説明

Fターム[4M113CA12]の内容

超電導デバイスとその製造方法 (1,906) | 超電導材料 (429) | 金属 (154) | 材料 (153) | 元素 (79)

Fターム[4M113CA12]の下位に属するFターム

Nb (50)
Pb (3)
Ga

Fターム[4M113CA12]に分類される特許

1 - 20 / 26


【課題】複数の帯域のテラヘルツ波を同時に検出することができるテラヘルツ検出器を提供する。
【解決手段】テラヘルツ波を検出するテラヘルツ検出素子10は、基板11と、基板11上に形成され、テラヘルツ帯における異なる周波数をそれぞれの共振周波数として有する第1〜第3アンテナ部13a〜13cと、基板11上に形成され、それぞれが第1〜第3アンテナ部13a〜13cのそれぞれの中心に配置された第1〜第3STJ(超伝導トンネル接合)素子15a〜15cと、を備える。 (もっと読む)


【課題】超伝導トンネル接合素子(STJ素子)が吸収するフォノンの量を多くでき、高い感度でフォトンを検出できる超伝導トンネル接合検出器を提供する。
【解決手段】基板11のSTJ素子10を搭載しない側の端面からテラヘルツ波を照射する。基板11内では、テラヘルツ波の吸収によって格子振動(フォノン)が発生し、このフォノン群は基板11内を伝播し、フォノンがSTJ素子10の下部超伝導電極12に到達することで、電極内のクーパー対を解離して準粒子を生成し、この準粒子の増加に伴うトンネル電流の増加分を信号として検出する。基板11のテラヘルツ波を照射する側には、単体のSTJ素子10と基板11を挟んで対向するように、集光用レンズ21を配置してある。これにより、テラヘルツ波は、集光用レンズ21によって単体のSTJ素子10に向けて集光されることになり、フォトンの集光効率が向上する。 (もっと読む)


【課題】超伝導磁束量子ビット回路における超伝導磁束量子ビットのトンネルエネルギーを高速かつ安定に制御できるようにする。
【解決手段】第1磁束制御線107および第2磁束制御線108は、第1ループ101および第2ループ102を挟んで配置される。また、第1磁束制御線107は、第1ループ101の側に配置され、第2磁束制御線108は、第2ループ102の側に配置される。また、第2弱結合第2弱結合104は、上記共有部と第1磁束制御線107との間の第1ループ101に配置される。加えて、第1ループ101に比較して第2ループ102は、大きな面積に形成されている。 (もっと読む)


【課題】超伝導体の特性劣化を防ぎ、超伝導体の理想的な特性を実現する。
【解決手段】原子層堆積法を用いて超伝導体12の表面に酸化膜13を形成する。これにより、自然酸化膜15を除去し、緻密で均一な酸化膜13が形成されるので、超伝導体12の電磁場照射環境での特性劣化を防ぎ、超伝導体12の理想的な特性を実現することができる。また、緻密な酸化膜13により、大気中の酸素による超伝導体12の経年劣化を防止できる。 (もっと読む)


【課題】電流を駆動するための構造を用いることなしに、原子の閉じ込めが行えるようにする。
【解決手段】超伝導材料から構成されて貫通孔101aを有する捕捉部101と、捕捉部101を超伝導転移温度以下に冷却する冷却部102と、捕捉部101に均一な第1磁場131を印加する磁場印加部103を備える。捕捉部101を超伝導転移温度以下に冷却し、捕捉対象の原子を捕捉部近傍101に配置した後、閉プール状の捕捉部101の貫通孔101aを貫く第1磁場131を印加し、上記原子を捕捉部101の近傍に捕捉する (もっと読む)


【課題】超伝導集積回路の要素間の相互インダクタンスの望まない不一致を緩和する。
【解決手段】超伝導集積回路は、内部誘導結合要素と、その長さの少なくとも一部分に沿って内部誘導結合要素を囲む外部誘導結合要素とを有する磁束トランスを含み得る。磁束トランスは、第1の誘導結合要素と第2の誘導結合要素との間の相互インダクタンスが、第1の外部誘導結合要素から第1の内部誘導結合要素を分離する距離にほぼ直線的に比例するように同軸様形状を有し得る。第1の誘導結合要素および第2の誘導結合要素の少なくとも1つは、超伝導量子ビットなどの超伝導プログラマブル素子と結合することができる。 (もっと読む)


【課題】非常に薄い薄膜の誘電率、透磁率、および抵抗率を精確に計測する。
【解決手段】被測定物である薄膜を超伝導共振器10上に成膜する前後において超伝導共振器10の共振周波数およびQ値を求めることにより、共振周波数のずれおよびQ値の変化から薄膜の誘電率、透磁率、および抵抗率を精度良く求めることができる。また、伝送線路20に複数の超伝導共振器10A,10B,10Cを配置することで、一度に多数の試料の測定や広い周波数領域での試料の特性の変化を測定することが可能となる。 (もっと読む)


様々な技法および装置が、例えば量子コンピュータで有用となることがある超伝導回路および構造、例えばジョセフソン接合の製造を可能にする。例えば、超伝導することができる2つの要素または層の間に誘電体構造または層が挿間された、低い磁束ノイズの三層構造を製造することができる。超伝導バイアが、ジョセフソン接合の上に直接位置することがある。平坦化された誘電体層上に構造、例えばジョセフソン接合を担持することができる。構造から熱を除去するためにフィンを採用することができる。超伝導することができるバイアは、約1マイクロメートル未満の幅を有することができる。構造は、例えばバイアおよび/またはストラップコネクタによって抵抗器に結合することができる。
(もっと読む)


【課題】電流を駆動するための構造を用いることなしに、原子の閉じ込めが行えるようにする。
【解決手段】原子捕捉装置は、超伝導材料から構成されて平板上に形成された捕捉部101と、捕捉部101を超伝導転移温度以下に冷却する冷却部102と、捕捉部101に均一な磁場131を印加する磁場印加部103とを備える。冷却部102を動作させて捕捉部101の冷却し、捕捉部101を超伝導転移温度以下に冷却したら、磁場印加部103により捕捉部101に均一な磁場を印加する。この磁場の印加により、超伝導体である捕捉部101には、マイスナー効果により内部に磁場を浸入させないようにマイスナー電流が誘起される。これにより、捕捉部101においては、表面から法線方向および捕捉部101の中央部から周辺方向に向けて磁場の強さが増加する不均一な磁場が形成される。 (もっと読む)


【課題】 超伝導配線表面における欠陥準位を多数含む表面酸化膜の形成を抑制することで、高周波損失が少なく、電荷雑音および磁気雑音の少ない超伝導配線を提供する。
【解決手段】 超伝導配線層を表面が酸化されない金属からなる常伝導金属層で被覆する。超伝導層と常伝導金属層の界面には酸化膜等電子の伝導を妨げるものがない清浄界面とし、常伝導金属層は超伝導近接効果により超伝導体中のクーパー対が常伝導金属中へ滲みだす特徴的な長さスケールであるコヒーレント長よりも十分薄くする。 (もっと読む)


デマルチプレクサ回路用のスイッチングセルは超伝導入力信号経路、少なくとも2個の超伝導出力信号経路、および交差ノードと出力信号経路との各端部の間に配置されたトランスを含む。トランスを介して印加された磁束は信号が伝播する方向に影響を及ぼすことができる。スイッチングセルはまた、電源入力ノードを含んでいてもよい。スイッチングセルは、各種の構成、例えば2分木またはH木に配置されてもよい。超伝導インダクタラダー回路はデジタル/アナログ変換を実行することができる。個別スイッチングセルと共に磁束記憶構造を用いてもよい。ラッチング量子ビットを用いてもよい。カスケードエラーを減少または除去すべくスイッチングセルのバッファ段を用いてもよい。
(もっと読む)


量子アニーリングは、量子プロセッサの量子ビット(例えば、超伝導量子プロセッサの超伝導磁束量子ビット)に無秩序項を付加し徐々に取り除く工程を含むことができる。問題ハミルトニアンは量子ビットに制御信号を印加することにより設定され得る。展開ハミルトニアンは無秩序項を付加することにより、そして無秩序項を徐々に取り除くことによりアニーリングすることにより、設定される。量子ビット内の永久電流の変化を補正することができる。乗算器は、例えばそれぞれのスケーリング係数を印加することにより様々な量子ビットとグローバル信号線間の結合を仲介することができる。2つのグローバル信号線は、通信的に結合された一対の量子ビットのそれぞれの量子ビットに結合するために互いに入り組んだパターンで構成することができる。規定信号に対する互いの応答を測定するために量子ビット対を通信的に分離して使用することができる。 (もっと読む)


システムは、互いに交差する第1および第2量子ビットと、第1および第2量子ビットの少なくとも一部を含む周辺部を有する第1カプラとを含んでいてよく、第1カプラは、第1および第2量子ビットを互いに強磁性的または反強磁性的に結合すべく動作可能である。多層コンピュータチップは、第1金属層内に配置された第1の複数すなわちN個の量子ビットと、第1の複数量子ビットの各量子ビットと交差する第2金属層内に少なくとも部分的に配置された第2の複数すなわちM個の量子ビットと、第1および第2の複数量子ビットからの量子ビットの各対が互いに交差する領域を少なくとも部分的に含む第1の複数すなわちN×M個の結合素子とを含んでいてよい。
(もっと読む)


【課題】超高感度な超伝導量子干渉素子を提供する。
【解決手段】磁束を捕捉するための領域5を開けた二次元電子ガス3に超伝導体電極1,2を接続することにより、超伝導体−二次元電子ガス−超伝導体接合を超高感度な超伝導量子干渉素子として利用することができる。また、ゲート電極4を備える。これにより、超伝導量子干渉素子の臨界電流値ICや抵抗値RNを可変することができる。 (もっと読む)


【課題】原子の閉じ込めをより効率的に行えるようにする。
【解決手段】凸部102を備える基板101と、凸部102を含めた基板101の表面に形成され超伝導体薄膜103と、凸部102の上に形成されることで超伝導体薄膜103に形成された段差部104と、超伝導体薄膜103の段差部104に形成された開口部105と、超伝導体薄膜103の開口部105が形成されている部分の凸部102が除去された除去領域106とを備えている。超伝導体薄膜103の段差部104に形成された開口部105においては、開口部105の縁の部分に、3次元的な構造のループ回路が形成された状態となっている。 (もっと読む)


【課題】本来的にキュービットに付随するデコヒーレンス問題の解決策を提供すること。
【解決手段】キュービットを結合する方法(および構造)は、伝送ラインの近傍において所定の周波数における節にほぼ対応する位置にキュービットを配置するステップを含む。 (もっと読む)


【課題】少ない読み出し線で多くの対象素子の動作状態を効率的に読み出す。
【解決手段】信号生成部10により、互いに異なるマイクロ波周波数からなる複数の周波数信号が合成された合成読み出しパルス10Sを生成して、分配器20Aで分配し、各透過型ジョセフソン共振回路31〜3Nにより、合成読み出しパルス10Sのうち当該共振周波数と共振する周波数信号に基づきジョセフソン分岐読み出し動作を行うことにより、対応する対象素子の磁束に応じて位相が変化した当該周波数信号を応答パルスとして出力し、合成器20Bにより、これら応答パルスを合成応答パルス20Sに合成し、位相検波部60により、合成応答パルス20Sに含まれる各周波数信号の位相を検波して、各対象素子の状態に応じた出力信号81〜8Nを出力する。 (もっと読む)


【課題】量子ビット素子から大きな信号を得ることができる、超伝導量子ビット素子及びそれを用いた集積回路を提供する。
【解決手段】超伝導量子ビット素子1は、超伝導量子ビット部2と超伝導量子ビット部に接続された量子ビット読出部3とを備え、超伝導量子ビット部2は3つのジョセフソン接合を有する超伝導量子干渉素子からなり、量子ビット読出部3は、2つのジョセフソン接合を有する超伝導量子干渉素子からなり、量子ビット読出部3のジョセフソン接合の1つ2dを、超伝導量子ビット部3のジョセフソン接合の1つと共用できる。量子ビット読出部3は、量子ビットからの十分に大きな磁束信号を得ることができるため、ノイズが大きい環境でも量子ビットの信号を正確に読み出し得る。従来に比較して、必要なジョセフソン接合の個数を1個減らすことができるので、製作が容易となる。 (もっと読む)


集積回路が量子コンピューティングに好適な温度で動作させられる場合の、遮蔽領域内に配置された少なくとも2つのデバイス間の磁場相互作用を遮蔽領域において制限するための、集積回路の遮蔽領域内の超伝導遮蔽を含む量子コンピューティング用集積回路。
(もっと読む)


【課題】超伝導リングの磁束量子化というマクロ量子現象に基づいた新しい概念の力発生装置を提供する。
【解決手段】磁束量子数に比例する磁気モーメントを有する超伝導量子トラップ手段1と、前記超伝導量子トラップ手段1が設置され、弾性を有し、磁場勾配に置かれた前記超伝導量子トラップ手段1が受ける力によって変位される超高感度カンチレバー2と、前記超伝導量子トラップ手段1に磁場を加える磁場発生手段3とを含んで量子ベースの力発生装置を構成する。 (もっと読む)


1 - 20 / 26