説明

素子状態読み出し装置、方法、および透過型ジョセフソン共振回路

【課題】少ない読み出し線で多くの対象素子の動作状態を効率的に読み出す。
【解決手段】信号生成部10により、互いに異なるマイクロ波周波数からなる複数の周波数信号が合成された合成読み出しパルス10Sを生成して、分配器20Aで分配し、各透過型ジョセフソン共振回路31〜3Nにより、合成読み出しパルス10Sのうち当該共振周波数と共振する周波数信号に基づきジョセフソン分岐読み出し動作を行うことにより、対応する対象素子の磁束に応じて位相が変化した当該周波数信号を応答パルスとして出力し、合成器20Bにより、これら応答パルスを合成応答パルス20Sに合成し、位相検波部60により、合成応答パルス20Sに含まれる各周波数信号の位相を検波して、各対象素子の状態に応じた出力信号81〜8Nを出力する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、素子状態読み出し技術に関し、特に動作状態に応じて磁束が変化する対象素子から当該動作状態を読み出す技術に関する。
【背景技術】
【0002】
量子力学が適用可能な物理系では、古典力学系では不可能な状態の重ね合わせが可能である。このことを積極的に利用することにより、超並列計算すなわち量子コンピューティングの実現の可能性が指摘されている。量子コンピュータの基本構成要素である量子ビット素子間の量子もつれ(エンタングルメント)状態すなわち量子ビット状態の制御に加え、この量子ビット状態の読み出しが、量子コンピューティング実現のための必須技術となる。
【0003】
量子ビット素子として、例えば3つのジョセフソン接合を含む超伝導磁束量子ビット素子を用いる場合には、SQUID(超伝導量子干渉素子:Superconducting Quantum Interference Device)を含む超伝導磁束転送器によって磁束量子ビット可変結合素子が実現可能であり、また、核磁気共鳴法(NMR)で実現されている手法(J-coupling)を用いてCNOTゲートが実現可能であるという提案が、J. E. Mooijら(非特許文献1参照)、及びT. P.Orlandoら(非特許文献2参照)によってなされている。
【0004】
このような量子ビット素子に代表されるような、動作状態に応じて磁束が変化する対象素子から動作状態を読み出す場合、ジョセフソン共振回路を用いられる。例えば、量子ビット素子の状態を読み出す場合、上記SQUIDに設けられているジョセフソン接合と共振回路とを用いて量子ビット素子の状態を読み出すことができる。ジョセフソン接合を含む共振回路、すなわちジョセフソン共振回路をマイクロ波で駆動すると、その非線形性に起因して2つの安定状態を生じる領域が存在する。したがって、この双安定状態において、量子ビット素子とジョセフソン接合とを相互作用させ、ジョセフソン共振回路がどちらの安定状態に収束するかに基づいて、量子ビット素子の状態を読み出すことができ、この読み出し方法をジョセフソン分岐読み出しという。
【0005】
図9は、従来の素子状態読み出し装置を示す構成例である。この素子状態読み出し装置では、超伝導磁束量子ビット素子91ごとにSQUID磁束計92を設け、これら超伝導磁束量子ビット素子91とSQUID磁束計92とを冷凍機93で超伝導臨界温度以下に冷却する。そして、量子ビット読み出し部94から読み出し線95を介してSQUID磁束計92に読み出しパルスを出力し、SQUID磁束計92から読み出し線95を介して得られたマイクロ波からなる応答パルスの位相に基づいて超伝導磁束量子ビット素子91の状態を検出する。
【0006】
【非特許文献1】J.E.Mooji,T.P.Orlando,L.Levitov,Lin Tian,Casper H.van der Wal,Seth Lloyd,“Josephson Persistent-Current Qubit”Science 285,P.1036-1039,1999.
【非特許文献2】T.P.Orlando,J.E.Mooji,Lin Tian,C.H.van der Wal,L.Levitov,S.Lloyd,and J.J.Mazo,“Superconducting persistent-current qubit”Phys.Rev.B60,15398(1999).
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、このような従来技術では、それぞれの対象素子ごとにマイクロ波を入出力するための読み出し線が個々に必要となるため、多数の対象素子の動作状態を読み出す場合、読み出し線と読み出し装置の数が膨大となるという問題点があった。特に、膨大な数の量子ビット素子が必要となる実用的な量子コンピューティングでは、量子ビット素子を極低温環境にする必要があり、多数の読み出し線が必要な場合、これら読み出し線からの熱流入が生じて極低温環境を保つことが困難になるという問題点があった。
本発明はこのような課題を解決するためのものであり、少ない読み出し線で多くの対象素子の動作状態を効率的に読み出すことができる素子状態読み出し装置、方法、および透過型ジョセフソン共振回路を提供することを目的としている。
【課題を解決するための手段】
【0008】
このような目的を達成するために、本発明にかかる素子状態読み出し装置は、動作状態に応じて磁束が変化する複数の対象素子からそれぞれの磁束を検出することにより当該動作状態を読み出す素子状態読み出し装置であって、互いに異なるマイクロ波周波数からなる複数の周波数信号が合成された合成読み出しパルスを生成する信号生成部と、この信号生成部からの合成読み出しパルスを複数に分配する分配器と、互いに異なる共振周波数を有するとともに対象素子ごとに設けられ、分配器から分配された合成読み出しパルスのうち当該共振周波数と共振する周波数信号に基づきジョセフソン分岐読み出し動作を行うことにより、対応する対象素子の磁束に応じて位相が変化した当該周波数信号を応答パルスとして出力する透過型ジョセフソン共振回路と、これら透過型ジョセフソン共振回路から出力された応答パルスを合成し、合成応答パルスとして出力する合成器と、この合成器からの合成応答パルスに含まれる各周波数信号の位相を検波して、各対象素子の状態に応じた出力信号を出力する位相検波部とを備えている。
【0009】
この際、透過型ジョセフソン共振回路に、当該対象素子と磁気的に結合して設けられ、周波数信号からなる読み出しパルスに応じてジョセフソン分岐読み出し動作を行うことにより、当該対象素子の磁束に応じて位相が変化した当該周波数信号を応答パルスとして出力するSQUID磁束計と、分配器から分配された合成読み出しパルスが入力される入力端と、SQUID磁束計からの応答パルスを出力する出力端と、入力端とSQUID磁束計との間に接続されて入力端から入力された合成読み出しパルスに含まれる当該周波数信号と共振する第1の共振回路と、SQUID磁束計と出力端との間に接続されてSQUIDから出力された応答パルスに含まれる当該周波数信号と共振する第2の共振回路とを設けてもよい。
【0010】
また、第1の分配器と各透過型ジョセフソン共振回路との間に信号減衰器をそれぞれ設けてもよい。
【0011】
また、本発明にかかる素子状態読み出し方法は、動作状態に応じて磁束が変化する複数の対象素子からそれぞれの磁束を検出することにより当該動作状態を読み出す素子状態読み出し方法であって、互いに異なる周波数からなる複数の周波数信号が合成された合成読み出しパルスを生成するステップと、合成読み出しパルスを複数に分配するステップと、分配された合成読み出しパルスのうち対象素子ごとに固有の共振周波数と共振する周波数信号に基づいて、これら対象素子ごとにジョセフソン分岐読み出し動作を行うことにより、それぞれの対象素子の磁束に応じて位相が変化した当該周波数信号を応答パルスとして出力するステップと、これら応答パルスを合成して合成応答パルスとして出力するステップと、合成応答パルスに含まれる各周波数信号の位相を検波して、各対象素子の状態に応じた出力信号を出力するステップとを備えている。
【0012】
また、本発明にかかる透過型ジョセフソン共振回路は、動作状態に応じて磁束が変化する対象素子から磁束に基づいて当該動作状態を検出する透過型ジョセフソン共振回路であって、入力された読み出しパルスのうち固有のマイクロ波共振周波数と共振する周波数信号に基づいてジョセフソン分岐読み出し動作を行うことにより、対応する対象素子の状態に応じて位相が変化した当該周波数信号を応答パルスとして出力する。
【0013】
この際、当該対象素子と磁気的に結合して設けられ、周波数信号からなる読み出しパルスに応じてジョセフソン分岐読み出し動作を行うことにより、当該対象素子の磁束に応じて位相が変化した当該周波数信号を応答パルスとして出力するSQUID磁束計と、合成読み出しパルスが入力される入力端と、SQUID磁束計からの応答パルスを出力する出力端と、入力端とSQUID磁束計との間に接続されて入力端から入力された合成読み出しパルスに含まれる当該周波数信号と共振する第1の共振回路と、SQUID磁束計と出力端との間に接続されてSQUIDから出力された応答パルスに含まれる当該周波数信号と共振する第2の共振回路とを備えてもよい。
【発明の効果】
【0014】
本発明によれば、極低温で冷却する必要のある透過型ジョセフソン共振回路へ供給する合成読み出しパルスや、透過型ジョセフソン共振回路から出力される合成応答パルスを、それぞれ1本の伝送線路でやり取りすることができる。
このため、複数の対象素子の状態を少ない読み出し線で効率的に読むことが可能になり、膨大な数の量子ビット素子が必要となる実用的な量子コンピューティングにおいても、読み出し線を大幅に削減できる。また、読み出し線の削減に応じてこれら読み出し線からの熱流入を抑制でき、量子ビット素子数が増加した場合でも極低温環境を保つことが可能となる。
【発明を実施するための最良の形態】
【0015】
次に、本発明の実施の形態について図面を参照して説明する。
[素子状態読み出し装置]
まず、図1を参照して、本発明の一実施の形態にかかる素子状態読み出し装置について説明する。図1は、本発明の一実施の形態にかかる素子状態読み出し装置の構成を示すブロック図である。
【0016】
この素子状態読み出し装置1は、動作状態に応じて磁束が変化する複数の対象素子からそれぞれの磁束を検出することにより当該動作状態を読み出す機能を有している。対象素子として、以下では、超伝導磁束量子ビット素子の状態をジョセフソン分岐読み出し動作で読み出す場合を例として説明するが、磁束変化の状態を読み出すという見地からは、微小磁性体の磁化やマイクロメカニカル共振器の変位等、透過型ジョセフソン共振回路と磁気的に相互作用可能な全ての素子の状態読出しにも適用することが可能である。
【0017】
本実施の形態は、互いに異なるマイクロ波周波数からなる複数の周波数信号が合成された合成読み出しパルスを生成する信号生成部と、この信号生成部からの合成読み出しパルスを複数に分配する分配器と、互いに異なる共振周波数を有するとともに対象素子ごとに設けられ、分配器から分配された合成読み出しパルスのうち当該共振周波数と共振する周波数信号に基づきジョセフソン分岐読み出し動作を行うことにより、対応する対象素子の磁束に応じて位相が変化した当該周波数信号を応答パルスとして出力する透過型ジョセフソン共振回路と、これら透過型ジョセフソン共振回路から出力された応答パルスを合成し、合成応答パルスとして出力する合成器と、この合成器からの合成応答パルスに含まれる各周波数信号の位相を検波して、各対象素子の状態に応じた出力信号を出力する位相検波部と備えている。
【0018】
[素子状態読み出し装置の構成]
次に、図1を参照して、本発明の一実施の形態にかかる素子状態読み出し装置の構成について詳細に説明する。
素子状態読み出し装置1は、主な機能部として、信号生成部10、素子制御部20、および位相検波部60から構成されている。以下では、素子状態読み出し装置1により、超伝導磁束量子ビット素子からなる対象素子の状態をジョセフソン分岐読み出し動作で読み出す場合を例として説明する。
【0019】
[信号生成部]
信号生成部10は、互いに異なるマイクロ波周波数からなる複数の周波数信号が合成された合成読み出しパルスを生成する機能を有している。
この信号生成部10には、主な機能部として、信号発生器11〜1N、合成器10A、および読み出しパルス生成部10Bを有している。
【0020】
信号発生器11〜1Nは、互いに異なるN個(Nは2以上の整数)のマイクロ波周波数f(ω1)〜f(ωN)からなる周波数信号を発生する回路部である。
合成器10Aは、これら信号発生器11〜1Nから出力された周波数信号を合成して合成周波数信号を生成する回路部である。
読み出しパルス生成部10Bは、合成器10Aで生成された合成周波数信号を整形することにより、所定の波形およびパルス長を有する合成読み出しパルス10Sを生成する回路部である。
【0021】
図2は、読み出しパルス生成部の構成例である。図3は、合成周波数信号と読み出しパルスの電流波形例である。
読み出しパルス生成部10Bは、図2に示すように、任意波形発生器(AWG)10Cとミキサ10Dとから構成されている。
任意波形発生器10Cは、読み出しパルスの振幅とパルス長を決定する波形整形信号を出力する機能を有している。
ミキサ10Dは、合成器10Aで生成された合成周波数信号と任意波形発生器10Cからの波形整形信号とを積算処理することにより、合成読み出しパルス10Sを生成する機能を有している。
【0022】
合成周波数信号は、図3に示すように、異なる複数のマイクロ波周波数f(ω1)〜f(ωN)の周波数信号が合成されており、エンベロープ(包絡線)としてこれらマイクロ波周波数f(ω1)〜f(ωN)に応じたうねりを有している。
ミキサ10Dは、任意波形発生器10Cからの波形整形信号に基づいて、このような合成周波数信号を所望パルス長に相当する期間だけ出力するとともに、その先頭部の振幅をゼロから所望振幅値まで徐々に増加するよう波形整形することにより、所望の合成読み出しパルス10Sを生成する。
【0023】
[素子制御部]
素子制御部20は、上記周波数信号に対応して設けられたN個の超伝導磁束量子ビット素子21〜2Nごとに、合成読み出しパルスに含まれる当該周波数信号からなる読み出しパルスを用いてジョセフソン分岐読み出し動作を行うことにより、各超伝導磁束量子ビット素子21〜2Nの状態に応じた応答パルスが合成された合成応答パルス20Sとして出力する機能を有している。
【0024】
図4は、素子制御部の構成例である。
この素子制御部20には、図4に示すように、主な機能部として、分配器20A、減衰器51〜5N、透過型ジョセフソン共振回路31〜3N、および合成器20Bが設けられている。素子制御部20の全体的な構成としては、透過型ジョセフソン共振回路31〜3Nが、分配器20Aおよび合成器20Bを介して、信号生成部10と位相検波部60との間に並列接続された構成をなしている。これら機能部は、冷凍機(図示せず)により極低温環境に保たれている。
【0025】
分配器20Aは、信号生成部10からの合成読み出しパルス10Sを、等しい電力で複数に分配する機能を有している。
減衰器51〜5Nは、一般的な抵抗減衰器からなり、上記周波数信号に対応して超伝導磁束量子ビット素子21〜2Nごとに設けられ、分配器20Aと透過型ジョセフソン共振回路31〜3Nとの間を伝達する信号を減衰する機能を有している。特に、透過型ジョセフソン共振回路31〜3Nからは、合成読み出しパルス10Sのうち当該共振周波数以外の周波数成分が分配器20Aへ反射する。減衰器51〜5Nは、これら反射成分を減衰することにより、他の透過型ジョセフソン共振回路31〜3Nへの影響を抑制している。
【0026】
透過型ジョセフソン共振回路31〜3Nは、上記周波数信号に対応して超伝導磁束量子ビット素子21〜2Nごとに設けられ、分配器20Aから分配された合成読み出しパルスに含まれる当該周波数信号からなる読み出しパルスを用いてジョセフソン分岐読み出し動作を行うことにより、当該超伝導磁束量子ビット素子の状態に応じて位相が変化した当該周波数信号を応答パルスとして出力する機能を有している。
合成器20Bは、これら透過型ジョセフソン共振回路31〜3Nからの応答パルスを合成することにより、合成応答パルスを生成する機能を有している。
【0027】
[透過型ジョセフソン共振回路]
透過型ジョセフソン共振回路31は、主な機能部として、SQUID磁束計31A、共振回路31B(第1の共振回路)、共振回路31C(第2の共振回路)、入力端31X、および出力端31Yから構成されている。
【0028】
SQUID磁束計31Aは、対応する超伝導磁束量子ビット素子21と磁気的に結合して設けられ、入力された読み出しパルスに応じてジョセフソン分岐読み出し動作を行う機能を有している。
入力端31Xは、分配器20Aから分配された合成読み出しパルス10Sが入力される端子である。
出力端31Yは、SQUID磁束計31Aからの応答パルスを出力する端子である。
【0029】
共振回路31Bは、入力端31XとSQUID磁束計31Aとの間に接続されて、入力端31Xから入力された合成読み出しパルス10Sに含まれるマイクロ波周波数f(ω1)の周波数信号と共振する機能を有している。
共振回路31Cは、SQUID磁束計31Aと出力端31Yとの間に接続されて、SQUID磁束計31Aから出力された応答パルスに含まれるマイクロ波周波数f(ω1)の周波数信号と共振する機能を有している。
【0030】
図5は、超伝導磁束量子ビット素子とSQUID磁束計の構成例である。
超伝導磁束量子ビット素子21は、例えば5μm四方のサイズで、誘電体基板上に形成されたアルミニウムなどの超伝導ループから構成されており、この超伝導ループ上に3つのジョセフソン接合30A〜30Cを含んでいる。
この超伝導ループを流れる右回り「|e>」と左回り「|g>」の超伝導電流が、超伝導磁束量子ビット素子21の2状態に対応する。
SQUID磁束計31Aは、例えば7μm四方のサイズで、上記誘電体基板上であって超伝導磁束量子ビット素子21の外側を囲むように形成されたアルミニウムなどの超伝導ループから構成されており、この超伝導ループ上に2つのジョセフソン接合30D,30Eを含んでいる。
【0031】
超伝導磁束量子ビット素子21の超伝導ループを流れるループ電流の向きが変わると、SQUID磁束計31Aの中を貫く磁束量子の量が変化し、この磁束量子の変化に応じてSQUID磁束計31Aのジョセフソンインダクタンスが0.1%程度変わる。この変化によって駆動時の安定状態が変わるように、読み出しパルスの強度や周波数を調節することで、超伝導磁束量子ビット素子21の動作状態を応答パルスの位相変化として検出することができる。
これら超伝導磁束量子ビット素子21およびSQUID磁束計31Aの製造方法や構成については公知の技術に基づくものであり、ここでの詳細な説明は省略する。
【0032】
共振回路31Bは、容量素子41Aと伝送線路(マイクロストリップ線路)41Bとが直列接続された、透過型ジョセフソン共振回路31の共振周波数f(ω1)を有する直列共振回路から構成されており、超伝導磁束量子ビット素子21およびSQUID磁束計31Aと同一の誘電体基板上にそれぞれ形成されている。
共振回路31Cは、伝送線路(マイクロストリップ線路)41Cと容量素子41Dとが直列接続された、透過型ジョセフソン共振回路31の共振周波数f(ω1)を有する直列共振回路から構成されており、超伝導磁束量子ビット素子21およびSQUID磁束計31Aと同一の誘電体基板上にそれぞれ形成されている。
これら共振回路の共振周波数は、容量素子の電極面積や電極間距離、あるいは伝送線路(抵抗素子)の線路長など、それぞれの回路素子の物理的属性値より調整すればよい。
【0033】
このようなSQUID磁束計31Aに共振回路31B,31Cを接続して構成した透過型ジョセフソン共振回路31をマイクロ波の読み出しパルスで駆動すると、その非線形性に起因して2つの安定状態を生じる領域が存在する。したがって、この双安定状態において、量子ビット素子とジョセフソン接合とを相互作用させ、透過型ジョセフソン共振回路31がどちらの安定状態に収束するかに基づいて、量子ビット素子の動作状態を読み出すことができる。この読み出し方法をジョセフソン分岐読み出しという。
【0034】
この際、透過型ジョセフソン共振回路31では、共振周波数近傍の双安定領域から十分離れた周波数帯ではインピーダンスが高くなりマイクロ波が透過しにくい性質がある。したがって、共振周波数の異なる透過型ジョセフソン共振回路を並列に接続して、同一の読み出しパルスで駆動すると、当該マイクロ波周波数と共振周波数が一致している透過型ジョセフソン共振回路には、読み出しパルスによる駆動電流が流れるが、共振周波数が離れた透過型ジョセフソン共振回路にはほとんど駆動電流が流れない。
したがって、読み出しパルスのマイクロ波周波数を適切に選ぶことによって、任意のジョセフソン共振回路を選択駆動して、対応する量子ビット素子の動作状態を読み出すことが可能になる。これにより、従来はそれぞれの量子ビット素子ごとに必要だった読み出し線と読み出し装置の数を減らすことができ、複数の量子ビット素子の読み出しに極めて有効である。
【0035】
本実施の形態では、このような構成を有する透過型ジョセフソン共振回路31〜3Nを、周波数信号に対応して設けられたN個の超伝導磁束量子ビット素子21〜2Nごとに設け、共振回路31B,31Cで共振する周波数を、当該周波数信号の周波数と一致させている。
したがって、各透過型ジョセフソン共振回路31〜3Nは、合成読み出しパルス10Sのうち、共振回路31B,31Cで共振する周波数信号で駆動され、対応する超伝導磁束量子ビット素子21の状態に応じて位相変化した当該周波数信号が出力される。
【0036】
[位相検波部]
位相検波部60は、素子制御部20の合成器20Bから出力された合成応答パルス20Sに含まれる各周波数信号の位相を検波して、各超伝導磁束量子ビット素子21〜2Nの状態に応じた出力信号71〜7Nを出力する機能を有している。
この位相検波部60には、主な機能部として、信号増幅器60A、分配器60B、位相検波器61〜6Nが設けられている。
【0037】
信号増幅器60Aは、入力された合成応答パルス20Sの振幅を増幅して出力する機能を有している。
分配器60Bは、信号増幅器60Aで増幅された合成応答パルス20Sを、等しい電力で複数に分配する機能を有している。
位相検波器61〜6Nは、周波数信号に対応して設けられたN個の超伝導磁束量子ビット素子21〜2Nごとに設けられ、当該周波数f(ω1)〜f(ωN)の周波数信号の位相を検波して、その位相変移量に相当する出力信号71〜7Nをそれぞれ出力する機能を有している。
【0038】
図6は、合成応答パルスの波形図である。図7は、超伝導磁束量子ビット素子の動作状態に対応する位相変移量例である。
合成応答パルス20Sは、図6に示すように、個々の超伝導磁束量子ビット素子の動作状態に応じて位相が変化した周波数信号が合成されている。位相検波器61〜6Nにおいて、分配器60Bから分配された合成応答パルス20Sをフーリエ変換すると、各周波数f(ω1)〜f(ωN)の周波数信号について、合成読み出しパルス10Sの周波数信号に対する位相変移量を得ることができる。
【0039】
図7には、2つの超伝導磁束量子ビット素子の動作状態の組合せごとに、これら動作状態の組合せに対応する周波数f(ω1),f(ω2)の周波数信号に関する位相変移量が示されている。この例では、量子ビット状態が「H」の場合は位相変移量が負の値を示し、量子ビット状態が「L」の場合は位相変移量が正の値を示している。
したがって、各周波数信号の位相変移量の値に応じて量子ビット状態をそれぞれ検出することができる。
【0040】
以上で説明した、信号発生器、任意波形発生器、位相検出器、合成器、分配器、ミキサ、減衰器、容量素子ほかについては、一般的なマイクロ波回路技術で用いられる公知の機器や回路素子を用いればよい。また、共振回路については、容量素子と伝送線路(抵抗素子)とから構成した場合を例として説明したが、他の回路素子から共振回路を構成してもよい。
【0041】
[素子状態読み出し装置の動作]
次に、図8を参照して、本発明の一実施の形態にかかる素子状態読み出し装置の動作について説明する。図8は、本発明の一実施の形態にかかる素子状態読み出し装置の素子状態読み出し動作を示すフローチャートである。
【0042】
信号生成部10の信号発生器11〜1Nは、異なるマイクロ波周波数f(ω1)〜f(ωN)ごとに周波数信号を発生し(ステップ100)、合成器10Aは、これら周波数信号を合成し、合成周波数信号を生成する(ステップ101)。
続いて、読み出しパルス生成部10Bは、合成器10Aからの合成周波数信号を波形整形して、合成読み出しパルス10Sを生成する(ステップ102)。
【0043】
次に、素子制御部20の分配器20Aは、信号生成部10からの合成読み出しパルス10Sを透過型ジョセフソン共振回路31〜3Nに分配する(ステップ103)。これにより、分配器20Aから分配された合成読み出しパルス10Sがそれぞれ減衰器51〜5Nを介して、透過型ジョセフソン共振回路31〜3Nに供給される。
【0044】
続いて、透過型ジョセフソン共振回路31〜3Nは、供給された合成読み出しパルス10Sのうち、予め設定されている共振周波数の周波数信号を読み出しパルスとして用いて、ジョセフソン分岐読み出し動作を行う(ステップ104)。これにより、透過型ジョセフソン共振回路31〜3Nから、当該超伝導磁束量子ビット素子21〜2Nの状態に応じて位相が変化した当該周波数信号が応答パルスとして出力される(ステップ105)。
合成器20Bは、透過型ジョセフソン共振回路31〜3Nから出力された応答パルスを合成して、合成応答パルス20Sを生成する(ステップ106)。
【0045】
次に、位相検波部60の信号増幅器60Aは、素子制御部20からの合成応答パルス20Sを増幅する(ステップ107)。
分配器60Bは、増幅された合成応答パルス20Sを、等しい電力で各位相検波器61〜6Nへ分配する(ステップ108)。
位相検波器61〜6Nは、分配器60Bから分配された合成応答パルスから、それぞれに対応する周波数f(ω1)〜f(ωN)の周波数信号の位相を検波して、その位相変移量に相当する出力信号71〜7Nをそれぞれ出力し(ステップ109)、一連の素子状態読み出し動作を終了する。
【0046】
[本実施の形態の効果]
このように、本実施の形態では、互いに異なる共振周波数を持つ透過型ジョセフソン共振回路を並列接続して設け、互いに異なるマイクロ波周波数からなる複数の周波数信号を合成した合成読み出しパルスを生成して、これら透過型ジョセフソン共振回路へ分配し、これら透過型ジョセフソン共振回路からの応答パルスを合成して合成応答パルスを生成し、合成応答パルスに含まれる各周波数信号の位相を検波して、各超伝導磁束量子ビット素子の動作状態に応じた出力信号を出力している。
【0047】
したがって、極低温で冷却する必要のある透過型ジョセフソン共振回路へ供給する合成読み出しパルスや、透過型ジョセフソン共振回路から出力される合成応答パルスを、それぞれ1本の伝送線路でやり取りすることができる。
このため、複数の対象素子の状態を少ない読み出し線で効率的に読むことが可能になり、膨大な数の量子ビット素子が必要となる実用的な量子コンピューティングにおいても、読み出し線を大幅に削減できる。また、読み出し線の削減に応じてこれら読み出し線からの熱流入を抑制でき、量子ビット素子数が増加した場合でも極低温環境を保つことが可能となる。
【0048】
また、本実施の形態では、高速な任意波形発生器によって直接入力波の生成が可能であり、合成応答パルスのフーリエ解析で量子状態を検出できるので、量子ビットを増やしても読み出し装置を増設することなく読み出すことも可能である。これは多量子ビットの読み出しに対して大きく貢献するものである。
【0049】
また、本実施の形態では、分配器20Aと透過型ジョセフソン共振回路31〜3Nとの間に減衰器を設けたので、透過型ジョセフソン共振回路31〜3Nから分配器20A側へ反射される、当該共振周波数以外の周波数成分を減衰させることができ、他の透過型ジョセフソン共振回路31〜3Nへの影響を抑制して、安定した読み出し動作を実現することができる。
【図面の簡単な説明】
【0050】
【図1】本発明の一実施の形態にかかる素子状態読み出し装置の構成を示すブロック図である。
【図2】読み出しパルス生成部の構成例である。
【図3】合成周波数信号と読み出しパルスの電流波形例である。
【図4】素子制御部の構成例である。
【図5】超伝導磁束量子ビット素子とSQUID磁束計の構成例である。
【図6】合成応答パルスの波形図である。
【図7】超伝導磁束量子ビット素子の動作状態に対応する位相変移量例である。
【図8】本発明の一実施の形態にかかる素子状態読み出し装置の素子状態読み出し動作を示すフローチャートである。
【図9】従来の素子状態読み出し装置を示す構成例である。
【符号の説明】
【0051】
1…素子状態読み出し装置、10…信号生成部、10A…合成器、10B…読み出しパルス生成部、10C…任意波形発生器、10D…ミキサ、10S…合成読み出しパルス、20…素子制御部、20A…分配器、20B…合成器、20S…合成応答パルス、21〜2N…超伝導磁束量子ビット素子、30A〜30E…ジョセフソン接合、31〜3N…透過型ジョセフソン共振回路、31A〜3NA…SQUID磁束計、31B〜3NB…共振回路(第1の共振回路)、31C〜3NC…共振回路(第2の共振回路)、31X〜3NX…入力端、31Y〜3NY…出力端、41A〜4NA,41D〜4ND…容量素子、41B〜4NB,41C〜4NC…伝送線路、51〜5N…減衰器、60…位相検波部、60A…信号増幅器、60B…分配器、61〜6N…位相検波器、71〜7N…出力信号。

【特許請求の範囲】
【請求項1】
動作状態に応じて磁束が変化する複数の対象素子からそれぞれの磁束を検出することにより当該動作状態を読み出す素子状態読み出し装置であって、
互いに異なるマイクロ波周波数からなる複数の周波数信号が合成された合成読み出しパルスを生成する信号生成部と、
この信号生成部からの合成読み出しパルスを複数に分配する分配器と、
互いに異なる共振周波数を有するとともに前記対象素子ごとに設けられ、前記分配器から分配された合成読み出しパルスのうち当該共振周波数と共振する周波数信号に基づきジョセフソン分岐読み出し動作を行うことにより、対応する対象素子の磁束に応じて位相が変化した当該周波数信号を応答パルスとして出力する透過型ジョセフソン共振回路と、
これら透過型ジョセフソン共振回路から出力された応答パルスを合成し、合成応答パルスとして出力する合成器と、
この合成器からの合成応答パルスに含まれる各周波数信号の位相を検波して、前記各対象素子の状態に応じた出力信号を出力する位相検波部と
を備えることを特徴とする素子状態読み出し装置。
【請求項2】
請求項1に記載の素子状態読み出し装置において、
前記透過型ジョセフソン共振回路は、
当該対象素子と磁気的に結合して設けられ、前記周波数信号からなる読み出しパルスに応じてジョセフソン分岐読み出し動作を行うことにより、当該対象素子の磁束に応じて位相が変化した当該周波数信号を応答パルスとして出力するSQUID磁束計と、
前記分配器から分配された合成読み出しパルスが入力される入力端と、
前記SQUID磁束計からの応答パルスを出力する出力端と、
前記入力端と前記SQUID磁束計との間に接続されて前記入力端から入力された合成読み出しパルスに含まれる当該周波数信号と共振する第1の共振回路と、
前記SQUID磁束計と前記出力端との間に接続されて前記SQUIDから出力された応答パルスに含まれる当該周波数信号と共振する第2の共振回路と
を有することを特徴とする素子状態読み出し装置。
【請求項3】
請求項1に記載の素子状態読み出し装置において、
前記第1の分配器と前記各透過型ジョセフソン共振回路との間にそれぞれ設けられた信号減衰器をさらに備えることを特徴とする素子状態読み出し装置。
【請求項4】
動作状態に応じて磁束が変化する複数の対象素子からそれぞれの磁束を検出することにより当該動作状態を読み出す素子状態読み出し方法であって、
互いに異なる周波数からなる複数の周波数信号が合成された合成読み出しパルスを生成するステップと、
前記合成読み出しパルスを複数に分配するステップと、
分配された合成読み出しパルスのうち前記対象素子ごとに固有の共振周波数と共振する周波数信号に基づいて、これら対象素子ごとにジョセフソン分岐読み出し動作を行うことにより、それぞれの対象素子の磁束に応じて位相が変化した当該周波数信号を応答パルスとして出力するステップと、
これら応答パルスを合成して合成応答パルスとして出力するステップと、
前記合成応答パルスに含まれる各周波数信号の位相を検波して、前記各対象素子の状態に応じた出力信号を出力するステップと
を備えることを特徴とする素子状態読み出し方法。
【請求項5】
動作状態に応じて磁束が変化する対象素子から磁束に基づいて当該動作状態を検出する透過型ジョセフソン共振回路であって、
入力された読み出しパルスのうち固有のマイクロ波共振周波数と共振する周波数信号に基づいてジョセフソン分岐読み出し動作を行うことにより、対応する対象素子の状態に応じて位相が変化した当該周波数信号を応答パルスとして出力する透過型ジョセフソン共振回路。
【請求項6】
請求項5に記載の透過型ジョセフソン共振回路において、
当該対象素子と磁気的に結合して設けられ、前記周波数信号からなる読み出しパルスに応じてジョセフソン分岐読み出し動作を行うことにより、当該対象素子の磁束に応じて位相が変化した当該周波数信号を応答パルスとして出力するSQUID磁束計と、
前記合成読み出しパルスが入力される入力端と、
前記SQUID磁束計からの応答パルスを出力する出力端と、
前記入力端と前記SQUID磁束計との間に接続されて前記入力端から入力された合成読み出しパルスに含まれる当該周波数信号と共振する第1の共振回路と、
前記SQUID磁束計と前記出力端との間に接続されて前記SQUIDから出力された応答パルスに含まれる当該周波数信号と共振する第2の共振回路と
を備えることを特徴とする透過型ジョセフソン共振回路。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2009−49631(P2009−49631A)
【公開日】平成21年3月5日(2009.3.5)
【国際特許分類】
【出願番号】特願2007−212733(P2007−212733)
【出願日】平成19年8月17日(2007.8.17)
【出願人】(000004226)日本電信電話株式会社 (13,992)
【Fターム(参考)】