説明

管内走行マイクロロボット

【課題】良好な移動特性を備えながら機構が単純でアクチュエータの数を減らすことが可能な管内走行マイクロロボットを提供する。
【解決手段】先端の閉じられた膨張収縮自在な筒状体を隔壁で所定間隔ごとに分割してなり、各隔壁は、分割されている筒状体を時間差をもって順次膨張・収縮させるための液体流量制限穴を有している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は管内走行マイクロロボットとりわけ1圧送管式の管内走行マイクロロボットに関する。
【背景技術】
【0002】
管内走行タイプのマイクロロボットは種々の分野で活用が期待されており、たとえば医療分野においては、耳鼻科、眼科、脳外科、血管外科、形成外科などにおいての治療や手術(マイクロスコピック・サージェリー)、能動型カテーテルへの適用が期待されている。
【0003】
こうした管内走行マイクロロボットに関して、従来、種々のインチワーム式管内移動機構が提案されているが、管内壁に接触し管内との摩擦などにより本体を支えるアンカー機構と、進行方向が伸縮する伸縮機構を備えさせ、これらの機構を交互に作動させ、管内において前進および後退を行う機構がほとんどであった。
そして、アンカー機構には楔形の形状やそれに類する形態(進行方向への摩擦抵抗と後退方向の摩擦抵抗の差を利用する)が採用され、伸縮機構が伸縮を行うことにより摩擦抵抗の少ない方向に移動するようにしていたが、楔の形状により移動方向が一方向に限定されてしまう問題がある。
【0004】
そのため、アンカー機構に楔などの形状を用いず、足や車輪・風船などの抵抗体を管内壁に直接押し付けて、アンカー機構と伸縮機構を作動させるタイミングにより、前進後退させる機構も見られるが、いずれも機構が複雑化したり大型化することを避けられず、アクチュエータも複数要することになったりする問題があった。
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明は前記のような問題点を解消するためになされたもので、その目的とするところは、良好な移動特性を備えながら機構が単純でアクチュエータの数を減らすことが可能な管内走行マイクロロボットを提供することにある。
【課題を解決するための手段】
【0006】
上記目的を達成するため本発明は、先端の閉じられた膨張収縮自在な筒状体を隔壁で所定間隔ごとに分割してなり、各隔壁は、分割されている筒状体を時間差をもって順次膨張・収縮させるための液体流量制限穴を有していることを特徴としている。
【発明の効果】
【0007】
本発明の管内走行マイクロロボットは、膨張収縮自在な筒状体を穴の開いた隔壁で所定間隔ごとに分割し、分割された各部分を、膨張させるときに発生する圧力によりアンカー動作させ、かつ伸縮動作を行わせることにより管内移動を実現させるので、機構を大幅に単純化することができるとともに、アクチュエータ(シリンダ)ひとつで走行が可能になる。
また、本発明は圧送された流体が各分割された部分に順次圧送され、時間差を生じて膨張する現象を利用することから、ロボットの長さに制約がなく、分割筒状部の数を増すことにより移動速度の向上を図ることができるというすぐれた効果が得られる。
【発明を実施するための最良の形態】
【0008】
先端の閉じられた膨張収縮自在な袋部体と、膨張収縮自在な複数の円筒状膜部体と、軸線方向に穴を有する複数の隔壁部体とからなり、前記袋部体の後端部内周が隔壁部体の半部外周に接合され、隔壁部体の半部外周に円筒状膜部体の先端部内周が接合され、以下、各隔壁部体の半部外周に円筒状膜部体の先端部と後端部の内周が接合されることで順次連結され、最後尾の隔壁部体に流体圧送チューブを連結している。
【実施例1】
【0009】
以下添付図面を参照して本発明の実施例を説明する。
図1は本発明による管内走行マイクロロボットの一実施例を示しており、1は先端が閉止されている所望長さの膨張収縮自在な筒状体1であり、所定長さごとに介在した隔壁2によって内部が複数の室に分割されている。各隔壁2は軸方向に流体を導く穴20を有しており、最後尾の隔壁2nにアクチュエータから圧送された流体の導入管3が接続されている。この例では隔壁2は5つであるが、それ以上であってもよい。
【0010】
前記膨張収縮自在な筒状体1としては、たとえば薄いゴム製の風船が挙げられ、隔壁2としては、膨張収縮性の乏しい硬質のゴム、プラスチック、金属などが用いられる。導入菅3としてはシリコーンチューブなどを使用することができる。
【0011】
各隔壁は、分割されている筒状体を時間差をもって順次膨張・収縮させるための液体流量制限穴を有している図1では筒状体1が実質的に単一の部品となっていて、これに各隔壁2が順次押し込まれた形態となっているが、実際には、図2のように、先端の閉じられた膨張収縮自在な袋部体1aと、膨張収縮自在な複数の円筒状膜部体1b〜1eと、軸線方向に穴20を有する複数の隔壁部体2とからなっている。
【0012】
前記袋部体1aと円筒状膜部体1b〜1eは、隔壁部体2a、2bの直径よりも寸法が大きな長さを有し、半径方向および軸方向に伸縮自在である。
前記隔壁部体2の穴20は、圧力損失を起させて流れる液体の流量を制限し、膨張する時に円筒状膜部体と袋部体を時間差を生じさせて順次膨張させ、収縮する時にも膨張時と同じく時間差を生じさせて収縮させる機能を発揮するように、所定の大きさが選定される。穴20は中央にひとつであってもよいし、複数であってもよい。穴20は、場合によっては、シリコーンチューブなどを短く切ったものを貫挿していてもよい。
【0013】
前記袋部体1aの後端部内周に隔壁部体2aの前半部が内嵌され、接着剤4によって接合されている。そして、前記隔壁部体2aの後半部に第1の円筒状膜部体1bの先端部が外嵌され、接着剤4により接合されている。以下、各隔壁部体2b,2cの半部外周に第2以降の円筒状膜部体1c、1dの先端部と後端部の内周が接合されることで順次連結される。
最後尾の隔壁部体2nは中央に導入管3が貫挿され、導入管3の外周が接着剤4で接合されている。そして隔壁部体2nは最後尾の円筒状膜部体1eの後端部に嵌合され、接着剤4にて接合されている。
【0014】
本発明ロボットは、前記最後尾の隔壁部体2nにおける導入管3を、チューブなどを介してシリンダと接続し、シリンダのピストンをアクチュエータにより自動的に往復運動させるものである。
図3は本発明ロボットの移動原理を示している。なお、この図では説明の都合上、膨張部分を3つだけ示している。
まず、図3(a)のようにロボットを管内に設置する。圧送用チューブのあるC部分の隔壁2nの端面が基準位置にあるものとする。この状態でロボットの内部に流体たとえば生理的食塩水を圧送して膨張させる。ロボットは圧送用のチューブのあるC部分から、B部分、A部分と時間差を生じて順次膨張する。
【0015】
図3(b)のように、ロボットに液体を送り込むと、水圧によって最初にC部が膨張を始める。この時C部は中心を境に前後に膨張してしまうが、C部が管内壁に接触して静止摩擦力が働くと、C部はストッパーとなる。さらに液体を送り、圧力を加えると中間部の隔壁2の穴を通して水圧が導入されるので、B部が膨張を始める。この時はC部と管内壁との静止摩擦力によって、ロボットの後退は抑えられ前進方向に膨張していく。そして図3(d)のようにA部が膨張する時もBおよびC部がストッパーとなるため、A部も前進方向に膨張する。こうして図3(e)のようにロボット全体に圧送された液量が最大になる。
【0016】
次いで、収縮が開始される。この時は最後尾のC部が先に収縮するが、A部とB部がストッパーになるため、図3(f)のように前進方向に向かって収縮する。図3(g)のようにB部が収縮する時もA部がストッパーになり、前進方向に収縮する。最後にA部が収縮する時は、A部の中心に向かって収縮するため、前進移動距離は微弱なものになる。以上の1サイクルで、図3(h)の前進量が得られる。
【0017】
この1圧送管式は2圧送管式と違って1つのシリンダによって各膨張部に液体を圧送しているため、C部分が膨張する時に液体を送る圧力が低いと、同時にB部分やA部分にも液体が流れ込んでしまい移動できなくなってしまう、そのため、適度に高い圧力で液体を送る必要がある。
また、各膨張部の節である隔壁部分2,2には圧力損失を起すために小さな穴20が開けてあり、これにより液体の流量が制限されることによって、C部分が膨張する時にも時間差を生じさせてB部分を膨張させることができ、B部分が膨張する時にもA部分に送る液体の流量を制限することができ、収縮する時にも膨張時と同じく時間差を生じさせて収縮することができるのである。
【0018】
本発明のマイクロロボットは、ロボットが管内壁に接触している時の力(最大静止摩擦力)>水圧により膨張しつづけている時の摩擦力(動摩擦力)であれば膨張力の働いている方向に進み、しかも、1つのシリンジを操作することで前進することが可能なので、より小型化が期待できるのである。本発明のマイクロロボットが前進する場合、ロボットに作用する力を示すと図4のとおりである。
【0019】
まず、図4(a)は管内にロボットを設置した状態であり、この時ロボットには動作に必要な力は何も掛かっていない。次いで、最後尾の隔壁を通してC部分に生理的食塩水が圧送されると、膨張部分は中心を境に広がり、C部分と管内壁の間には動摩擦力が作用する。
C部分の膨張が終了すると、図4(c)のように、C部分と管内壁には停止した状態を保つ静止摩擦力が作用する。この時既に隔壁の穴を通して少量の水がB部分に流れ込んでいるが、穴が小さいため流量が制限されるため、管内壁に接触するほど膨張はしない。さらに隔壁とC部分との間に断面が変化するための損失が起こっている。
【0020】
こうしてB部分が水圧によって膨張し、B部分の膨張が終了すると、図4(d)のようにB部分と管内壁の間には動摩擦力が作用する。このときに膨張したC部分がストッパーになり、B部分は前進方向に膨張する。
B部分の膨張が終了すると、図4(e)のように、B部分と管内壁には停止した状態を保つ静止摩擦力が作用する。この時A部分にも少量の水が流れ込んでいるが、隔壁部分の穴によって流量が制限されているため、管内壁に接触するほど膨張していない。さらに中間部分とA部分との間に断面が変化するための損失が起こっている。
【0021】
図4(f)のようにA部分の膨張が終了すると管内壁との間に静止摩擦力が発生する。そしてA部分と管内壁の間には動摩擦力が作用する。このとき既に膨張しているB・C部分がストッパーになり、A部分は前進方向に膨張する。
図4(g)のようにA部分が膨張し管内壁に接触して停止すると。A部分と管内壁には停止した状態を保つ静止摩擦力が作用する。
A・B部分に静止摩擦力が作用しているので、C部分は液体が排出されると同時にA・B方向に向かって収縮する。排出される時も隔壁部分の穴によって流量が制限されるため、C→B→Aと時間差を生じて収縮する。
図4(h)のようにA部分に静止摩擦力が作用しているのでB部分はC部分に続いて液体が排出されると同時にA方向に向かって収縮する。
【0022】
本発明の1圧送管式管内走行マイクロロボットは、下記の動作を1サイクルとして管内をミミズのような動作で移動することができ、液体圧送用のシリンダも1本で済むため、構造を簡略化することができ、節を増し膨張部の数を増すことにより移動速度を向上させることができる。
(a)生理的食塩水が圧送されると最後尾部分Cが膨張し管内壁に接触する。その前のB部分も若干膨張するが、隔壁部分の穴が抵抗となり流量が制限される。
(b)B部分に生理的食塩水が流れ込み管内壁に接触する程の大きさに膨張する。A部分も若干膨張するが、隔壁部分の穴が抵抗となり流量が制限される。
(c)A部分に生理的食塩水が流れ込み、全ての部屋が膨張して管内壁に接触する。
(d)ロボット全体に生理的食塩水が最大量送り込まれて膨張が最大になる。
(e)C部分から生理的食塩水が抜かれてC部分が収縮する。B部分も収縮するが隔壁部分の穴が抵抗になり、流量が制限される。
(f)B部分から生理的食塩水が抜かれてB部分が収縮する。A部分も収縮するが隔壁部分の穴が抵抗になり、流量が制限される。
(g)A部分から生理的食塩水が抜かれてA部分が収縮する。
【0023】
本発明の管内走行マイクロロボットの具体的な製作仕様例を挙げると、直径4mm、全長(袋部体先端から最後尾の隔壁までの長さ)33mm、隔壁数(節)が5節のロボットとした。
各隔壁部体は、ネオプレンゴム、厚さ(長さ)2.0mm、直径3.4mm、穴直径1.0mmとした。袋部体と円筒状膜部体は、厚さ0.2mm、外径3.8mmの合成ゴムラテックス(不二ラテックス株式会社製)の管内走行用ゴム風船を使用した。
袋部体は、前記ゴム風船を8mmの長さに切断して作り、第1の隔壁部体を袋部体端部に半長嵌めて接着した。各円筒状膜部体は、前記ゴム風船をそれぞれ長さ8.5mmの長さに切断して作った。第1の円筒状膜部体を前記第1の隔壁部体の半長に嵌めて接着し、第1の円筒状膜部体の後端部に第2の隔壁部体を半長嵌めて接着し、以下、接着代を1mmにとって順次組み込みと接着を行った。
【0024】
得られた管内走行マイクロロボットの水平方向移動実験を行ない、前進移動速度を測定した。図5は実験方法の概要を示しており、圧送する食塩水の水量は0.8mlと0.9mlとし、シリンダの吐出量は0.90ml/sから所定量ずつ減らして測定した。
管としては内径6mm、外径8mmのアクリル管を使用し、本発明ロボットを30mm走行させた。30mmはロボットの先端から先端までの距離とし、動作毎に1回ずつ走行にかかった時間を測定した。
【0025】
図6は計測結果を示しており、圧送量0.9mlかつシリンダの吐出量が0.90ml/sのときに2.00mm/sという最も早い移動速度が得られている。このことから、本発明は単純な1圧送管式でありながら効果的に移動することができ、圧送量を多くし、シリンダの吐出量を増すと移動速度を早くすることができることが確認された。
【図面の簡単な説明】
【0026】
【図1】(a)本発明による管内走行マイクロロボットの一実施例を示す縦断側面図、(b)は(a)のX−X線に沿う断面図である。
【図2】本発明のロボットの詳細を示す拡大断面図である。
【図3】(a)〜(h)は本発明による管内走行マイクロロボットの動作を段階的に示す説明図である。
【図4】(a)〜(h)は本発明による管内走行マイクロロボットが前進するときに作用する力を示す説明図である。
【図5】本発明による管内走行マイクロロボットの管内走行実験装置の概要説明図である。
【図6】シリンダの吐出量とロボットの移動速度の関係を示す線図である。
【符号の説明】
【0027】
1 管状体
1a 袋部体
1b、1c、1d、1e 円筒状膜部体
2 隔壁
2a、2b、2n 隔壁部体
3 導入菅
4 接着剤
20 穴

【特許請求の範囲】
【請求項1】
先端の閉じられた膨張収縮自在な筒状体を隔壁で所定間隔ごとに分割してなり、各隔壁は、分割されている筒状体を時間差をもって順次膨張・収縮させるための液体流量制限穴を有していることを特徴とする管内走行マイクロロボット。
【請求項2】
先端の閉じられた膨張収縮自在な袋部体と、膨張収縮自在な複数の円筒状膜部体と、軸線方向に穴を有する複数の隔壁部体とからなり、前記袋部体の後端部内周が隔壁部体の半部外周に接合され、隔壁部体の半部外周に円筒状膜部体の先端部内周が接合され、以下、各隔壁部体の半部外周に円筒状膜部体の先端部と後端部の内周が接合されることで順次連結され、最後尾の隔壁部体に流体圧送チューブを連結している請求項1に記載の管内走行マイクロロボット。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2009−61532(P2009−61532A)
【公開日】平成21年3月26日(2009.3.26)
【国際特許分類】
【出願番号】特願2007−230226(P2007−230226)
【出願日】平成19年9月5日(2007.9.5)
【出願人】(500101357)
【Fターム(参考)】