説明

素子インピーダンス検出装置及びセンサユニット

【課題】外来ノイズの影響を好適に排除し、ひいては素子インピーダンスの検出精度を高める。
【解決手段】インピーダンス信号出力部42は、センサ素子に交流信号を印加した状態でそれに応答して交流変化するインピーダンス応答信号に基づいて素子インピーダンスを検出するためのものであり、HPF45とP/H回路(ピークホールド回路)46とLPF47とを備えている。P/H回路46は、HPF通過後のインピーダンス検出電圧Vzを入力する入力コンパレータ53と、その出力端子に接続された整流素子54と、入力コンパレータ53の出力により充電されるホールドコンデンサ55とを有している。入力コンパレータ53は、その内部回路として定電流回路53aとトランジスタ53bとを有している。定電流回路53aは、電圧ホールド値Vphの更新に際し交流周期ごとの更新量を制限する制限手段に相当するものである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば排気中の酸素濃度を検出するガスセンサのセンサ素子について素子インピーダンスを検出する素子インピーダンス検出装置、及び該インピーダンス検出装置を有するセンサユニットに関するものである。
【背景技術】
【0002】
従来から、固体電解質体からなるセンサ素子を有する、A/Fセンサ等のガスセンサに対して印加電圧又は電流を一時的又は連続的に変化させ、その時の電流変化量、電圧変化量を検出することで素子インピーダンスを検出する技術が各種提案されている。また、素子インピーダンスの検出に際し、インピーダンス検出信号にノイズが重畳すると、素子インピーダンスの検出精度が低下する。そのため、インピーダンス検出に関するノイズ対策技術も各種提案されている。なお、インピーダンス検出に影響を及ぼすノイズとしては、センサ活性化のために設けられたヒータの通電オン/オフ時に生じるヒータノイズや、内燃機関の点火タイミングで生じる点火ノイズ等が考えられる。
【0003】
素子インピーダンスの誤検出に関して、図8のタイムチャートを用いて補足説明する。図8には、所定の時間周期で素子インピーダンスが検出される場合の各種信号波形を示しており、素子インピーダンスの検出タイミングでは、センサ素子の印加電圧に一時的に交流変化が付与され(図の(a))、それに伴い素子電流が増減変化する(図の(b))。このとき、電流変化量のピーク値がピークホールド回路により保持(ホールド)され(図の(c))、そのピークホールド値(P/H出力)に基づいて素子インピーダンスが算出される。
【0004】
ここで、素子活性化のためのヒータ通電は、例えばデューティ制御により繰り返しオン/オフされるため、素子インピーダンスの検出タイミングとヒータのオン/オフタイミングとが一致することがある。例えば、(d)のようにヒータの通電がオンされると、(e)に示すように、ヒータのオン/オフに伴い生じるヒータノイズが素子電流に重畳する。そのため、(f)に示すように、ピークホールド値について真値に対して誤差が生じ、結果として素子インピーダンスが誤った値で算出されることとなる。
【0005】
素子インピーダンス検出に関するノイズ対策技術として、例えば特許文献1には、インピーダンス検出時の電圧変化量をホールドするホールド回路の前段にフィルタ手段(LPF)を設ける構成が開示されている。かかる構成によれば、電圧変化量をホールドする前段階で重畳されるノイズについても除去が可能となることから、電圧変化量のホールド値の誤検出に起因する素子インピーダンスの検出精度の低下を抑制できるとしていた。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2006−343317号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、上記特許文献1のように、ホールド回路の前段にフィルタ手段を設けた構成では、フィルタ手段によるノイズ除去は可能になるが、素子電流の応答変化も併せてなまされてしまい、それに起因してホールド回路のホールド値が真値からずれることが懸念される。この場合、素子電流の本来の応答変化を保ちつつ、しかも十分にノイズ除去を行うことは困難なものとなる。
【0008】
また、ヒータノイズによる素子インピーダンスの誤検出を解消するには、素子インピーダンスの検出タイミングとヒータの通電タイミングとをずらして同期させないことが考えられる。ただし、こうしてタイミングを同期させないようにするには、インピーダンス検出部を有するセンサ制御回路(センサ制御IC)と、該制御回路の出力信号によりインピーダンス値を演算する機能やヒータ通電の制御機能を有するマイコンとの間でのタイミング制御が不可欠となる。そのため、構成が煩雑になるという別の問題が生じる。
【0009】
本発明は、外来ノイズの影響を好適に排除し、ひいては素子インピーダンスの検出精度を高めることができる素子インピーダンス検出装置を提供することを主たる目的とするものである。
【課題を解決するための手段】
【0010】
以下、上記課題を解決するための手段、及びその作用効果について説明する。
【0011】
本発明の素子インピーダンス検出装置では、センサ素子に交流信号を印加する交流信号印加手段と、前記センサ素子に交流信号を印加した状態でそれに応答して電流又は電圧が交流変化してなるインピーダンス応答信号に基づいて素子インピーダンスを検出するインピーダンス検出手段と、を備え、前記インピーダンス検出手段は、前記インピーダンス応答信号の交流周期ごとに当該応答信号によりホールド値を逐次更新するホールド手段と、前記ホールド手段における前記ホールド値の更新に際し交流周期ごとの更新量を制限する制限手段と、を有していることを特徴とする。
【0012】
上記構成によれば、素子インピーダンスの検出に際し、センサ素子に交流信号を印加した状態でそれに応答して交流変化するインピーダンス応答信号によりホールド値が逐次更新され、該ホールド値に基づいて素子インピーダンスが検出される。この場合、ホールド手段のホールド値は交流周期ごとの更新量が制限されつつ更新されるため、仮にインピーダンス応答信号に外来ノイズが重畳したとしても、そのノイズに起因するホールド値の変化量が同様に制限される。そのため、外来ノイズに起因する素子インピーダンスの検出精度の低下を抑制できる。なお、交流信号が印加された状態では、交流周期ごとにホールド値が繰り返し更新され、インピーダンス応答信号のホールドすべき値(ピーク値)に到達した後は、概ねそのホールド状態が維持される。また、上記構成によれば、例えばセンサヒータをオンオフ制御する構成において、ヒータノイズを排除する目的で素子インピーダンスの検出タイミングとヒータ通電タイミングとを制御するといったマイコン処理等が不要となるというメリットも得られる。その結果、外来ノイズの影響を好適に排除し、ひいては素子インピーダンスの検出精度を高めることができる。
【0013】
請求項2に記載の発明では、前記インピーダンス検出手段は、前記インピーダンス応答信号の変化が生じる電気経路において前記ホールド手段の前段に設けられ、前記インピーダンス応答信号と前記ホールド手段の現ホールド値とを比較する入力コンパレータを備えるとともに、前記ホールド手段として設けられ前記入力コンパレータの比較結果に基づいて充電されて前記ホールド値を更新するホールドコンデンサを備える。また、前記制限手段は、前記入力コンパレータの出力を制限することで前記交流周期ごとの前記ホールド値の更新量を制限するものとして構成されている。
【0014】
上記構成によれば、入力コンパレータの出力を制限することで、ホールドコンデンサにおいて交流周期ごとのホールド値の更新量が制限される。かかる場合、入力コンパレータの入力自体はノイズ除去されていないが、出力はノイズの影響を低減したものとなる。したがって、インピーダンス応答信号について外来ノイズの影響を好適に排除することができる。
【0015】
請求項3に記載の発明では、前記入力コンパレータには、前記ホールドコンデンサの充電時に定電流を流す定電流回路が設けられ、前記定電流回路の定電流により前記ホールド値の更新速度が定められ、該更新速度により前記入力コンパレータの出力が制限されている。
【0016】
上記構成によれば、ホールドコンデンサに対して定電流回路の定電流が流れ込むことでホールド値(充電電圧)が逐次更新される。この場合、ホールド値の更新速度(すなわち交流周期ごとの更新量)は定電流回路の定電流により決まり、定電流を小さくすれば、ホールド値の更新速度が遅くなる反面、外来ノイズに対する耐性を高めることができる。また、定電流を大きくすれば、ホールド値の更新速度が速くなる。本構成では、定電流の値を変更することで、ホールド値の更新量の制限度合いを容易に調整できる。
【0017】
請求項4に記載の発明では、前記インピーダンス検出手段は、前記ホールドコンデンサを前記定電流による充電速度よりも遅い変化速度で放電させる放電手段を備える。
【0018】
上記構成によれば、仮にインピーダンス応答信号に外来ノイズが重畳した場合にも、その後のホールド値を適正値に戻すことができる。また、素子温度の変化により素子インピーダンスが変化する場合において、ホールドコンデンサのホールド値を増加側だけでなく減少側にも更新させることができる。
【0019】
本発明の素子インピーダンス検出装置では、ホールド値のリセットは必ずしも必要でない。ただし、ホールド値のリセットを行う場合には、請求項5に記載したように、リセット後の所定期間は、前記ホールド値に基づく素子インピーダンスの検出を禁止するとよい。
【0020】
本発明の素子インピーダンス検出装置は、当該検出装置にガスセンサを接続することでセンサユニットとして構成できる。この場合、外来ノイズの影響を好適に排除し、ひいては素子インピーダンスの検出精度を高めることが可能なセンサユニットを実現できる。
【図面の簡単な説明】
【0021】
【図1】発明の実施形態におけるセンサ制御回路の構成を示す回路図。
【図2】センサ素子の構成を示す断面図。
【図3】センサ素子の出力特性(V−I特性)を示す図。
【図4】インピーダンス信号出力部の電気的構成を示す回路図。
【図5】ホールドコンデンサのリセット状態においてホールドコンデンサの充電の様子を示すタイムチャート。
【図6】インピーダンス検出に関する各種信号波形を示すタイムチャート。
【図7】インピーダンス検出に関する各種信号波形を示すタイムチャート。
【図8】従来技術のインピーダンス検出に関する各種信号波形を示すタイムチャート。
【発明を実施するための形態】
【0022】
以下、本発明のセンサ制御装置を具体化した一実施形態を図面に従って説明する。本実施形態では、車載エンジンより排出される排気(燃焼ガス)を被検出ガスとして同排気中の酸素濃度(空燃比:A/F)を検出する空燃比検出装置を具体化しており、空燃比の検出結果はエンジンECU等により構成される空燃比制御システムに用いられる。空燃比制御システムでは、空燃比をストイキ近傍でフィードバック制御するストイキ空燃比制御や、同空燃比を所定のリーン領域でフィードバック制御するリーン空燃比制御等が適宜実施される。
【0023】
はじめに、A/Fセンサの素子構造を図2を用いて説明する。A/Fセンサは、固体電解質体を有し電圧印加状態で排気中の酸素濃度に応じた素子電流を流すセンサ素子10を備えており、図2には、積層型構造により構成されるセンサ素子10の断面構成を示す。実際には当該センサ素子10は図2の紙面直交方向に延びる長尺状をなし、素子全体がハウジングや素子カバー内に収容される構成となっている。
【0024】
センサ素子10は、固体電解質層11、拡散抵抗層12、遮蔽層13及び絶縁層14を有し、これらが図の上下に積層されて構成されている。同素子の周囲には図示しない保護層が設けられている。長方形板状の固体電解質層11は部分安定化ジルコニア製のシートであり、その固体電解質層11を挟んで上下一対の電極15,16が対向配置されている。拡散抵抗層12は電極15へ排気を導入するための多孔質シートからなり、遮蔽層13は排気の透過を抑制するための緻密層からなる。拡散抵抗層12には、電極15を囲むようにしてミキシングチャンバ17が設けられている。拡散抵抗層12と遮蔽層13は何れも、アルミナ、スピネル、ジルコニア等のセラミックスをシート成形法等により成形したものであるが、ポロシティの平均孔径及び気孔率の違いによりガス透過率が相違するものとなっている。
【0025】
絶縁層14はアルミナ等の高熱伝導性セラミックスからなり、電極16に対面する部位には大気ダクト18が形成されている。また、同絶縁層14にはヒータ19が埋設されている。ヒータ19は、バッテリ電源からの通電により発熱する線状の発熱体よりなり、その発熱により素子全体を加熱する。
【0026】
上記構成のセンサ素子10において、その周囲の排気は拡散抵抗層12の側方部位から導入された後、拡散抵抗層12内を経由してミキシングチャンバ17に流れ込み、電極15に達する。排気がリーンの場合、排気中の酸素が電極15で分解され、電極16より大気ダクト18に排出される。また、排気がリッチの場合、逆に大気ダクト18内の酸素が電極16で分解され、電極15より排気側に排出される。
【0027】
図3は、センサ素子10の出力特性(V−I特性)を示す図面である。図3では、センサ素子10の正負両端子間の電位差を印加電圧Vpとして横軸に示し、素子電流ILを縦軸に示している。図3の特性線において、横軸であるVp軸に平行な直線部分(フラット部分)は限界電流としての素子電流ILを特定する限界電流域であって、素子電流ILの増減は空燃比の増減(すなわち、リーン・リッチの程度)に対応している。つまり、空燃比がリーン側になるほど素子電流ILは増大し、空燃比がリッチ側になるほど素子電流ILは減少する。図3中のLXは、センサ素子10への印加電圧Vpを決定するための印加電圧特性線を表しており、その傾きは概ね抵抗支配域(限界電流域よりも低電圧側の傾き部分)に一致している。
【0028】
次に、本発明の主要部たるセンサ制御回路20の電気的構成を図1を参照しながら説明する。
【0029】
図1において、センサ制御回路20は、センサ素子10の一方の端子に印加される端子印加電圧(本実施形態では、電極16に接続された正側端子S+の端子電圧VS+)を素子電流ILに基づいて可変に制御する印加電圧制御回路21を備えている。印加電圧制御回路21は、基準電源22と、その基準電源22に接続された増幅回路23とを備えている。基準電源22の電圧値は例えば2.6Vである。増幅回路23は、オペアンプ23aと、その反転入力端子(−入力端子)に接続された帰還抵抗23b及び入力抵抗23cとを有する非反転増幅回路であり、帰還抵抗23bに並列にコンデンサ24が接続されている。つまり本構成では、増幅回路23の帰還部に印加電圧発振防止用のLPFが設けられている。LPFのカットオフ周波数fcは例えば2.7Hzである。
【0030】
オペアンプ23aの非反転入力端子(+入力端子)には、都度の素子電流ILに相当する電圧(A点電圧)が入力される。また、オペアンプ23aの出力端子がセンサ素子10の正側端子S+に接続されている。
【0031】
センサ素子10の他方の端子(電極15に接続された負側端子S−)には、交流電源回路31、バッファ32及びシャント抵抗33が直列に接続されている。交流電源回路31は、例えば10〜20kHz程度の交流電圧を出力する交流電圧発生手段であり、交流電圧発生回路や、同発生回路の交流電圧出力をフィルタ処理するためのLPFにより構成されている。交流電源回路31によって所定の基準電圧(本実施形態では2.2V)を中心に所定の電圧幅で振幅する交流電圧が生成され、その交流電圧がS−端子側の端子印加電圧としてセンサ素子10に印加される。なお、素子インピーダンス検出の観点からすれば交流電圧の周波数は3kHz以上であればいい。
【0032】
素子電流ILを検出するためのシャント抵抗33は電圧変換素子であり、素子電流ILを電圧に変換して出力する。すなわち、シャント抵抗33は、交流電源回路31とセンサ素子10との間において素子電流ILが流れる電流経路上に設けられており、シャント抵抗33においてセンサ素子10とは逆側の端子電圧が基準電圧(交流電源回路31の交流電圧の中心電圧)になっている。そして、シャント抵抗33とセンサ素子10(S−端子)との間の中間点Aでシャント抵抗33の端子電圧により素子電流ILが測定される。
【0033】
シャント抵抗33とセンサ素子10(S−端子)との間の中間点Aには、抵抗及びコンデンサよりなるLPF34が接続され、さらに同LPF34は、印加電圧制御回路21においてオペアンプ23aの非反転入力端子(+入力端子)に接続されている。本構成では、シャント抵抗33とセンサ素子10との間の中間点電圧(すなわち、シャント抵抗33及びセンサ素子10による分圧電圧)が、LPF34を介して印加電圧制御回路21の増幅回路23に入力される。なお、LPF34のカットオフ周波数fcは例えば150Hzである。
【0034】
印加電圧制御回路21及び交流電源回路31は、センサ素子10の正負両端子S+,S−にそれぞれ電圧を印加する電圧印加手段に相当する。A/F検出の観点からすれば、交流電源回路31は、S−端子側の印加電圧として基準電圧(交流電圧の振幅中心である2.2V)を設定し印加するものであり、印加電圧制御回路21は、S+端子側の印加電圧として素子電流ILに応じた可変電圧を設定し印加するものである。また、交流電源回路31は、インピーダンス検出のために交流電圧(交流信号)を印加する交流信号印加手段でもあり、本実施形態では2.2Vを基準としてその正負両側に1Vずつ振幅させた交流電圧を出力する。なお、センサ素子10の正側及び負側の両端子(S+端子,S−端子)にはノイズ等の除去を目的としてコンデンサ36,37が設けられている。
【0035】
一方、シャント抵抗33とセンサ素子10(S−端子)との間の中間点Aには、その中間点電圧(すなわち、シャント抵抗33及びセンサ素子10による分圧電圧)を各々個別に取り込むようにした2つの信号出力部41,42が設けられている。一方は、A/F検出信号AFOを出力するためのA/F信号出力部41であり、他方は、インピーダンス検出信号Ioutを出力するためのインピーダンス信号出力部42である。
【0036】
A/F信号出力部41は、A/F検出信号AFOに関しての信号増幅機能と交流成分除去機能(換言すれば直流成分抽出機能)とを有するものであり、オペアンプ43aを有する増幅回路43とLPF部44とを備える。本実施形態では、増幅回路43の帰還部に交流成分除去用のLPF部44が設けられている。A/F信号出力部41において増幅回路43のオペアンプ43aにはシャント抵抗33の両端の各電圧(A点電圧、B点電圧)が入力される。詳しくは、オペアンプ43aの非反転入力端子(+入力端子)にはLPF34を経由してA点電圧が入力され、反転入力端子(−入力端子)にはB点電圧が入力される。このとき、A点電圧の交流変動分はLPF34により除去され、B点電圧の交流変動分はLPF部44により除去される。なお本実施形態では、構成の簡素化のために、印加電圧フィードバック経路に設けたLPF34を併用してA/F信号の交流変動分を除去する構成としている。
【0037】
また、インピーダンス信号出力部42は、インピーダンス検出信号Ioutに関しての信号増幅機能とピーク値保持機能とを有するものであり、HPF45とP/H回路(ピークホールド回路)46とLPF47とを備えている。かかる場合、HPF45により、A点電圧について同A点電圧に含まれるA/F相当の直流成分が除去され、その後、P/H回路46により、HPF45の出力信号についてピーク電圧がホールドされる。さらに、LPF47により、P/H回路46の出力信号の高周波成分が除去され、その信号がインピーダンス検出信号Ioutとして出力される。
【0038】
A/F信号出力部41から出力されるA/F検出信号AFOと、インピーダンス信号出力部42から出力されるインピーダンス検出信号Ioutとは共に制御手段としてのCPU50に入力され、同CPU50にて認識される。CPU50は、演算部や記憶部(各種メモリ)を備えてなる周知の演算装置であり、同CPU50のAD変換器にA/F検出信号AFOやインピーダンス検出信号Ioutが入力されるようになっている。CPU50は、A/F検出信号AFOに基づいてA/F(酸素濃度)を算出するとともに、インピーダンス検出信号Ioutに基づいて素子インピーダンスRacを算出する。
【0039】
A/F信号出力部41及びインピーダンス信号出力部42ではそれぞれで電圧信号が増幅されるが、それら各出力部41,42における増幅率は各々個別に設定されている。このとき、各出力部41,42における増幅率は、A/F信号分及びインピーダンス信号分の各電圧レベルと、CPU50のAD変換器の電圧処理範囲(ここでは0〜5V)とに応じて設定され、本実施形態では、A/F信号出力部41の増幅率を10倍〜20倍、インピーダンス信号出力部42の増幅率を5倍としている。
【0040】
上記構成によれば、交流電源回路31によってセンサ素子10に交流電圧が印加されると、その交流電圧の印加状態で、同センサ素子10に、A/F(排気中の酸素濃度)に相応する電流分と素子インピーダンスに相応する電流分とが合成された素子電流が流れる。このとき、A/F検出信号(AFO)及びインピーダンス検出信号(Iout)の測定点である、シャント抵抗33とセンサ素子10との間の中間点では、センサ印加電圧の周期(交流電圧の周波数)に合わせて電圧が振幅している。そして、LPF34及びA/F信号出力部41において、シャント抵抗33とセンサ素子10との間の中間点電圧から、素子電流のうち都度のA/Fに相応する電流分(直流成分)が抽出され、それが所定の増幅率にて増幅された後、A/F検出信号AFOとしてCPU50に出力される。
【0041】
また、インピーダンス信号出力部42において、シャント抵抗33とセンサ素子10との間の中間点電圧から、素子電流のうち都度の素子インピーダンスに相応する電流分(交流成分)が抽出され、さらにそのピーク値がインピーダンス検出信号IoutとしてCPU50に出力される。この場合、インピーダンス信号出力部42では、センサ素子10に交流電圧が印加された状態でそれに応答して交流変化する応答電流が計測される。CPU50では、A/F検出信号AFOに基づいてA/F(排気中の酸素濃度)が算出されるとともに、インピーダンス検出信号Ioutに基づいて素子インピーダンスRacが算出される。
【0042】
CPU50は、センサ素子10を活性化するためのヒータ制御機能を有している。すなわち、CPU50は、所定周期でインピーダンス検出信号Ioutに基づいて素子インピーダンスRacを算出するとともに、そのインピーダンス算出値が目標値に一致するようにヒータ通電量をフィードバック制御する。例えば、PWM制御により通電制御が行われる。これにより、センサ素子10が活性状態で維持されるようになっている。
【0043】
ここで、シャント抵抗33とセンサ素子10との間の中間点で検出される電圧信号において、A/F信号分とインピーダンス信号分とは電圧レベルが相違するが、A/F信号出力部41及びインピーダンス信号出力部42には別系統で電圧信号が取り込まれ、それらが個別に増幅されるため、これら両信号分の信号レベルの相違に起因する検出精度の低下が抑制されるようになっている。すなわち、A/F信号分を基準に両信号分の増幅を行うと、素子インピーダンスの検出精度の低下が生じ、他方、インピーダンス信号分を基準に両信号分の増幅を行うと、A/Fの検出精度の低下が生じることが懸念されるが、本実施形態の回路構成ではこうした不都合が解消される。
【0044】
ちなみに、センサ制御回路20では、交流電源回路31やA/F信号出力部41、印加電圧制御回路21(基準電圧の生成部を除く)といった回路構成がICに集積化され、センサ制御ICとして構成されている。ただし、シャント抵抗33はセンサ制御IC(IC素子)に対して外付けとなっており、こうしてシャント抵抗33を外付けにすることで、シャント抵抗33の抵抗値の誤差を極力小さくし(すなわち、高精度なシャント抵抗33を用いることができ)、素子電流ILの検出精度を向上させることができる。
【0045】
図1の回路構成において、A点では、シャント抵抗33の抵抗分(抵抗値R1)と、センサ素子10の抵抗分(素子インピーダンスRac)との分圧により素子インピーダンスRacが検出される。この場合、交流電圧の印加に応答して交流変化するA点電圧の変化量ΔVAは次の(1)式で表される。
ΔVA=Rac/(R1+Rac)×ΔVac
なお、ΔVacは交流電圧の振幅である。本実施形態では、R1=200Ω、ΔVac=±1Vとしている。
【0046】
上記(1)式によれば、素子インピーダンスRacが大きいほど、ΔVAが大きい値となる。例えば、センサ素子10が活性状態にあり、素子インピーダンスRacが「32Ω」である場合、ΔVA=±138mVとなる。また、センサ素子10が活性前状態にあり、素子インピーダンスRacが「110Ω」である場合、ΔVA=±355mVとなる。
【0047】
本実施形態では、インピーダンス検出信号Ioutに関するノイズ対策として、P/H回路46におけるホールド値(充電電圧)の更新に際し交流周期ごとの更新量を制限する構成を付加している。その詳細を以下に説明する。
【0048】
図4は、インピーダンス信号出力部42の電気的構成を示す回路図である。図4において、HPF45は、インピーダンス信号出力部42の入力信号である図1のA点電圧を入力するコンデンサ51と、一対の抵抗からなる抵抗分圧回路52とにより構成されている。なお以下の説明では、A点電圧をインピーダンス検出電圧Vzとも言う。抵抗分圧回路52は定電圧Vcc(例えば5V)に接続されており、その中間点Cの電圧は例えば0.8Vに設定されている。HPF45によれば、インピーダンス検出電圧Vzが、都度のA/Fに応じた電圧を振幅中心とする交流信号から、基準電圧(0.8V)を振幅中心とする交流信号に変換される。
【0049】
また、P/H回路46は、HPF通過後のインピーダンス検出電圧Vzを入力する入力コンパレータ53と、その出力端子に接続された整流素子54と、入力コンパレータ53の出力により充電されるホールドコンデンサ55とを有している。入力コンパレータ53には、その出力端子と−入力端子とを接続する帰還経路が設けられており、その帰還経路には抵抗56が設けられている。
【0050】
入力コンパレータ53の負側帰還経路のD点には、抵抗57及び直流電源58からなる直列回路が接続されている。直流電源58の電圧値は0.8V(抵抗分圧回路52の中間点Cの電圧と同じ)であり、D点電圧は0.8Vよりも大きい電圧値に保持されるようになっている。
【0051】
入力コンパレータ53では、整流素子54を構成するダイオードのカソード側の電圧(すなわち、ホールドコンデンサ55の電圧ホールド値Vph)と、直流電源58の電圧と、抵抗56,57の各抵抗値とにより定まるD点が、+入力端子の入力電圧(すなわち、HPF通過後のインピーダンス検出電圧Vz)に一致するように出力調整される。この場合、要するに入力コンパレータ53は、都度のインピーダンス検出電圧Vzと現ホールド値とを比較し、その比較結果に応じて信号出力する。
【0052】
また、入力コンパレータ53は、その内部回路として定電流回路53aとトランジスタ53bとを有している。トランジスタ53bは、入力コンパレータ53の+入力端子の電圧(HPF後のインピーダンス検出電圧Vz)が−入力端子の電圧(電圧ホールド値Vphと0.8Vとの中間値)を上回った時にオフするスイッチング素子である。すなわち、+入力電圧>−入力電圧の場合には、トランジスタ53bがオフとなり、定電流回路53aの定電流Istが整流素子54を介してホールドコンデンサ55側に流れ、ホールドコンデンサ55が充電される。また、+入力電圧<−入力電圧の場合には、トランジスタ53bがオンとなり、定電流Istがホールドコンデンサ55側に流れないようになっている。
【0053】
ここで、定電流回路53aは、電圧ホールド値Vphの更新に際し交流周期ごとの更新量を制限する制限手段に相当するものであり、具体的には、定電流回路53aの定電流Istを、入力コンパレータ53の出力を制限すべく微小電流にすることにより、電圧ホールド値Vphの更新値に制限を付与している。定電流Istは例えば数100μA程度とするとよく、本実施形態では450μAとしている。
【0054】
補足すると、交流電圧の周波数が例えば20kHzの場合、その1周期分の時間(インピーダンス検出電圧Vzの1周期分の時間)は50μsecであり、その1周期によりホールドコンデンサ55に充電可能な充電電圧は約50mVとなる(なお、ホールドコンデンサ55の静電容量を0.22μFとして計算している)。この場合、上述したとおりセンサ活性状態(Rac=32Ω)においてA点電圧の変化量ΔVA(インピーダンス検出電圧Vzの電圧変化量)が138mVであれば、例えばホールドコンデンサ55がリセットされた状態(電圧ホールド値Vph=0の状態)において、1周期分の交流変化ではインピーダンス検出電圧Vzのピーク値がホールドできず、3周期分の交流変化によりピーク値がホールドされることとなる。
【0055】
ちなみに、センサ活性前状態においても同様に、インピーダンス検出電圧Vzの複数周期分によりピーク値がホールドされる。すなわち、センサ活性前状態(Rac=110Ω)においてA点電圧の変化量ΔVA(インピーダンス検出電圧Vzの電圧変化量)が355mVであれば、例えばホールドコンデンサ55がリセットされた状態(電圧ホールド値Vph=0の状態)では、8周期分程度の交流変化によりインピーダンス検出電圧Vzのピーク値がホールドされる。
【0056】
上記のように、ホールドコンデンサ55がリセットされた状態では、インピーダンス検出電圧Vzの複数周期分の交流変化により電圧ホールド値Vph(充電電圧)がインピーダンス検出電圧Vzのピーク値に到達することになるが、電圧ホールド値Vph(充電電圧)が一旦Vzピーク値に到達すると、その後、大きなインピーダンス変化がなければ、電圧ホールド値Vphは概ね一定の値で維持される。
【0057】
入力コンパレータ53において負側帰還経路はホールドコンデンサ55の放電経路となっており、抵抗56,57の合成抵抗値により決まる放電率でホールドコンデンサ55の放電が適宜行われる。この場合、ホールドコンデンサ55の放電速度は、定電流Istにより決まる充電速度よりも遅いものとなっている。本実施形態では、交流変化の1周期分の放電電圧は1,2mV程度である。
【0058】
LPF47は、抵抗59とコンデンサ60とにより構成されている。P/H回路46の出力(電圧ホールド値Vph)は、LPF47を通過し、インピーダンス検出信号Ioutとして出力される。
【0059】
図5は、ホールドコンデンサ55がリセットされた状態(電圧ホールド値Vph=0の状態)において、インピーダンス検出電圧Vzの交流変化に伴いホールドコンデンサ55が充電される様子を示すタイムチャートである。なお、図5では、素子活性状態での信号波形を示している。
【0060】
図5において、インピーダンス検出電圧Vz(図1のA点電圧相当)は所定周期で交流変化しており、一点鎖線で示すように、その交流周期に合わせて電圧ホールド値Vphが更新される。なお、図示のインピーダンス検出電圧VzはHPF通過後の信号であり、0.8Vを振幅中心として交流変化するものとなっている。
【0061】
つまり、ホールドコンデンサ55は、インピーダンス検出電圧Vzの交流変化においてその正側変化に合わせて充電され、それに伴い電圧ホールド値Vphが増加する。この場合、上述のとおり1周期分の電圧ホールド値Vphの更新量は制限されているため、リセット状態において1周期分のVz変化では、電圧ホールド値VphがVzピーク値に到達せず、図示の場合には3周期分の交流変化により電圧ホールド値VphがVzピーク値に到達している。
【0062】
また、図6は、電圧ホールド値VphがVzピーク値に到達した状態での各種信号波形を示すタイムチャートである。なお、図6では、上下両チャートの縦軸(電圧軸)の尺度が異なっており、下チャートでは上チャートに対して拡大して示されている(後述する図7も同様)。
【0063】
図6において、交流変化の都度インピーダンス検出電圧Vzが増加し、同Vzがその時々の電圧ホールド値Vphである現ホールド値を上回ると(Vz>Vphになると)、ホールドコンデンサ55の充電が行われ、電圧ホールド値Vphが上昇する(例えば、図の期間Ta)。また、交流変化を繰り返すインピーダンス検出電圧Vzが現ホールド値を下回ると(Vz<Vphになると)、ホールドコンデンサ55の電荷が入力コンパレータ53の放電経路(負側帰還経路)を介して放出され、電圧ホールド値Vphが低下する(例えば、図の期間Tb)。
【0064】
電圧ホールド値Vphの増減変化は、インピーダンス検出電圧Vzの交流変化に合わせて繰り返し行われる。この場合、実際の素子インピーダンスに変動がなければ、電圧ホールド値Vphの増減変化は、コンパレータ帰還経路における抵抗放電分に限られ、その減少分は僅かである(1,2mV程度)。そして、電圧ホールド値VphがLPF47でフィルタ処理されることで、一点鎖線で示すごとくインピーダンス検出信号Ioutとして略一定の電圧値が出力される。
【0065】
図7は、ヒータ通電開始(通電オン)によりインピーダンス検出電圧Vzにノイズが重畳した場合の各種信号波形を示すタイムチャートである。
【0066】
図7では、タイミングt1でヒータ通電がオンされ、それに起因してヒータノイズが発生し、インピーダンス検出電圧Vzに重畳している。この場合、ノイズの重畳により、インピーダンス検出電圧Vzが一時的に増加している期間では、同Vzが現ホールド値を上回り(Vz>Vphになり)、定電流回路53aの定電流Istによりホールドコンデンサ55が充電される。ただし、上記のとおり1周期分の電圧ホールド値Vphの更新量が定電流Istにより制限されているため、ノイズによる電圧ホールド値Vphの更新量は比較的小さく、結果としてインピーダンス検出信号Ioutのノイズ変動量も小さいものとなっている。なお、実際のノイズ振幅(図のΔV1)は140mV程度であるのに対し、電圧ホールド値Vphのノイズ変動量(図のΔV2)は10mV程度である。
【0067】
また、ノイズ発生期間は例えば10μsec程度であり、交流周期に対して短い期間となっている。そのため、ノイズによるVph値の更新時間は短く、その点からも電圧ホールド値Vphのノイズ変動量は少量に抑えられている。
【0068】
以上詳述した本実施形態によれば、以下の優れた効果が得られる。
【0069】
インピーダンス検出信号Ioutに関するノイズ対策として、P/H回路46におけるホールド値(充電電圧)の更新に際し交流周期ごとの更新量を制限する構成を付加したため、仮にインピーダンス検出電圧Vz(インピーダンス応答信号)に外来ノイズが重畳したとしても、そのノイズに起因するホールド値の変化量が同様に制限される。そのため、外来ノイズに起因する素子インピーダンスの検出精度の低下を抑制できる。また、ヒータノイズを排除すべくインピーダンス検出タイミングとヒータ通電タイミングとが同期しないように各タイミングを制御するといったCPU50の同期制御等が不要となる。つまりこの場合、ヒータノイズ除去のためのソフト処理が不要となる。そのため、システムを構築する上で制御プログラム等の簡素化を図ることもできる。以上により、外来ノイズの影響を好適に排除し、ひいては素子インピーダンスの検出精度を高めることができる。
【0070】
火花点火エンジンでは燃焼の都度の点火に際し点火ノイズが生じ、これもインピーダンス検出精度の低下原因となり得るが、こうした点火ノイズの発生時にも、上記同様、素子インピーダンスを精度良く検出できる。
【0071】
P/H回路46において、入力コンパレータ53の出力について制限を付与し、それによりホールドコンデンサ55において交流周期ごとの更新量を制限する構成とした。かかる場合、入力コンパレータ53の入力自体はノイズ除去されていないが、出力はノイズの影響を低減したものとなる。したがって、インピーダンス検出電圧Vzについて外来ノイズの影響を好適に排除することができる。
【0072】
入力コンパレータ53においてその入力比較結果に基づいて定電流Istを流す定電流回路53aを設け、その定電流Istにより電圧ホールド値Vphの更新量を制限する構成とした。この場合、定電流Istを小さくすれば、電圧ホールド値Vphの更新量が小さくなる(ホールド値の更新速度が遅くなる)反面、外来ノイズに対する耐性を高めることができる。また、定電流Istを大きくすれば、電圧ホールド値Vphの更新量が大きくなる(ホールド値の更新速度が速くなる)。本構成では、定電流Istの値を変更することで、電圧ホールド値Vphの更新量の制限度合いを容易に調整できる。
【0073】
入力コンパレータ53に、ホールドコンデンサ55を定電流Istによる充電時の変化速度よりも遅い変化速度で放電させるための放電経路を設けたため、仮にインピーダンス検出電圧Vzに外来ノイズが重畳した場合にも、その後のホールド値を適正値に戻すことができる。また、素子温度の変化により素子インピーダンスが変化する場合において、電圧ホールド値Vphを増加側だけでなく減少側にも更新させることができる。
【0074】
センサ素子10とシャント抵抗33との中間点(図1のA点)においてシャント抵抗33の抵抗分(抵抗値R1)とセンサ素子10の抵抗分(素子インピーダンスRac)との分圧によりインピーダンス検出電圧Vzを検出する構成としたため、素子活性化に伴い素子インピーダンスが小さくなった状態では、活性前と比べてインピーダンス検出電圧Vzの振幅量が小さくなる。したがって、素子活性状態において、仮にインピーダンス検出電圧Vzにヒータノイズ等が重畳してもその影響を低減できる。
【0075】
(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、例えば次のように実施されてもよい。
【0076】
・電圧ホールド値Vphの更新量を制限する制限手段として、入力コンパレータ53において定電流Istを供給する構成に代えて別の構成を採用してもよい。例えば、ホールドコンデンサ55の前段部(コンデンサ入力側)に、交流周期ごとの充電電圧上昇量(毎回の更新量に相当)を検出するとともに、その充電電圧上昇量があらかじめ定めた所定値に達した時にコンパレータ出力を停止させる、すなわちホールドコンデンサ55の充電を停止させる充電制限回路を設ける構成とする。
【0077】
又は、入力コンパレータ53の出力部に抵抗を設けて、その抵抗によりホールドコンデンサ55への充電電流を制限する構成としてもよい。
【0078】
・CPU50における素子インピーダンスの演算周期を可変に設定する構成としてもよい。上記実施形態では、交流電圧が常時出力されており、任意のタイミングでのインピーダンス検出が可能である。例えば、センサ素子の活性途中など、素子温が大きく変化する過渡期においては比較的短い周期で素子インピーダンスを演算し、センサ素子の活性後など素子温があまり変化しない安定期においては比較的長い周期で素子インピーダンスを演算する。
【0079】
・上記実施形態では、ホールドコンデンサ55の電圧ホールド値Vph(充電電圧)をリセットする構成について記載していないが、電圧ホールド値Vphのリセットを行う構成であってもよい。電圧ホールド値Vphのリセットを行う場合には、リセット後の所定期間は、電圧ホールド値Vphに基づく素子インピーダンスの検出を禁止するとよい。つまり、電圧ホールド値Vphのリセット後には、複数周期分の交流変化を経て電圧ホールド値VphがVzピーク値に到達するため、少なくともそのピーク値到達までの時間はインピーダンス検出を行わないようにする。
【0080】
・上記実施形態では、インピーダンス信号出力部42において、センサ素子10に交流電圧が印加された状態でそれに応答して交流変化する応答電流がインピーダンス応答信号として計測され、その計測結果に基づいて素子インピーダンスが算出される構成としたが、これを変更し、センサ素子10に交流電流が印加された状態でそれに応答して交流変化する応答電圧がインピーダンス応答信号として計測され、その計測結果に基づいて素子インピーダンスが算出される構成であってもよい。
【0081】
・上記実施形態では、インピーダンス応答信号(インピーダンス検出電圧Vz)のピーク値をホールドし、そのピークホールド値に基づいて素子インピーダンスを検出する構成としたが、これを変更する。例えば、交流変化するインピーダンス応答信号について、振幅中心を通過する都度、その通過タイミングから所定時間後のVz値をホールドし、そのホールド値に基づいて素子インピーダンスを検出する構成としてもよい。
【0082】
・本発明を、図2とは異なる構成のセンサ素子を有するA/Fセンサに適用してもよい。例えば、センサ素子が、各々固体電解質体からなる複数のセルを有するものとする。より具体的には、センサ素子は2つの固体電解質層を有し、一方の固体電解質層には、排気中の酸素濃度に応じた起電力を生じる起電力セルが形成され、他方の固体電解質層には、起電力セルの出力に応じた電気信号を出力する酸素濃度検出セルが形成されている構成とする。かかる場合、起電力セルは、排気がストイキに対してリーンかリッチかに応じて2値(0V又は0.9V)の起電力出力を発生し、起電力セルの起電力出力がストイキ値(0.45V)になるように酸素濃度検出セルの印加電圧が制御される。
【0083】
こうした2セル構造のセンサ素子については、いずれか一方のセルを対象に素子インピーダンスを検出する。つまり、インピーダンス検出対象となるセル(例えば起電力セル)に対して交流信号を印加し、その交流信号印加状態で交流信号の印加に応答して交流変化する電流又は電圧のインピーダンス応答信号に基づいて素子インピーダンスを検出する。この場合特に、上記実施形態と同様に、インピーダンス応答信号の交流周期ごとに当該応答信号によりホールド値を逐次更新するホールドコンデンサ(ホールド手段)を設け、該ホールドコンデンサのホールド値に基づいて素子インピーダンスを算出する。また、ホールドコンデンサにおけるホールド値の更新に際し交流周期ごとの更新量を制限する。
【0084】
・酸素濃度を検出対象とするA/Fセンサ以外に、他のガス濃度成分を検出対象とするガスセンサにも本発明が適用できる。例えば、複合型のガスセンサは、固体電解質体にて形成された複数のセルを有し、そのうち第1セル(ポンプセル)では被検出ガス中の酸素を排出又はくみ出すと共に酸素濃度を検出し、第2セル(センサセル)では酸素排出後のガスから特定成分のガス濃度を検出する。このガスセンサは、例えば排気中のNOx濃度を検出するNOxセンサとして具体化されるものである。また、上記第1セル、第2セルに加え、酸素排出後の残留酸素濃度を検出するための第3セル(モニタセル、若しくは第2ポンプセル)等の複数のセルを有するガスセンサであってもよい。
【0085】
・ガス濃度成分としてHC濃度やCO濃度を検出可能とするガスセンサにも適用できる。この場合、ポンプセルにて被検出ガス中の余剰酸素を排出し、センサセルにて余剰酸素排出後のガスからHCやCOを分解してHC濃度やCO濃度を検出する。
【0086】
・本発明の素子インピーダンス検出装置は、ガソリンエンジンに用いられるガスセンサ(センサ素子)だけでなく、ディーゼルエンジンなど、他の形式のエンジンに用いられるガスセンサ(センサ素子)にも適用できる。自動車以外の用途のガスセンサの素子インピーダンス検出装置として用いることや、排気以外のガスを被検出ガスとすることも可能である。
【符号の説明】
【0087】
10…センサ素子、11…固体電解質層、20…センサ制御回路、31…交流電源回路(交流信号印加手段)、42…インピーダンス信号出力部(インピーダンス検出手段)、46…P/H回路(ホールド手段)、50…CPU、53…入力コンパレータ、53a…定電流回路(制限手段)、55…ホールドコンデンサ。

【特許請求の範囲】
【請求項1】
固体電解質体を有してなるセンサ素子の素子インピーダンスを検出する素子インピーダンス検出装置であり、
前記センサ素子に交流信号を印加する交流信号印加手段と、
前記センサ素子に交流信号を印加した状態でそれに応答して電流又は電圧が交流変化してなるインピーダンス応答信号に基づいて素子インピーダンスを検出するインピーダンス検出手段と、
を備え、
前記インピーダンス検出手段は、
前記インピーダンス応答信号の交流周期ごとに当該応答信号によりホールド値を逐次更新するホールド手段と、
前記ホールド手段における前記ホールド値の更新に際し交流周期ごとの更新量を制限する制限手段と、
を有していることを特徴とする素子インピーダンス検出装置。
【請求項2】
前記インピーダンス検出手段は、
前記インピーダンス応答信号の変化が生じる電気経路において前記ホールド手段の前段に設けられ、前記インピーダンス応答信号と前記ホールド手段の現ホールド値とを比較する入力コンパレータを備えるとともに、
前記ホールド手段として設けられ前記入力コンパレータの比較結果に基づいて充電されて前記ホールド値を更新するホールドコンデンサを備え、
前記制限手段は、前記入力コンパレータの出力を制限することで前記交流周期ごとの前記ホールド値の更新量を制限する請求項1に記載の素子インピーダンス検出装置。
【請求項3】
前記入力コンパレータには、前記ホールドコンデンサの充電時に定電流を流す定電流回路が設けられ、
前記定電流回路の定電流により前記ホールド値の更新速度が定められ、該更新速度により前記入力コンパレータの出力が制限されている請求項2に記載の素子インピーダンス検出装置。
【請求項4】
前記インピーダンス検出手段は、前記ホールドコンデンサを前記定電流による充電速度よりも遅い変化速度で放電させる放電手段を備える請求項3に記載の素子インピーダンス検出装置。
【請求項5】
前記インピーダンス検出手段は、前記ホールド手段のホールド値をリセットするリセット手段を備え、そのリセット後の所定期間は、前記ホールド値に基づく素子インピーダンスの検出を禁止する請求項1乃至4のいずれか一項に記載の素子インピーダンス検出装置。
【請求項6】
請求項1乃至5のいずれか一項に記載の素子インピーダンス検出装置と、前記センサ素子を有し前記素子インピーダンス検出装置に接続されるガスセンサとを備えることを特徴とするセンサユニット。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−242147(P2011−242147A)
【公開日】平成23年12月1日(2011.12.1)
【国際特許分類】
【出願番号】特願2010−111814(P2010−111814)
【出願日】平成22年5月14日(2010.5.14)
【出願人】(000004260)株式会社デンソー (27,639)
【Fターム(参考)】