説明

脈管用ステント糸

【課題】植え込まれる脈管に損傷を与えることなく、確実に脈管を拡径させた状態に維持できる脈管用ステントを形成する。
【解決手段】生体の脈管に挿入されて用いられる筒状をなす脈管ステント用の糸2であり、この糸2は、生体吸収性ポリマーを溶融紡糸して形成された一連に連続したモノフィラメントからなり且つ形状記憶機能を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、生体の血管、リンパ管、胆管や尿管などの脈管内に装着され、脈管の内腔を一定の状態に保持するために用いられる脈管用ステントに用いられる脈管ステント用糸に関する。
【背景技術】
【0002】
従来、生体の脈管、特に動脈などの血管に狭窄部が発生した場合に、この狭窄部にバルーンカテーテルの先端部近傍に設けたバルーン形成部を挿入し、バルーン形成部を膨張させてバルーンを形成することにより、血管狭窄部を拡張して血流を良くする手術である経皮的血管形成術(PTCA:Percutaneous Transluminal Coronary Angioplasty)が行われている。
【0003】
ところで、経皮的血管形成術を施しても、狭窄を発生させた部分に高い確率で再び狭窄が発生することが知られている。
【0004】
このような再狭窄を防止するため、経皮的血管形成術を施した部分に、筒状をなすステントを装着することが行われている。このステントは、縮径された状態で血管内に挿入され、その後拡径されて血管内に装着されることにより、血管をその内部から支持し、血管に再狭窄が発生することを防止しようとするものである。
【0005】
この種のステントとして、バルーン拡張型ステントと自己拡張型ステントが提案されている。
【発明の開示】
【発明が解決しようとする課題】
【0006】
ところで、バルーン拡張型ステントは、折り畳まれ縮径された状態でカテーテルに設けられたバルーンに被せられ、バルーンとともに血管内の狭窄が発生している病変部位等の装着目的部位に挿入された後、バルーンが膨張されることにより拡径されて血管の内面を支持する。バルーン拡張型ステントは、一旦拡径されるとこの拡径された状態に固定され、血管壁の拍動に連動して変形することができない。また、バルーン拡張型ステントは、拡径されて血管内に装着された後変形してしまうと、元の拡径された状態に復元することができず、確実に血管の内面を支持することができなくなるおそれがある。
【0007】
一方、自己拡張型ステントは、血管内の装着目的部位の内径より小さい外径を有するチューブなどの保持体内に縮径されて収納され、保持体に収納された状態で血管内の装着目的部位に挿入される。血管内の装着目的部位に挿入されたステントは、保持体から押し出され、あるいは抜き取られることによりステント自身が有する復元力を利用して縮径前の状態に拡径されることにより血管の内壁を支持した状態を維持する。
【0008】
この種の自己拡張型ステントとして、ステンレスなどの金属製の線状体を正弦波状に折り曲げ、あるいはジクザグ状に折り曲げながら筒状に形成したものが提案されている。
【0009】
金属製の線状体を用いた自己拡張型ステントは、拡張時の外径を高精度に制御することが困難であり、装着される血管の内径に比し過度に拡径するおそれがある。さらに、このステントは、縮径状態に保持する力が開放されると急峻に拡径する。血管内に挿入されたステントが急峻に拡径すると、血管の内壁を損傷させてしまうおそれもある。
【0010】
また自己拡張型ステントとして、Ti−Ni系合金、Ti−Ni−Cu系合金、Ti−Ni−Fe系合金等の形状記憶合金により形成したものが提案されている。
【0011】
形状記憶合金を用いたステントは、血管内の装着目的部位に装着されるときの大きさに形状記憶され、その後縮径され、縮径された状態で血管内に挿入される。このステントは、血管内の装着目的部位に挿入された後、バルーンを用いて形状記憶された大きさまで拡径され、その後生体の体温により超弾性を示すことにより、血管の内壁を支持した状態を維持する。
【0012】
形状記憶合金は、血管に比し剛性がきわめて高いため、血管の内壁の一部に極めて大きな力学的な圧力を付与することになり、血管を損傷させるおそれがある。また、形状記憶合金を用いたステントは、血管内の目的部位に装着される時、血管の内壁に対し均等に拡径しない場合が多い。ステントの一部が先に血管の内壁に当接して拡径を開始すると、血管を均等に拡径することができなくなる。血管のステントの一部が先に当接した部分が過大に拡径され、損傷を受けやすくなってしまう。
【0013】
また、形状記憶合金等の金属を用いたステントは、一旦血管等の脈管内に装着すると、外科的手術を施して取り出さない限り永久に生体内に留置されてしまう。
【0014】
このような金属製のステントが有する問題点を解決するために提案されたステントとして、特開平5−103830号公報(特許文献1)、特表平5−509008号公報(特許文献2)に記載されたものがある。
【特許文献1】特開平5−103830号公報
【特許文献2】特表平5−509008号公報 本発明は、上述したような従来提案されている脈管用ステントが有している問題点を解決し得る脈管用ステントに用いて有用な脈管用ステント糸を提供することを技術課題とするものであって、血管などの脈管に損傷を与えることなく、確実に脈管を拡径させた状態に維持できる脈管用ステントを構成し得る脈管用ステント糸を提供することにある。
【0015】
また、本発明は、脈管内に装着した後一定期間経過後、消失させ、病変部の回復後に脈管からの取り出し手術を不要とすることができる脈管用ステントを構成し得る脈管用ステント糸を提供することを技術課題とする
【0016】
さらに、本発明は、血管などの脈管を均等な力で支持することができる脈管用のステントを構成し得る脈管用ステント糸を提供することを技術課題とする
【0017】
さらにまた、本発明は、屈曲した血管等の脈管に追随性良く挿入でき、脈管内の装着目的部位に容易且つ確実に装着することができる脈管用のステントを構成し得る脈管用ステント糸を提供することを技術課題とする
【課題を解決するための手段】
【0018】
上述のような技術課題を解決するために提案される本発明は、生体の脈管に挿入されて用いられる筒状をなす脈管ステント用の糸であり、この糸は、生体吸収性ポリマーを溶融紡糸して形成された一連に連続したモノフィラメントからなり且つ形状記憶機能を有する
【0019】
この糸は、生体吸収性ポリマーをスクリュー押出機を用いて溶解紡糸し延伸したモノフィラメントであることが望ましい。
【0020】
ここで糸は、一連に連続したモノフィラメントや複数本のモノフィラメントが一体化されたマルチフィラメントが用いられる。
【0021】
そして、糸は、直径が50〜300μmの延伸モノフィラメントであることが望ましい。
【0022】
本発明に係る糸は、ガラス転移温度が約70℃以下の生体吸収性ポリマーにより形成されることにより、生体温度に近い温度で形状記憶される
【0023】
また、糸は、ポリ乳酸(PLLA)、ポリグリコール酸(PGA)、ポリグリコール酸とポリ乳酸の共重合体、ポリジオキサノン、トリメチレンカーボネートとグリコリドとの共重合体、ポリグリコール酸又はポリ乳酸とεーカプロラクトンとの共重合体のいずれか1又は2以上を複合した生体吸収性ポリマーにより形成される。
【0024】
さらに、糸にはX線不透過剤混入若しくは付着されることにより、脈管に留置した状態X線を用いて生体外より容易に確認することができる。
【0025】
さらにまた、生体吸収性ポリマーにより形成された糸に、抗血栓剤やその他新生内膜の加増殖を抑制することを目的とする薬剤を混入若しくは被着することにより、この糸を用いて形成されたステントの溶解と共に抗血栓剤等の薬剤の投与を持続して投与することができる。
【0026】
さらにまた、生体吸収性ポリマーにより形成された糸に、β線を放射する放射線源、γ線を放射する放射線源を混入若しくは被着することにより、この糸を用いて形成されたステントの生体への挿入とともに患部への放射線の照射が可能となり、持続して放射線の照射が可能となる。
【0027】
本発明のさらに他の目的、本発明によって得られる具体的な利点は、以下に説明される実施例の説明から一層明らかにされるであろう。
【発明の効果】
【0028】
本発明に係る脈管用ステント用の糸は、形状記憶機能を有する生体吸収性ポリマーを用いて形成されているので、この糸を用いて形成された脈管用ステントは、脈管内に留置される状態の大きさに形状記憶されることができ、血管などの脈管を損傷させることなく、確実に脈管を拡径させた状態に維持できる。
【0029】
また、血管などの脈管に装着した後、容易に拡径することができ、さらに、血管などの脈管を均等な力で支持することができるので、脈管を安定した状態で確実に拡径した状態に保持することができる脈管用ステントを構成できる。
【0030】
特に、本発明に係る脈管用ステントは、生体吸収性ポリマーを用いて形成されてなるので、脈管内に留置した後数週間乃至数ヶ月間はその形態を保持するものの、装着後数ヶ月以内に消失させることができるので、臨床上望ましいステントを提供できる。
【発明を実施するための最良の形態】
【0031】
以下、本発明に係る脈管用のステントを図面を参照して具体的に説明する。
【0032】
本発明に係る脈管用のステント1は、例えば生体の冠動脈の如き血管内に挿入されて用いられるものであって、図1に示すように、形状記憶機能を有する生体吸収性ポリマーからなる糸2を筒状に形成したステント本体3を備える。
【0033】
ここで、糸2は、人体等の生体に装着したとき、生体に悪影響を与えることがない生体吸収性ポリマーにより形成される。この生体吸収性ポリマーとしては、ポリ乳酸(PLLA)、ポリグリコール酸(PGA)、ポリグラクチン(ポリグリコール酸とポリ乳酸との共重合体)、ポリジオキサノン、ポリグリコネート(トリメチレンカーボネートとグリコリドの共重合体)、ポリグリコール酸又はポリ乳酸とεーカプロラクトン共重合体などが用いられる。また、これら材料を2以上複合した生体吸収性ポリマーを用いることができる。
【0034】
生体吸収性ポリマー製の糸2は、スクリュー押出機を用いて形成することができる。スクリュー押出機を用いて糸2を形成するには、材料となる生体吸収性ポリマーで形成されたペレットを融点Tm以下の温度で加熱した状態で減圧乾燥し、このペレットをスクリュー押出機のホッパーに投入し、シリンダ内で融点Tm近傍若しくは融点以上熱分解点以下まで加熱しながら圧縮して溶融する。この溶融された生体吸収性ポリマーを融点Tm以下の温度であってガラス転移点Tg以上の温度に設定されたノズルより押し出す。この押し出された生体吸収性ポリマーを巻き取ることにより線状体が形成される。この線状体をさらに延伸することにより、本発明に用いられる糸2が形成される。
【0035】
ここで形成される糸2は、図2に示すように、生体吸収性ポリマーが一連に連続したモノフィラメントにより形成される。
【0036】
本発明に用いられる糸2は、モノフィラメントのみならず、図3に示すように、複数本のモノフィラメント2aが一体化されたマルチフィラメントにより形成されたものであってもよい。
【0037】
上述したような生体吸収性ポリマーを用い上述したようなスクリュー押出機を用いて形成される糸2は、ポリマーの分子類が架橋され、形状記憶特性を有する。
【0038】
本発明に用いられる糸2は、断面形状が円形のみならず、扁平な断面形状を有するものなどが用いられる。
【0039】
上述のように形成された糸2は、図4に示すように、連続するV字状をなすようにジグザグ状に折り曲げながら螺旋状に巻回されることにより筒状のステント本体3を形成する。このとき、糸2は、V字状をなす1つの折り曲げ部4の一辺を短線部4aとし、他の辺を長線部4bとすることにより螺旋状に巻回された形状が得られる。糸2の中途部に形成される折り曲げ部4の開き角θ1がほぼ同一であって、折り曲げ部4間の短線部4a及び長線部4bの長さをそれぞれほぼ同一とすることにより、図5に示すように、互いに隣接する折り曲げ部4の頂点が互いに接触するようになる。互いに接触した折り曲げ部4の頂点のいくつか若しくは全部は互いに接合される。ステント本体3を形成する糸2は、折り曲げ部4の互いに頂点を接触させた部分が接合されることにより、確実に筒状の形状を保持した状態に維持される。
【0040】
なお、互いに頂点を接触させた折り曲げ部4の接合は、接合部分を融点Tm以上に加熱し溶融して融着することにより行われる。
【0041】
上述のように筒状に形成されたステント本体3を用いて構成されるステント1は、血管内に留置される状態の大きさに形状記憶される。この形状記憶は、図6に示すように、ステント1を生体の脈管内に装着されたときの大きさに保持するに足る大きさに形成した軸状の型枠101に装着し、糸2を構成する生体吸収性ポリマーのガラス転移温度Tg以上の温度であって融点Tm以下の温度に加熱し、型枠101の大きさに倣った大きさに変形させる。その後、型枠101に装着されたステント1を型枠101とともにガラス転移温度Tg以下に冷却すると、ステント1は、変形が与えられた状態に固定化される形状記憶が与えられる。
【0042】
ステント1を変形して形状記憶を与える加熱は、加熱炉等を用いて行われる。
【0043】
ここで得られるステント1は、図1に示すように、直径(R1)が約3〜5mmで、その長さ(L1)が10〜15mmの大きさに形状記憶される。この大きさは、生体の血管内に留置される状態の径若しくはそれ以上の径を有する大きさである。
【0044】
枠体101に装着されて形状記憶されたステント1は、枠体101から外された後縮径される。この縮径は、ステント1がガラス転移温度Tg以下に冷却された状態でステント本体3の外周囲から力学的な圧力を加えながら変形されることによって行われるものであって、例えば、図7に示すように、縮径用型枠201に設けた縮径溝202にステント本体3を押し込むことによって行われる。この縮径溝202は、長尺なステント1の挿入を容易に行い得るように、型枠201の平面側を開放した凹状の溝として形成されている。
【0045】
型枠201の縮径溝202に押し込まれたステント1は、折り曲げ部4の開き角θ1が図8に示すように小さい角θ2となるように折り曲げ部4を変位させることにより縮径される。この折り曲げ部4を変位させることにより行われる縮径は、ガラス転移温度Tg以下に冷却された糸2の折り曲げ部4が変形されることにより行われる。このとき、ステント1は、生体の脈管に容易に挿入し得るに足る直径を有するように縮径される。例えば、直径(R1)が約3〜5mmの大きさに形状記憶されたステント1にあっては、図9に示すように、直径(R2)が約1mm〜2mmの大きさを有するように縮径される。
【0046】
なお、拡径された状態に形状記憶されたステント1は、縮径されることにより、形状記憶された状態よりやや長さ方向に引き延ばされるようになる。
【0047】
縮径用型枠201に設けた縮径溝202に押し込まれて縮径されたステント1は、縮径溝202の開放された端部203から引き出される。生体吸収性ポリマーにより形成された糸2を用いて形成されたステント1は、縮径用型枠201から外された後、少なくともガラス転移温度Tg以下に保存されることにより、変位部となる折り曲げ部4に与えられた歪みが保存され縮径状態を保持する。
【0048】
拡径された状態に形状記憶されたステント1を縮径するためには、上述したような縮径用型枠201を用いることのみならず種々の方法を用いることができる。例えば、型枠などを用いることなく、形状記憶されたステント1の外周から力学的な圧力を加えて縮径するようにしてもよい。
【0049】
上述のように外圧が加えられて縮径されたステント1は、ガラス転移温度Tg以上に加熱されると、折り曲げ部4に与えられていた歪みが開放され、小さな開き角θ2まで折り曲げられた折り曲げ部4が開き角θ1まで開き、初期の形状記億された形状に回復する。すなわち、ステント1は、ガラス転移温度Tg以上に再度加熱されることにより、図1に示すように、初期の形状記憶された大きさに拡径される。
【0050】
ところで、本発明に係る脈管用のステント1は、生体の冠動脈の如き血管内に挿入されて用いられ、血管に挿入されたときに形状記憶された状態に拡径して血管の内壁を支持するものである。そこで、脈管用ステント1のステント本体3を形成する糸2は、生体の体温若しくは体温に近い温度により形状回復し得るように、ガラス転移温度Tgが70℃以下の生体吸収性ポリマーが用いられる。
【0051】
ガラス転移温度Tgが70℃以下にあって、生体の体温により形状回復するような糸2により形成されたステント1は、形状記憶された状態に拡径させるため、加熱する場合であっても、生体の血管に熱傷を発生させることがない温度で行うことができる。
【0052】
なお、縮径された状態で血管に装着されるステント1は、カテーテルに設けたバルーンにより血管の内壁に接触する大きさに拡径される。ステント1は、バルーンを用いて血管の内壁に接触するように拡径されることにより、均等に血管の内壁に接触して体温により均等に加温されて形状回復させることができる。
【0053】
また、ステント1を形状回復させるため、カテーテルを介してバルーン内に加温された造影剤を注入する場合でも、その温度は50℃程度で足り、生体の血管に熱傷を発生させることを確実に防止できる。
【0054】
ここで、生体吸収性ポリマーとして、ガラス転移温度Tgが約57℃のポリ乳酸(PLLA)を用いた糸2により形成したステント1と、ガラス転移温度Tgが約37℃のポリグリコール酸(PGA)を用いた糸2により形成したステント1の形状回復の温度依存性を示す。
【0055】
ここで用いられる糸2は、ポリ乳酸(PLLA)及びポリグリコール酸(PGA)を上述したようなスクリュー押出機を用いて、直径が50μm〜300μmの延伸モノフィラメントにて形成される。各ステント1は、この糸2を用いて上述したようにジグザグ状に折り曲げながら筒状に巻回することによって形成され、直径(R1)が4mmの大きさとなるように形状記憶し、直径(R2)が1.4mmの大きさとなるように縮径される。なお、各ステント1は、形状記憶された状態で12mmの長さ(L1)とされる。
【0056】
ポリ乳酸(PLLA)製の糸2により形成したステント1は、図10中Aで示すように、70℃で僅か0.2秒で形状回復し、50℃では13秒で形状回復し、体温に近い37℃では約20分をかけて緩やかに形状回復する。また、室温に近い20℃以下では形状回復することなく縮径された状態が維持される。
【0057】
このように、ポリ乳酸(PLLA)製の糸2により形成したステント1は、加熱温度を制御することにより、形状回復に要する時間を制御することができるので、ステント1が装着される血管の状態などに適合するように適宜形状回復速度を制御することができる。
【0058】
また、ポリグリコール酸(PGA)製の糸2により形成したステント1は、図10中Bで示すように、45℃で僅か0.5秒で形状回復し、体温に近い37℃では約1秒で形状回復し、体温より低い30℃では10秒で形状回復する。また、室温に近い15℃以下では形状回復することなく縮径された状態が維持される。
【0059】
ガラス転移温度Tgが低いポリグリコール酸(PGA)製の糸2により形成したステント1は、血管に挿入することにより体温により急峻に形状回復されるので、血管に装着後直ちに拡径することが必要なものに適用して有用であり、さらに、加熱することなく体温により迅速に形状回復させることができるので、ステント1を形状回復させるための加熱制御が容易となる。
【0060】
上述した脈管用ステント1は、中途部に折り曲げ部を形成するようにジグザグに折り曲げた1本の糸2を螺旋状に巻回して筒状のステント本体3を形成するようにしているが、中途部に折り曲げ部を形成するようにジグザグに折り曲げた1本の糸をリング状に形成し、このリング状に巻回した複数の糸21を、図11に示すように、軸方向に並列配置して筒状のステント本体23を形成するようにしたものであってもよい。
【0061】
このステント本体23も、並列配置された各糸21の折り曲げ部24の互いに頂点を接触させた部分が接合されることにより、確実に筒状の形状を保持した状態に維持される。
【0062】
このように形成されたステント本体23を用いて形成されたステント1も、前述したステント1と同様に、軸状の型枠101に装着され、糸21を構成する生体吸収性ポリマーのガラス転移温度Tg以上の温度であって融点Tm以下の温度に加熱され、生体の脈管内に留置されたときの大きさに形状記憶され、その後、縮径用型枠201等を用いて生体の脈管に容易に挿入し得るに足る太さに縮径される。
【0063】
本発明に係るステント1は、糸2をジグザグに折り曲げながら筒状に巻回して形成されればよく、その巻回の方法として種々の方法を採用することができる。
【0064】
ところで、従来提案されているステントに用いられている形状記憶合金の形状記憶回復力は概ね数十Kg/mm2であるのに対し、本発明に係るステントを形成する糸を構成する生体吸収性ポリマーの形状記憶回復力は概ね数Kg/mm2である。このように、形状記憶機能を有する生体吸収性ポリマーは、形状記憶合金に比し形状記憶回復力が極めて小さい。さらに、形状記憶機能を有する生体吸収性ポリマーが形状記憶された状態に復帰する速度も、形状記憶合金の10倍以上とすることができる。このような特性を有する形状記憶機能を有する生体吸収性ポリマー製の糸を用いて形成されたステントは、形状記憶合金を用いたステントに比し10倍以上の時間で形状記憶された状態に復帰させることができる。
【0065】
このように、形状記憶回復力が小さく、且つ形状記憶された状態に復帰する時間が長い特性を有する生体吸収性ポリマー製の糸を用いて形成されたステントは、縮径された状態で血管内に挿入された後拡径される場合にも、急峻に拡径されることがなくほぼ均等に拡径し、しかも血管の内壁に過度の力学的な圧力を与えることもないので、血管に損傷を与えるようなことを確実に防止することができる。
【0066】
また、形状記憶機能を有する生体吸収性ポリマー製の糸は、形状記憶合金等の金属製の線状体に比し摩擦係数も小さいので、ステントが拡径する途中で血管の内壁の一部に当接したとしても、血管の内壁面を滑って均等に拡径し、血管に損傷を与えることを防止できる。
【0067】
ところで、一般に、血管の再狭窄を防止することを目的に使用されるステントは、血管内に留置した後数週間乃至数ヶ月間はその形態を保持するものの、装着後数ヶ月以内に消失することが望ましいことが臨床経験上明らかにされている。
【0068】
本発明に係るステントは、生体吸収性ポリマー製の糸により形成されているので、生体の血管に留置した後、数週間ないし数カ月間はその形態を保持するものの、血管内への留置後数ヶ月前後で生体組織に吸収させて消失させることができる。
【0069】
ポリマー繊維製の糸には、各種の薬剤を混入させることが可能である。そこで、繊維を紡糸する時点でX線不透過剤を混入することにより、血管に留置された脈管用ステントの状態をX線によって観察することができ、ヘパリン、ウロキナーゼやt−PAなど血栓溶解剤や抗血栓剤を混入しておくことにより、血管の血栓性の再狭窄を防止することができ、さらに薬剤を持続して投与でき、β線を放射する放射線源、γ線を放射する放射線源を混入若しくは被着することにより、生体内の患部に集中した放射線の照射を容易に行うことが可能となり、しかも持続して放射線の照射が可能となる。
【0070】
さらに、糸に新生内膜の加増殖を抑制することを目的とする薬剤を混入することにより、持続して新生内膜の加増殖を抑制することを目的とする薬剤の投与が可能となる。
【0071】
なお、X線不透過剤や、血栓溶解剤や抗血栓剤、若しくは新生内膜の加増殖を抑制することを目的とする薬剤、放射線源は、紡糸した後、この糸の表面に塗布するなどして被着するようにしてもよい。
【0072】
本発明に係るステント1は、形状記憶機能を有する生体吸収性ポリマーからなる糸を互いに重なり合うことなく筒状に巻回して形成されているので、図12に示すように、長手方向に容易に撓み変形することができ、屈曲した血管301に対し追随性良く挿入することができる。特に、中途部に折り曲げ部を設けた糸を用いて形成したステント1は、長手方向に極めて容易に変形でき、屈曲した血管301に対し一層追随性良く挿入することができる。
【0073】
また、本発明に係るステント1は、糸2が重なり合う部分を生じさせることなく形成され、この糸2の折り曲げ部4を変位部として形状記憶された状態に変位するので、糸の2の重なりによる抵抗を受けることなく円滑な形状回復を行うことができる。
【0074】
さらに、本発明に係るステント1は、糸2が重なり合うことなく巻回されて形成されてなるので、重なり目がない形状となり、血管壁に与える損傷も少なくすることができる。
【図面の簡単な説明】
【0075】
【図1】図1は、本発明に係る脈管用ステントを示す平面図である。
【図2】図2は、本発明に係るステントを構成する糸を示す斜視図である。
【図3】図3は、本発明に係るステントを構成する糸の他の例を示す斜視図である。
【図4】図4は、ステント本体を構成する糸の折り曲げ状態を示す平面図である。
【図5】図5は、ステント本体の一部を拡大して示す平面図である。
【図6】図6は、脈管用ステントに形状記憶を与える状態を示す斜視図である。
【図7】図7は、拡径された状態に形状記憶された脈管用ステントを縮径する状態を示す斜視図である。
【図8】図8は、脈管用ステントが縮径されたときの糸の折り曲げ状態を示す平面図である。
【図9】図9は、縮径された状態を示す脈管用ステントの平面図である。
【図10】図10は、本発明に係る脈管用ステントの温度特性を示す特性図である。
【図11】図11は、本発明に係る脈管用ステントの他の例を示す斜視図である。
【図12】図12は、本発明に係る脈管用ステントを血管に挿入する状態を示す側面図である。
【符号の説明】
【0076】
1 脈管用ステント、2 糸、3 ステント本体、4 折り曲げ部

【特許請求の範囲】
【請求項1】
生体の脈管に挿入されて用いられる筒状をなす脈管ステント用の糸であり、
上記糸は、生体吸収性ポリマーを溶融紡糸して形成された一連に連続したモノフィラメントからなり且つ形状記憶機能を有する脈管ステント用糸。
【請求項2】
上記糸は、生体吸収性ポリマーをスクリュー押出機を用いて溶解紡糸し延伸したモノフィラメントであることを特徴とする請求項1記載の脈管ステント用糸。
【請求項3】
上記糸は、上記一連に連続した複数のモノフィラメントが一体化されたマルチフィラメントである請求項1記載の脈管ステント用糸。
【請求項4】
上記糸は、直径が50〜300μmの延伸モノフィラメントである請求項1記載の脈管ステント用糸。
【請求項5】
上記生体吸収性ポリマーは、ガラス転移温度Tgが70℃以下である請求項1記載の脈管ステント用糸。
【請求項6】
上記糸は、ポリ乳酸(PLLA)、ポリグリコール酸(PGA)、ポリグリコール酸とポリ乳酸の共重合体、ポリジオキサノン、トリメチレンカーボネートとグリコリドとの共重合体、ポリグリコール酸又はポリ乳酸とε‐カプロラクトンとの共重合体の1または2以上の生体吸収性ポリマーにより形成されていることを特徴とする請求項1記載の脈管ステント用糸。
【請求項7】
上記糸は、X線不透過剤、抗血栓剤、その他新生内膜の加増殖を抑制することを目的とする薬剤、β線を放射する放射線源、γ線を放射する放射線源のうちの1又は2以上が混入された高分子ポリマーにより形成されている請求項1記載の脈管ステント用糸。
【請求項8】
上記糸の表面に、X線不透過剤、抗血栓剤、その他新生内膜の加増殖を抑制することを目的とする薬剤、β線を放射する放射線源、γ線を放射する放射線源のうちの1又は2以上が被着されている請求項1記載の脈管ステント用糸。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2009−553(P2009−553A)
【公開日】平成21年1月8日(2009.1.8)
【国際特許分類】
【出願番号】特願2008−234591(P2008−234591)
【出願日】平成20年9月12日(2008.9.12)
【分割の表示】特願2000−568542(P2000−568542)の分割
【原出願日】平成11年9月8日(1999.9.8)
【出願人】(391022991)株式会社 京都医療設計 (15)
【Fターム(参考)】