が既知である場合には、開口数NA1が十分に大きい場合について、結像部における実効開口数NA0を算出し、実効開口数NA0を用いてカットオフ空間周波数を決定する。
【0027】
更に、撮像部2にスポット像解析部を具備するようにして、スポット像から開口数NAを計算するようにすることによって、光学系1の所望の条件における開口数NAを撮像部2に設定することができる。
【0028】
光学系1の開口数NAは、スポット像から求めることができる。即ち、図9に示されるように、光学系1から像面6に結像するスポット像に対して、入射光の入射角をθ、媒質の屈折率をnとすると、開口数NAは下記数2によって定義される。
(数2)
NA=n×sinθ

スポット像解析部は、例えばスポット画像の光強度がピーク値から略半分になる位置までをスポット像とし、スポット像の面積sを求める。そして、スポット像の面積sから、スポット像の直径dを下記数3により算出する。
(数3)
d=√(4s/π)

上記数3によってスポット像の直径dが求まると、下記数4により開口数NAを求めることができる。
(数4)
NA=cλ/πd
ただし、cは(2J(x))=0.5(J(x)は第1種ベッセル関数 )の最小の解であり、約1.61634の定数、λは光の波長である。
なお、スポット像の直径dは、スポット像の面積sから求めるのではなく、スポット像の直径から直接求めるようにしても良い。
【0029】
また、スポット像解析部において、スポット画像の第1暗環をエッジ抽出法等で抽出し、抽出された第1暗環の直径dを求める方法もある。この場合、直径dを求めた後、下記数5によって開口数NAを求めることができる。
(数5)
NA=cλ/πd
ただし、cは(2J(x))=0(J(x)は第1種ベッセル関数)の 最小の解であり、約3.832の定数である。

なお、開口数NAに誤差が含まれている場合を想定する場合には、安全係数βを乗算してカットオフ空間周波数fを下記数6で決定する。
(数6)
=2β・NA/λ

例えば開口数NAに20%の誤差が想定される場合には、安全係数βを“1.2”とする。
【0030】
以上、本発明の実施形態について具体的に説明したが、本発明はこれら実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。特に光学系の瞳については、本発明の実施形態は、任意の瞳形状に適用することができる。例えば、瞳の開口部で“1”、それ以外の領域では“0”を持つ瞳のマスク関数f(x,y)の自己相関関数の台(関数が値を持つ領域)の空間周波数信号を通過させ、台以外の帯域の信号をカットするローパスフィルタを構成すれば、任意の瞳形状に対して本発明を適用することができる。
【図面の簡単な説明】
【0031】
【図1】本発明に係る撮像装置の構成例を示すブロック図である。
【図2】本発明に係る撮像装置の画像処理部にD/A変換部を具備するようにした場合の構成例を示すブロック図である。
【図3】本発明の空間フィルタ部の構成例を示すブロック図である。
【図4】本発明の画像処理を説明するための図である(第1実施形態)。
【図5】本発明で実行する1次元デジタルフィルタ処理のオペレータの例を示す図である(第2実施形態)。
【図6】本発明で実行する2次元デジタルフィルタ処理のオペレータの例を示す図である(第2実施形態)。
【図7】複数の撮像素子を最大空間周波数の2倍の間隔で配設した撮像装置(第3実施形態)の構成例を示すブロック図である。
【図8】撮像素子を走査させることによって画像データを生成する撮像装置(第4実施形態)の構成例を示すブロック図である。
【図9】光学系の開口数のスポット像による定義を説明するための図である。
【図10】従来の撮像装置の構成例を示すブロック図である。
【符号の説明】
【0032】
1 光学系
2 撮像部
2A 撮像素子
3 画像処理部
31 空間フィルタ部
32 D/A変換部
311 フーリエ変換部
312 空間フィルタ
313 逆フーリエ変換部
6 像面

【特許請求の範囲】
【請求項1】
光学系からの光を受光して撮像し、撮像出力である画像データを画像処理する撮像方法において、前記光学系の開口数NAによって定まるカットオフ空間周波数より高い周波数成分を前記画像データから除去することを特徴とする空間フィルタ処理を行う撮像方法。
【請求項2】
光学系からの光を受光して撮像し、撮像出力である画像データを画像処理する撮像方法において、前記画像データを離散フーリエ変換して第1画像データを生成し、前記第1画像データから前記光学系の開口数NAによって定まるカットオフ空間周波数より高い周波数成分を除去して第2画像データを生成し、前記第2画像データを逆離散フーリエ変換して第3画像データを生成して出力することを特徴とする空間フィルタ処理を行う撮像方法。
【請求項3】
光学系からの光を受光して撮像し、撮像出力である画像データを画像処理する撮像方法において、前記画像データに1次元デジタルフィルタ処理を行い、前記光学系の開口数NAによって定まるカットオフ空間周波数より高い周波数成分を前記画像データから除去することを特徴とする空間フィルタ処理を行う撮像方法。
【請求項4】
光学系からの光を受光して撮像し、撮像出力である画像データを画像処理する撮像方法において、前記画像データに2次元デジタルフィルタ処理を行い、前記光学系の開口数NAによって定まるカットオフ空間周波数より高い周波数成分を前記画像データから除去することを特徴とする空間フィルタ処理を行う撮像方法。
【請求項5】
光学系からの光を受光して撮像し、撮像出力である画像データを画像処理する撮像方法において、前記撮像を複数の撮像素子により行い、前記複数の撮像素子は互いの距離が、前記光学系の開口数NAによって定まるカットオフ空間周波数の2倍になるように配置され、前記画像データから前記カットオフ空間周波数より高い周波数成分を除去することを特徴とする空間フィルタ処理を行う撮像方法。
【請求項6】
光学系からの光を受光して撮像し、撮像出力である画像データを画像処理する撮像方法において、撮像素子を走査することにより前記画像データを生成し、前記撮像素子が受光する点間の距離が前記光学系の開口数NAによって定まるカットオフ空間周波数の2倍になるように、前記撮像素子の走査速度及び前記撮像素子の受光の時間間隔を設定し、前記画像データが前記カットオフ空間周波数より高い周波数成分を含まないようにすることを特徴とする空間フィルタ処理を行う撮像方法。
【請求項7】
光学系からの光を受光して撮像し、撮像出力である第1画像データを画像処理する撮像方法において、撮像素子を走査することにより前記第1画像データを生成し、前記光学系の開口数NAに基づいてカットオフ空間周波数を決定し、前記撮像素子が受光する点間の距離が前記カットオフ空間周波数の2倍となるデータを前記第1画像データから間引いて第2画像データを生成し、前記第2画像データが前記カットオフ周波数より高い周波数成分を含まないようにしたことを特徴とする空間フィルタ処理を行う撮像方法。
【請求項8】
前記開口数NAを外部から入力するようになっている請求項1乃至7のいずれかに記載の空間フィルタ処理を行う撮像方法。
【請求項9】
前記画像データ若しくは前記第1画像データの光強度がピーク値から略半分になる位置までをスポット像とし、前記スポット像から前記スポット像の直径dを算出し、前記開口数NAを
NA=cλ/πd
(ただし、cは(2J(x))=0.5(J(x)は第1種ベッセル関 数)の最小の解であり、約1.61634の定数、λは光の波長である。)
として求める請求項1乃至7のいずれかに記載の空間フィルタ処理を行う撮像方法。
【請求項10】
前記画像データ若しくは前記第1画像データのスポット像の第1暗環をエッジ抽出法等で抽出し、前記第1暗環の直径dを求め、前記開口数NAを
NA=cλ/πd
(ただし、cは(2J(x))=0(J(x)は第1種ベッセル関数) の最小の解であり、約3.832の定数、λは光の波長である。)
として求める請求項1乃至7のいずれかに記載の空間フィルタ処理を行う撮像方法。
【請求項11】
光学系からの光を受光して撮像する撮像手段と、前記撮像手段から出力さ
れる画像データを画像処理する画像処理手段とを具備した撮像装置において、前記画像処
理手段が、前記光学系の開口数NAによって定まるカットオフ空間周波数より高い周波数
成分を前記画像データから除去する空間フィルタを具備していることを特徴とする空間フ
ィルタ処理を行う撮像装置。
【請求項12】
光学系からの光を受光して撮像する撮像手段と、前記撮像手段から出力される画像データを画像処理する画像処理手段とを具備した撮像装置において、前記画像処理手段が、前記画像データを離散フーリエ変換して第1画像データを生成するフーリエ変換部と、前記光学系の開口数NAに基づいて定まるカットオフ空間周波数より高い周波数成分を前記第1画像データから除去して第2画像データを生成する空間フィルタと、前記第2画像データを逆離散フーリエ変換して第3画像データを生成して出力する逆フーリエ変換部とを具備していることを特徴とする空間フィルタ処理を行う撮像装置。
【請求項13】
光学系からの光を受光して撮像する撮像手段と、前記撮像手段から出力される画像データを画像処理する画像処理手段とを具備した撮像装置において、前記画像処理手段が前記画像データに1次元デジタルフィルタ処理を行い、前記光学系の開口数NAによって定まるカットオフ空間周波数より高い周波数成分を前記画像データから除去する機能を具備していることを特徴とする空間フィルタ処理を行う撮像装置。
【請求項14】
光学系からの光を受光して撮像する撮像手段と、前記撮像手段から出力される画像データを画像処理する画像処理手段とを具備した撮像装置において、前記画像処理手段が前記画像データに2次元デジタルフィルタ処理を行い、前記光学系の開口数NAによって定まるカットオフ空間周波数より高い周波数成分を前記画像データから除去する機能を具備していることを特徴とする空間フィルタ処理を行う撮像装置。
【請求項15】
光学系からの光を受光して撮像する撮像手段と、前記撮像手段による画像データを画像処理する画像処理手段とを具備した撮像装置において、前記撮像手段は複数の撮像素子から成り、前記複数の撮像素子は互いの距離が前記光学系の開口数NAによって定まるカットオフ空間周波数の2倍になるように配置され、前記カットオフ空間周波数より高い周波数成分が前記画像データから除去されるようになっていることを特徴とする空間フィルタ処理を行う撮像装置。
【請求項16】
光学系からの光を受光して撮像する撮像手段と、前記撮像手段による画像データを画像処理する画像処理手段とを具備した撮像装置において、前記撮像手段は撮像素子で成り、前記撮像素子を走査することにより前記画像データを生成し、前記撮像素子が受光する点間の距離が、前記光学系の開口数NAによって定まるカットオフ空間周波数の2倍になるように、前記撮像素子の走査速度及び前記撮像素子の受光の時間間隔を設定して前記走査を行い、前記画像データが前記カットオフ空間周波数より高い周波数成分を含まないようにすることを特徴とする空間フィルタ処理を行う撮像装置。
【請求項17】
光学系からの光を受光して撮像する撮像手段と、前記撮像手段による第1画像データを画像処理する画像処理手段とを具備した撮像装置において、前記撮像手段が、撮像素子を走査することにより前記第1画像データを生成して出力する手段で成り、前記画像処理手段は、前記光学系の開口数NAに基づいてカットオフ空間周波数を決定する機能と、前記撮像素子が受光を行う点間の距離が前記カットオフ空間周波数の2倍となるデータを前記第1画像データから間引いて第2画像データを生成する機能とを具備し、前記第2画像データが前記カットオフ空間周波数より高い周波数成分を含まないようにしたことを特徴とする空間フィルタ処理を行う撮像装置。
【請求項18】
前記開口数NAを外部から入力するようになっている請求項11乃至17のいずれかに記載の空間フィルタ処理を行う撮像装置。
【請求項19】
前記画像データ若しくは前記第1画像データの光強度がピーク値から略半分になる位置までをスポット像とし、前記スポット像から前記スポット像の直径dを算出し、前記開口数NAを
NA=cλ/πd
(ただし、cは(2J(x))=0.5の最小の解であり、約1.616 34の定数、λは光の波長である。)
として求めるようになっている請求項11乃至17のいずれかに記載の空間フィルタ処理を行う撮像装置。
【請求項20】
前記画像データのスポット像の第1暗環をエッジ抽出法等で抽出し、前記第1暗環の直径dを求め、前記開口数NAを
NA=cλ/πd
(ただし、定数cは(2J(x))=0の最小の解であり、約3.832 の定数、λは光の波長である。)
として求めるようになっている請求項11乃至17のいずれかに記載の撮像装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2009−38439(P2009−38439A)
【公開日】平成21年2月19日(2009.2.19)
【国際特許分類】
【出願番号】特願2007−198603(P2007−198603)
【出願日】平成19年7月31日(2007.7.31)
【出願人】(304021417)国立大学法人東京工業大学 (1,821)
【Fターム(参考)】