説明

表面処理評価装置

【課題】表面処理評価装置において、検査対象物の配置の影響を受けずに、また較正曲線を要せずに表面処理の評価を行えるようにすることである。
【解決手段】表面処理評価装置20は、検査対象物10に交流磁場を与える励磁コイル32と、交流磁場によって生じる渦電流を検出する検出コイル34とを含むセンサ部30と、励磁コイル32に複数の周波数の範囲で検査周波数を切り替えながら交流電流を印加する励磁設定部と、各検査周波数のそれぞれについて、検出コイル34によって検査対象物10の渦電流信号を求め、表面処理が行われていない同種の未処理対象物についての渦電流信号との比である信号比を各検査周波数ごとに算出し、信号比がピークとなるピーク周波数を抽出するピーク抽出部と、抽出されたピーク周波数に基いて検査対象物10の表面処理の評価値を算出する評価値算出部とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、表面処理評価装置に係り、特に表面処理が行われている検査対象物に交流磁場を与えて生じる渦電流に関する渦電流信号に基いて評価する表面処理評価装置に関する。
【背景技術】
【0002】
例えば、鋼材の表面処理として焼入処理を行った場合、表面処理の評価としてその焼入深さを知るには、硬さの深さ分布を求めて、硬さが変化する深さを焼入深さとすることが行われる。この方法は破壊検査であるが、非破壊的に焼入深さを評価するには、焼入れ深さによって鋼材の電気的特性、磁気的特性が変化することが利用される。その1つとして、鋼材に交流磁場を与えて生じる渦電流の大きさから焼入深さを評価することが行われる。
【0003】
例えば、特許文献1には、焼入深度測定方法として、励磁コイルで発生させた低周波交流磁場によって検査対象の鋼材を表面に沿った方向に磁化し、それによって発生する渦電流で誘起される磁場を検出コイルで検出し、検出コイルの出力電圧を予め較正された焼入深度の相関データと比較して、焼入深度を測定することが述べられている。
【0004】
また、特許文献2には、硬化層深さ検査方法として、同心状または同軸状に配置され物理的構造の異なる2つの検出コイルを、励磁コイルに同心状に内挿した構成のプローブを備える渦電流センサを用い、励磁コイルに交流電流を流して磁場を発生させ、その磁場によって被検体に発生した渦電流を2つの検出コイルで検出し、2つの検出コイルの検出信号の差に基く値を予め設定されている良否判定用閾値と比較して、硬化層深さの良否を判定することが述べられている。このように物理的構造の異なる2つの検出コイルの検出値の差を用いるので、環境温度が変化しやすい製造ラインにおいても、温度補正を行うことなく、全数検査を行うことができると述べられている。
【0005】
また、非特許文献1には、較正データを用いない焼入深さの推定方法が述べられている。ここでは、鋼材ロッドの両端に交流電流を印加し、鋼材の軸方向に沿った2点の間のインピーダンスを測定する方法を用いている。ここでは、軸対称モデルを用いて、交流電流の周波数と、インピーダンスの実数部と虚数部との関係を求めており、実際に交流電流の周波数を変化させてインピーダンスの実数部と虚数部とを測定し、これに適合する計算式を求め、その結果から、導電率σと透磁率μを求めることが示されている。
【0006】
そして、焼入れ層のない均質構造の鋼材ロッドの場合と、焼入れ層のある2層構造の鋼材ロッドの場合について、それぞれ実測値とこれに適合する計算式を求めることで、均質構造のときの導電率と透磁率、2層構造のときの導電率と透磁率、2層構造の境界である焼入れ深さを求めている。そして、このようにして求められた焼入れ深さが、ロックウェル硬さの変化から求めた焼入れ深さとよく合うことが示され、これによって、較正データを要せず、計算のみから焼入れ深さを求めることができると述べられている。
【0007】
なお、ここでは、米国規格でSAE/AISI 1056鋼材ロッドが実験に用いられ、焼入れ層のない均質構造のときの導電率は4.77MSm-1、比透磁率は66であることが示されている。また、焼入れ層のある2層構造については、3種類の焼入れ深さについての平均値で、その導電率は3.84MSm-1、比透磁率は49.4であることが示されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2002−14081号公報
【特許文献2】特開2009−36682号公報
【非特許文献】
【0009】
【非特許文献1】John R. Bowler et.al.,Alternating current potential-drop measurement of the depth of case hardening steel rods,Measurement Science and Technology, 19(2008),075204,p1-8
【発明の概要】
【発明が解決しようとする課題】
【0010】
特許文献1と特許文献2の方法によれば、励磁コイル、検出コイルのそれぞれの環状穴の中に検査対象物を挿入して励磁コイルによって交流磁場を与え、検出コイルによって渦電流の大きさを評価するので、各コイルに対する検査対象物の配置関係で、渦電流の検出値が左右されることが生じる。
【0011】
例えば、励磁コイルの環状穴または検出コイルの環状穴に対して検査対象物が同軸に配置される場合と、偏心して配置される場合とで渦電流の検出値が異なることが生じ得る。また、励磁コイルの環状穴と検出コイルの環状穴の中心軸に対し、斜めに検査対象物が挿入される場合には、その斜め度合いで、渦電流の検出値が変化することが生じ得る。
【0012】
このように、複数のコイルの環状穴の中に検査対象物を挿入する方法の場合、配置関係によって渦電流の検出値にばらつきが生じ、正確な評価が困難となることがある。また、焼入深さを求めるには、予め焼入れ深さと渦電流の大きさ等との間の関係について較正曲線を求めておく必要があり、渦電流の検出値から直接的に焼入深さを求めることができない。
【0013】
本発明の目的は、検査対象物の配置の影響を受けずに表面処理の評価を行える表面処理評価装置を提供することである。他の目的は、較正曲線を要せずに表面処理の評価を行える表面処理評価装置を提供することである。以下の手段は、上記目的の少なくとも1つに貢献する。
【課題を解決するための手段】
【0014】
本発明に係る表面処理評価装置は、表面処理が行われている検査対象物に交流磁場を与える励磁コイルと、交流磁場によって生じる渦電流に関する渦電流信号を検出する検出コイルとを含むセンサ部と、センサ部の励磁コイルに予め設定された複数の周波数の範囲で検査周波数を切り替えながら交流電流を印加する励磁設定部と、各検査周波数のそれぞれについて、検出コイルによって検査対象物の渦電流信号を求め、表面処理が行われていない同種の未処理対象物についての渦電流信号との比である信号比を各検査周波数ごとに算出し、信号比がピークとなるピーク周波数を抽出するピーク抽出部と、抽出されたピーク周波数に基いて検査対象物の表面処理の評価値を算出する評価値算出部と、を備えることを特徴とする。
【0015】
また、本発明に係る表面処理評価装置において、評価値算出部は、予め求められている検査対象物の渦電流に関連する物性値と、ピーク周波数とに基いて検査対象物の表面処理の評価値を算出することが好ましい。
【0016】
また、本発明に係る表面処理評価装置において、評価値算出部は、表面処理が焼入処理であるときに、渦電流に関する物性値として導電率と透磁率を用い、表皮深さの計算式に基いて検査対象物の表面処理の評価値を算出することが好ましい。
【0017】
また、本発明に係る表面処理評価装置において、センサ部は、検査対象物の表面処理が行われた表面に対し垂直方向に交流磁場を与えるように相互に離間して配置される2つの励磁コイルと、2つの励磁コイルの離間された間に配置され、検査対象物の表面に平行な方向の渦電流信号を検出するように配置される少なくとも1つの検出コイルと、を含むことが好ましい。
【発明の効果】
【0018】
上記構成により、表面処理評価装置は、励磁コイルと検出コイルとを含み、励磁コイルに予め設定された複数の周波数の範囲で検査周波数を切り替えながら交流電流を印加し、各検査周波数のそれぞれについて、検出コイルによって検査対象物の渦電流信号を求め、表面処理が行われていない同種の未処理対象物についての渦電流信号との比である信号比を各検査周波数ごとに算出し、信号比がピークとなるピーク周波数を抽出する。そして、抽出されたピーク周波数に基いて検査対象物の表面処理の評価値を算出する。
【0019】
渦電流は、表皮効果があり、表皮深さδの部分に集まって流れる。表皮深さδは、δ={1/(πμ0μrσf)}1/2で表される。ここで、μ0は真空の透磁率、μrは比透磁率、σは導電率、fは検査周波数である。このように、表皮深さに周波数依存性と透磁率依存性があるので、検査周波数の変化によって電流が流れる深さが異なり、また、透磁率の変化によっても電流が流れる深さが異なってくる。表面処理によって透磁率が変化するものとすると、これらのことから、未処理対象物について周波数を変化させたときの渦電流の変化の様子と、検査対象物について周波数を変化させたときの渦電流の変化の様子が異なってくる。
【0020】
特に、検査対象物は、検査周波数が低いときには表面処理が行われている表面部分と表面処理が行われていない中心部とで渦電流の発生の仕方が相違する特性の2層構造となっているが、周波数を高くして表面処理が行われた深さより表皮深さが浅くなると、渦電流はその表面処理が行われた層の中にのみ生じるようになる。つまり、検査周波数で定まる表皮深さが表面処理深さより浅いか深いかで、渦電流の発生の仕方が大きく異なることになる。その意味で、検査対象物における渦電流の周波数特性は、表面処理深さと同じ深さの表皮深さに対応する検査周波数を境に大きく様子が異なってくる。
【0021】
これに対し未処理対象物は、検査周波数を変化させて表皮深さが浅くなっても依然として、表面処理が行われていない層の中で渦電流が生じることに変わりがなく、検査周波数の変化によって大きく渦電流の発生の様子が変わるわけではない。ここで、検査対象物における渦電流特性と、未処理対象物の渦電流特性の比を取って、その比について周波数特性を取ってみると、先ほどの表面処理深さが表皮深さに一致する検査周波数のところでピークを有する特性となることが実験的に分かった。
【0022】
このピークとなる検査周波数をピーク周波数と呼ぶことにすると、このピーク周波数は表面処理深さに表皮深さが一致する周波数であるので、例えば、励磁コイル、検出コイルに対する検査対象物の配置関係のばらつきにほとんど左右されない。このように、ピーク周波数に基いて表面処理深さ等の表面処理評価を行うものとすることで、検査対象物の配置の影響を受けずに表面処理の評価を行うことが可能である。
【0023】
また、上記のように表皮深さδは、δ={1/(πμ0μrσf)}1/2で表される。したがって、検査周波数fをピーク周波数fCとおけば、σとμ0μrを知られている物性値を用いることによって、ピーク周波数fCにおける表皮深さδを求めることができる。ピーク周波数fCにおける表皮深さδは、上記のように表面処理深さである。このように、ピーク周波数fCが分かれば、あとは公知の物性値を用いて、直接的に表面処理深さを求めることができ、特別な較正曲線等を要しない。
【0024】
特に、表面処理が焼入処理であるときに、σとμ0μrを焼入鋼材の導電率と透磁率を用いることで、上記のように、表皮深さの計算式に基いて、焼入深さを直接的に求めることができる。
【0025】
また、表面処理評価装置において、センサ部として、検査対象物の表面処理が行われた表面に対し垂直方向に交流磁場を与えるように相互に離間して配置される2つの励磁コイルと、2つの励磁コイルの離間された間に配置され、検査対象物の表面に平行な方向の渦電流信号を検出するように配置される少なくとも1つの検出コイルを用いる。このように、コイルの環状穴に検査対象物を挿入することをしないので、コイルの環状穴と検査対象物との間の同軸度等の配置関係の問題が生じない。
【図面の簡単な説明】
【0026】
【図1】本発明に係る実施の形態の表面処理評価装置の構成を説明する図である。
【図2】本発明に係る実施の形態におけるセンサ部の励磁コイルと検出コイルの配置関係を説明する図である。
【図3】本発明に係る実施の形態において、励磁コイルに流れる電流と、検査対象物に流れる渦電流の関係を示す平面図である。
【図4】図3に対応し、検査対象物に流れる渦電流と、渦電流による磁場と、励磁コイルからの漏れ磁場と、検出コイルが検出する磁場の様子を説明する図である。
【図5】本発明に係る実施の形態において、未処理対象物と、全部が焼入処理された対象物と、表面から焼入深さまで焼入処理された検査対象物のそれぞれについて、渦電流による磁場の大きさの周波数特性の様子を説明する図である。
【図6】図5に対応して、検出コイルが検出する渦電流信号について、未処理対象物の渦電流信号に対する検査対象物の渦電流信号の比の周波数特性の様子を説明する図である。
【図7】本発明に係る実施の形態において、表面処理評価方法の手順を説明するフローチャートである。
【図8】本発明に係る方法に従って、焼入深さが1.00mmのときのピーク周波数を求める様子を説明する図である。
【図9】図8に対し、焼入深さが2.00mmのときのピーク周波数を求める様子を説明する図である。
【図10】図8、図9に対し、焼入深さが3.00mmのときのピーク周波数を求める様子を説明する図である。
【図11】図8から図10の結果に基く表面処理深さの計算値と、実際の焼入深さとの比較をまとめた図である。
【発明を実施するための形態】
【0027】
以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下では、表面処理として、鋼材の表面から所定深さまでの焼入処理を説明するが、処理によって表皮深さが変化するような表面処理であれば、これ以外の処理であっても構わない。例えば、ピーニング等の残留応力層が生じる強加工処理、鋼材の表面から所定深さまでの浸炭処理、メッキ処理、導電材のコーティング処理等であってもよい。
【0028】
また、以下では、励磁コイルの数を2、検出コイルの数を2として説明するが、励磁コイルの数は3以上であってもよく、検出コイルの数は1であっても3以上であってもよい。
【0029】
また、以下で述べる材料、形状、寸法、周波数等は説明のための例示であって、検査対象の内容あるいは、表面処理検査装置の仕様に応じ、適宜変更が可能である。また、以下では、較正曲線を用いずに、計算結果から、焼入深さを求めているが、勿論適当な較正曲線を用いるものとしてもよい。その場合の較正曲線としては、予め、焼入深さとピーク周波数との関係を求めたものを用いることができる。
【0030】
以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。
【0031】
図1は、焼入深さの評価に用いられる表面処理評価装置20の構成を説明する図である。ここでは、表面処理評価装置20の構成要素ではないが、検査対象物10として、焼入処理が及んでいない母材部分12と、表面から焼入深さdまでの焼入処理された焼入処理層14を有する鋼材が示されている。
【0032】
表面処理評価装置20は、励磁コイル32と検出コイル34とを含むセンサ部30と、励磁コイル32に励磁信号を供給するための発振器40と電流源42と、検出コイル34からの渦電流信号を計測する渦電流信号計測部50と、渦電流信号計測部50からの信号を処理して、表面処理評価値を出力する評価値算出部60と、評価値算出部60に接続され、処理に必要な物性値等を記憶する記憶部70を含んで構成される。
【0033】
センサ部30は、上記のように、励磁コイル32と検出コイル34を含み、これらを予め定めた配置関係で一体的にまとめたものである。励磁コイル32の下面と検出コイル34の下面が検査対象物10の表面に接触する接触下面となる。
【0034】
図1では、その接触下面と検査対象物10の表面との間の隙間がリフトオフ量16として示されている。このリフトオフ量16は、センサ部30を一体化したときに、励磁コイル32、検出コイル34のそれぞれの下面が必ずしも1つの平面にならない場合、あるいは、一体化のための材料厚さがある場合、検査対象物10の表面が必ずしも平坦面でない場合等に生じる。このリフトオフ量16が、この表面処理評価装置20の場合の配置関係の誤差となる。リフトオフ量16が表面処理評価にほとんど影響を与えないことについては後述する。
【0035】
図2にセンサ部30の具体的な配置関係を斜視図で示す。ここでは、励磁コイル32,33は2つ用いられ、検出コイル34,35も2つ用いられる。
【0036】
励磁コイル32,33は、検査対象物10に交流磁場を与えて渦電流を発生させるための環状巻線コイルである。励磁コイル32,33は上記のように2つ用いられが、その2つの励磁コイル32,33は、検査対象物10の表面処理が行われた側の表面に対し、垂直方向に交流磁場を与えるように相互に離間して配置される。すなわち、励磁コイル32,33は、環状に巻かれた巻線コイルであるが、その環状形状の中心軸が検査対象物10の表面に垂直になるように配置される。
【0037】
2つの励磁コイル32,33は、基本的構造が同じで、寸法も同じに設定される。2つの励磁コイル32,33の配置は、検出コイル34,35が配置されるに十分な間隔であれば、適当に定めることができる。
【0038】
検出コイル34,35は、励磁コイル32,33によって検査対象物10に発生した渦電流による磁場を検出するための環状巻線コイルである。検出コイル34,35は上記のように2つ用いられるが、その2つの検出コイル34,35は、2つの励磁コイル32,33の離間された間に配置され、検査対象物10の表面に平行な方向の渦電流信号を検出するように配置される。すなわち、検出コイル34,35は、環状に巻かれた巻線コイルであるが、その環状形状の中心軸が検査対象物10の表面に平行になるように配置される。
【0039】
2つの検出コイル34,35は、基本的構造が同じで、寸法も同じに設定される。2つの検出コイル34,35の高さは、励磁コイル32,33の高さよりも低く設定される。すなわち、励磁コイル32,33の高さ方向の中心線である(1/2)高さ軸と、検出コイル34,35の環状形状の中心軸とのあいだにずれがあり、前者のほうが高い位置にある。これによって、検査対象物10がない状態でも、励磁コイル32,33に励磁電流が流されると、検出コイル34,35は、励磁コイル32,33の間に流れる漏れ磁場を検出することになる。なお、励磁電流は検査対象物10に渦電流を発生するための励磁信号に相当する。
【0040】
2つの検出コイル34,35は、渦電流による磁場の検出感度を高めるために2つ用いているので、2つの検出コイル34,35は密接して配置されることが好ましい。
【0041】
再び図1に戻り、発振器40と電流源42は、励磁コイル32,33に複数の交流励磁電流を供給する励磁電流供給部に相当するものである。
【0042】
発振器40は、複数の交流信号を発生することができる交流信号生成装置である。発振器40は、予め設定された周波数間隔で複数の周波数の交流信号を生成し、電流源42に供給する。周波数の切替タイミングは、渦電流信号計測部50から伝送される信号に基いて行われる。複数の周波数としては、例えば、数10Hzから数kHzの範囲で、10個から数10個の種類の周波数となるように設定することができる。なお、周波数範囲が数桁となるので、周波数間隔は、対数目盛に対し、均等な幅となるように設定することが好ましい。
【0043】
電流源42は、発振器40から供給される交流信号について、予め定めた電流振幅となる電流を出力するためのドライバ回路である。電流振幅としては、例えば数mAppから数Appの間の適当な値とすることができる。
【0044】
渦電流信号計測部50は、上記のように検出コイル34,35において検出される信号について、励磁コイル32,33に供給される交流励磁信号と同じ周波数の検出信号のみを抽出し、抽出された信号を適当に増幅して、渦電流信号として、評価値算出部60に出力する機能を有する信号処理回路である。渦電流信号計測部50は、位相検波器52と、増幅器54と、フィルタ56と表示器58とを含んで構成される。
【0045】
上記のように、励磁コイル32,33には複数の周波数の励磁信号が供給されるので、渦電流信号計測部50では、1つの周波数に対する計測が終了すると、その旨の信号を発振器40に伝送する。そして、その信号を受け取って発振器40が次の周波数の交流信号を電流源42に出力することになる。したがって、この信号は、周波数切替信号に相当する。
【0046】
評価値算出部60は、上記のように、渦電流信号計測部50から出力される渦電流信号に基いて、検査対象物10の表面処理評価値を算出して出力する機能を有するデータ処理回路である。評価値算出部60は、A/D変換器62、データ処理部64、メモリ66、表示器68を含んで構成される。メモリ66は、渦電流信号計測部50から出力される各周波数ごとの渦電流信号値を一時記憶する装置である。データ処理部64は、評価値算出部60の中核をなすもので、メモリ66に記憶される複数の周波数についての渦電流信号値から、後述するピーク周波数fCを求め、そのピーク周波数fCに基いて、表面処理評価値を算出する機能を有する。表面処理評価値は、今の場合、焼入深さである。表面処理評価値の算出の内容については後述する。
【0047】
記憶部70は、データ処理部64のデータ処理に必要な物性値等を予め記憶するための記憶装置である。記憶部70とメモリ66とは兼用して1つの記憶装置としてもよい。記憶部70には、検査対象物10と同じ材質の鋼材で焼入処理が行われていない未焼入材について、複数の周波数ごとの渦電流信号値である未焼入材データ72を記憶する。未焼入材は、検査対象物10と同じ材質のもので表面処理が行われていないものであるから、これを未処理対象物と呼ぶことができる。また、記憶部70は、検査対象物10である焼入材の物性値を記憶する。ここでは、焼入材についての導電率σと透磁率μが記憶される。透磁率μとしては、比透磁率μrが記憶されるが、比透磁率μrに真空の透磁率μ0を乗じた値であるμ0μrを記憶してもよい。
【0048】
次に、上記構成の表面処理評価装置20の作用等について説明する。図3、図4は、検査対象物10の渦電流の測定の様子を説明する模式図である。図3は検査対象物10の表面を見た平面図、図4は検査対象物10の断面を見た正面図に相当する。
【0049】
図3においては、励磁コイル32,33と、それらに流される励磁電流80,81の向きが示されている。励磁電流80,81は上記のように交流電流であるが、図3に示されるように、励磁コイル32に流される励磁電流80の向きと、励磁コイル33に流される励磁電流81の向きとは、平面図で見たときに相互に逆向きとされる。図3の例では、励磁電流80の向きは紙面上で時計方向であり、励磁電流81の向きは紙面上で反時計方向である。したがって、この例の場合、励磁コイル32には、紙面の上側から下側に向かう磁場が発生し、励磁コイル33には、紙面の下側から上側に向かう磁場が発生する。
【0050】
検査対象物10には、この励磁電流80,81を打ち消すように渦電流82,83が発生する。すなわち、励磁電流80の流れる方向と反対側に渦電流82が流れ、励磁電流81の流れる方向と反対側に渦電流83が流れる。渦電流82,83は、紙面上では相互に逆向きに流れるが、その結果として、2つの励磁コイル32,33の間の検出コイルが配置される部分では、渦電流82,83は同じ方向に揃って流れる。図3の紙面では、紙面の下側から上側に向かって、渦電流82,83が流れる。
【0051】
図4には、その渦電流82,83によって生じる磁場86が示されている。この磁場86は、図4の例では、紙面上で時計方向に流れ、検出コイル34,35を紙面の左側から右側に流れる磁場BEとなる。一方、2つの励磁コイル32,33の間において漏れ磁場84は、検出コイル34,35を紙面の右側から左側に向かって流れる磁場BCとなる。つまり、検出コイル34,35が検出する磁場は、(励磁コイル32,33の漏れ磁場BC)−(渦電流82,83の磁場BE)となる。
【0052】
検出コイル34,35は、磁場を検出して、電流信号を出力する。この信号を渦電流信号Sと呼ぶこととすると、S=(励磁コイル32,33の漏れ磁場BCによる信号SC)−(渦電流82,83の磁場BEによる信号SE)となる。このように、検出コイル34,35は、励磁コイル32,33に励磁電流80,81が流されると、検査対象物10がない状態でも、渦電流信号Sとして、SCを出力し、検査対象物10があると、そのSCからSEが差し引かれた値を出力することになる。
【0053】
次に、この渦電流信号Sと周波数fの関係について説明する。なお、周波数fは励磁信号の周波数であり、また、図1で説明したように、渦電流信号計測部50において、検出コイル34,35が検出する信号は励磁信号の周波数に相当する信号が抽出されるので、検出信号の周波数でもある。
【0054】
渦電流信号Sは、上記のように(励磁コイル32,33の漏れ磁場BCによる信号SC)−(渦電流82,83の磁場BEによる信号SE)であるが、SEは表皮効果によって周波数fの影響を受けるが、SCは励磁コイル32,33の間の漏れ磁場によるものであるから周波数特性を有しない一定値と考えてよい。
【0055】
Eは、渦電流82,83が検査対象物10においてどの深さを流れるかによって、その値が異なってくる。渦電流82,83が検査対象物10の表面近くを流れる場合と、深いところを流れる場合とでは、渦電流82,83の大きさが同じでも、前者のSEの方が後者のSEよりも大きくなる。渦電流82,83の流れる深さは、表皮深さδで表すことができる。
【0056】
表皮深さδは、δ={1/(πμ0μrσf)}1/2で表される。ここで、μ0は真空の透磁率、μrは比透磁率、σは導電率、fは周波数である。このように、表皮深さδは、f1/2に反比例するので、周波数fが大きくなると、表皮深さδが小さくなる。また、透磁率μ1/2=(μ0μr1/2に反比例する。焼入処理が行われた材料の透磁率は、未処理の材料の透磁率よりも小さいので、前者の表皮深さの方が後者の表皮深さよりも大きくなる。
【0057】
このように、検査対象物10として、焼入処理が及んでいない母材部分12と、表面から焼入深さdまでの焼入処理された焼入処理層14を有する鋼材の場合、そのSEと周波数fとの関係は、表皮深さδの周波数依存性と、母材部分12と焼入処理層14の間の透磁率の相違、その相違による表皮深さδの相違、焼入深さdと表皮深さδの大小関係等の影響を受けることになる。
【0058】
Eは渦電流による磁場BEの大きさに関係するが、図5は、BEの周波数特性を、焼入処理が行われていない未処理対象物についての磁場BE0、鋼材の全部が焼入処理されている全部焼入対象物についての磁場BEQ、表面から焼入深さdまで焼入処理されている検査対象物についての磁場BEqのそれぞれについて実験的に確かめられた結果を示す模式図である。この図5を用いながら、検査対象物10のSEの周波数特性を説明する。
【0059】
周波数が低周波数の場合、検査対象物10の渦電流82,83は、焼入処理層14と母材部分12の2層に流れる。そして周波数が増加するに応じて、渦電流82,83は、上記のように表皮深さδがf1/2に反比例するので、表面の方向に集中してゆき、やがて、ほとんどの成分が焼入処理層14のみに集中するようになる。
【0060】
このときは、表皮深さδが焼入深さdと一致しているときであるが、その周波数fCまでは、渦電流82,83が2層にまたがって流れる。そしてその周波数fCまでは周波数fの増加に伴って渦電流82,83の流れる深さが表面の方向に移動する。したがって、周波数fの増加に応じて、渦電流による磁場BEqは大きくなる。一方、未処理対象物の場合は、均質材料であるので、やはり、周波数fの増加に伴って渦電流82,83の流れる深さが表面の方向に移動する。したがって、この場合も、周波数fの増加に応じて、渦電流による磁場BE0は大きくなる。
【0061】
この2つの場合を比較すると、検査対象物10のBEqは、焼入処理層14と母材部分12の2層に流れ、未処理対象物のBE0は母材部分12と同じ材質で均質であるので、周波数fに対して磁場BEの増加の割合は、後者の方が大きくなる。
【0062】
次に、表皮深さδが焼入深さdと一致する周波数fCの近辺の場合は、検査対象物10において、ほとんどの渦電流82,83が焼入処理層14に流れる。焼入処理層14の透磁率は母材部分12の透磁率よりも小さいので、焼入処理層14に生じる渦電流82,83の増加が最も小さくなり、検出コイル34,35近辺の渦電流による磁場BEqの増加が最も小さくなる。これに対し、未処理対象物の場合は、均質材料であるので、やはり、周波数の増加に伴って渦電流82,83の流れる深さが表面の方向に移動してゆく。したがって、この場合も、依然として、周波数fの増加に応じて、渦電流による磁場BE0は大きくなる。
【0063】
次に、さらに周波数fCよりも周波数が高くなると、検査対象物10の渦電流82,83が焼入処理層14の中で表面に近づいてゆく。したがって、検出コイル34,35近辺の渦電流による磁場BEqは周波数fの増加に応じて増加する。この増加の程度は、渦電流82,83が2層に分かれていたときよりも少なくなる。これに対し、未処理対象物の場合は、均質材料であるので、やはり、周波数の増加に伴って渦電流82,83の流れる深さが表面の方向に移動してゆく。したがって、この場合も、依然として、周波数fの増加に応じて、渦電流による磁場BE0は大きくなる。
【0064】
以上のことをまとめると、図5に示されるように、未処理対象物の場合のBE0は、周波数fの増加ともに、単調に増加する。この増加特性は、表皮深さδの周波数依存性を示している。これに対し、検査対象物10のBEqは、表皮深さδが焼入深さdと同じとなる周波数fCよりも低周波側では周波数fの増加とともに単調増加であるが、周波数fCよりも高い周波数では、BEqの増加がそれまでに比較してかなり少なくなる。図5に示すように、BEqは、周波数fCで変極点となる。このように、検査対象物10のBEqの周波数特性は、周波数fCを境に大きく様子が異なってくる。
【0065】
図6は、検査対象物10の渦電流信号Sqと、未処理対象物の渦電流信号S0の比を計算して、その周波数特性を調べた様子を示す図である。上記のように、S=(励磁コイル32,33の漏れ磁場BCによる信号SC)−(渦電流82,83の磁場BEによる信号SE)であるので、S0=(励磁コイル32,33の漏れ磁場BCによる信号SC)−(渦電流82,83の磁場BE0による信号SE0)と表され、Sq=(励磁コイル32,33の漏れ磁場BCによる信号SC)−(渦電流82,83の磁場BEqによる信号SEq)で表される。
【0066】
したがって、Sq/S0=(SC−SEq)/(SC−SE0)=(SEq−SC)/(SE0−SC)となり、SCは周波数fに対して一定であるので、Sq/S0は、図5のBEqとBE0の比にほぼ近い特性となる。したがって、図5で説明したことから、Sq/S0の周波数特性は、周波数がfCより低周波側では、Sq/S0は周波数fの増加とともに増加するが、周波数がfCより高周波側では、BEqの増加傾向がBE0の増加傾向よりも小さくなるので、Sq/S0は周波数fの増加とともに減少する。このことから、Sq/S0は周波数fCでピークを示すようになる。このことは後述するように実験によっても確かめられた。
【0067】
このように、周波数fCは、渦電流信号の比Sq/S0がピークを示す周波数であるので、これをピーク周波数と呼ぶことができる。また、上記のように、このピーク周波数は、表皮深さδが焼入深さdに一致する周波数でもあるので、例えば、励磁コイル32,33、検出コイル34,35に対する検査対象物10の配置関係のばらつきにほとんど左右されないことが予想される。後述するように、実際に、図1で説明したリフトオフ量16を変化させても、ピーク周波数はほとんど変化しない。このように、ピーク周波数に基いて焼入深さd等の表面処理評価を行うものとすることで、検査対象物10の配置の影響を受けずに表面処理の評価を行うことが可能となる。
【0068】
図7は、上記で説明したことに基いて、表面処理評価を行うときの手順を示すフローチャートである。最初に計測条件を入力する(S10)。計測条件としては、発振器40における検査周波数の周波数範囲と、周波数間隔、電流源42における電流振幅値等がある。次に、計測条件に基いて、計測開始周波数を発振器40に設定する。例えば、予め定めた周波数間隔で検査周波数を順に並べておき、計測開始信号を与えることで、発振器40がその最初の周波数を計測開始周波数として、その計測開始周波数の交流信号を生成するものとできる。
【0069】
次に、その計測開始周波数の交流信号に対応する励磁電流を励磁コイル32,33に印加する(S14)。具体的には、発振器40からの交流信号に対し、電流源42において、所定の電流振幅を有する励磁電流として、励磁コイル32,33に供給する。そして、検出コイル34,35からの信号を計測・記憶・表示する(S16)。具体的には、検出コイル34,35の信号を渦電流信号計測部50で励磁信号と同じ周波数成分を抽出し、適当に増幅して、その値を、計測開始周波数における渦電流信号Sqとしてメモリ66に記憶し、必要に応じ表示器58,68に表示する。
【0070】
そして、次の周波数を発振器40に設定し(S18)、その条件の下で、励磁電流を印加し(S20)、検出コイル34,35からの信号を計測・記憶・表示する(S22)。つまり、周波数を変えて、計測開始周波数について行った手順を繰り返す。このようにして、次の周波数における渦電流信号Sqがメモリ66に記憶される。
【0071】
次に、周波数が停止周波数か否かを判断する(S24)。停止周波数とは、計測条件の検査周波数の周波数範囲と、周波数間隔に従って、発振器40において並べられた複数の検査周波数の最後の周波数である。S24の判断が否定されると、S18に戻り、残っている周波数について計測を続け、得られた渦電流信号Sqがメモリ66に記憶される。
【0072】
このようにして、計測条件で定めた全ての検査周波数について渦電流信号Sqが計測され、メモリ66に記憶されると、次に、最大信号比の周波数fCの抽出が行われる(S28)。信号比とは、上記のSq/S0であり、最大信号比の周波数fCとは、図6で説明したピーク周波数である。ピーク周波数の算出は、データ処理部64において、記憶部70の未焼入材データ72を読み出して(S26)実行される。未焼入材データ72は、計測条件の周波数範囲、周波数間隔で定められる全ての検査周波数についての未処理対象物の渦電流信号S0である。
【0073】
この未処理対象物の渦電流信号S0と、メモリ66の検査対象物10の渦電流信号Sqとを用いて、信号比Sq/S0を全ての検査周波数ごとに計算する。そして、信号比Sq/S0がピークとなる周波数を抽出して、その周波数をピーク周波数fCとする。
【0074】
ピーク周波数fCが求められると、焼入深さdの計算・記憶・表示が行われる(S32)。ここでは、ピーク周波数fCの表皮深さδが焼入深さdと一致する周波数であることを利用し、表皮深さδ={1/(πμ0μrσf)}1/2で関係式のfにfCを当てはめる。そして、記憶部70の焼入材物性値74から、導電率σ、透磁率μ0μrを読み出して(S30)、その値を表皮深さδの式に当てはめる。このようにしてピーク周波数fCにおける表皮深さδが計算で求められたら、これを焼入深さdとして出力し、例えば、表示器68に表示する。
【0075】
上記手順に従って実験を行った結果を図8から図10のそれぞれにおいて黒丸印で示す。図8から図10は、いずれも横軸に検査周波数f、縦軸に渦電流信号比Sq/S0をとり、図8は、焼入深さd=1.0mm、図9は焼入深さd=2.0mm、図10は焼入深さd=3.0mmの検査対象物10についての結果である。
【0076】
図8において、焼入深さd=1.0mmの検査対象物10についての結果は、渦電流比の周波数特性がきれいなピーク特性を示し、ピーク周波数fCは500Hzとして求められる。同様に、図9において、焼入深さd=2.0mmの検査対象物10についての結果は、ピーク周波数fC=251Hzとなり、図10における焼入深さd=3.0mmの検査対象物10についての結果は、ピーク周波数fC=126Hzとなる。
【0077】
なお、図8から図10の×印のデータは、リフトオフ量16が3mmのときのデータである。上記で説明した黒丸印のデータは、リフトオフ量16が2mmである。リフトオフ量16が2mmについては再現性確認のため各3回ずつ実験を行ったが、いずれも、ほとんど黒丸印と重なるデータ値であった。リフトオフ量16が3mmの場合でも、ピーク周波数fCの計算値はリフトオフ量16が2mmの場合とほとんど変化しない。これらの実験から、上記構成の評価法によれば、ピーク周波数fCの値がリフトオフ量16にほとんど影響を受けないことが分かる。
【0078】
図11は、図8から図10で求められたピーク周波数fCに基き、表皮深さδ={1/(πμ0μrσf)}1/2に、非特許文献1に述べられている導電率σ=3.84MSm-1、比透磁率μr=49.4を適用して、表皮深さδ=焼入深さdを求め、実測の焼入深さdと比較した結果をまとめたものである。図11の結果から、較正曲線を全く用いずに計算から求めた焼入深さと、実測焼入深さが良好な一致を示していることが分かる。特に、実用上の焼入深さは2mm以上のことが多いことを考えると、上記表面処理評価法は、実用上十分な精度を有していると考えられる。
【産業上の利用可能性】
【0079】
本発明に係る表面処理評価装置によれば、焼入処理、ピーニング等の強加工処理、鋼材の浸炭処理、メッキ処理、導電材のコーティング処理等の表面処理評価に利用できる。
【符号の説明】
【0080】
10 検査対象物、12 母材部分、14 焼入処理層、16 リフトオフ量、20 表面処理評価装置、30 センサ部、32,33 励磁コイル、34,35 検出コイル、40 発振器、42 電流源、50 渦電流信号計測部、52 位相検波器、54 増幅器、56 フィルタ、58,68 表示器、60 評価値算出部、62 A/D変換器、64 データ処理部、66 メモリ、70 記憶部、72 未焼入材データ、74 焼入材物性値、80,81 励磁電流、82,83 渦電流、84 (漏れ)磁場、86 (渦電流によって生じる)磁場。

【特許請求の範囲】
【請求項1】
表面処理が行われている検査対象物に交流磁場を与える励磁コイルと、交流磁場によって生じる渦電流に関する渦電流信号を検出する検出コイルとを含むセンサ部と、
センサ部の励磁コイルに予め設定された複数の周波数の範囲で検査周波数を切り替えながら交流電流を印加する励磁設定部と、
各検査周波数のそれぞれについて、検出コイルによって検査対象物の渦電流信号を求め、表面処理が行われていない同種の未処理対象物についての渦電流信号との比である信号比を各検査周波数ごとに算出し、信号比がピークとなるピーク周波数を抽出するピーク抽出部と、
抽出されたピーク周波数に基いて検査対象物の表面処理の評価値を算出する評価値算出部と、
を備えることを特徴とする表面処理評価装置。
【請求項2】
請求項1に記載の表面処理評価装置において、
評価値算出部は、
予め求められている検査対象物の渦電流に関連する物性値と、ピーク周波数とに基いて検査対象物の表面処理の評価値を算出することを特徴とする表面処理評価装置。
【請求項3】
請求項2に記載の表面処理評価装置において、
評価値算出部は、
表面処理が焼入処理であるときに、渦電流に関する物性値として導電率と透磁率を用い、表皮深さの計算式に基いて検査対象物の表面処理の評価値を算出することを特徴とする表面処理評価装置。
【請求項4】
請求項1に記載の表面処理評価装置において、
センサ部は、
検査対象物の表面処理が行われた表面に対し垂直方向に交流磁場を与えるように相互に離間して配置される2つの励磁コイルと、
2つの励磁コイルの離間された間に配置され、検査対象物の表面に平行な方向の渦電流信号を検出するように配置される少なくとも1つの検出コイルと、
を含むことを特徴とする表面処理評価装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2011−185623(P2011−185623A)
【公開日】平成23年9月22日(2011.9.22)
【国際特許分類】
【出願番号】特願2010−48519(P2010−48519)
【出願日】平成22年3月5日(2010.3.5)
【出願人】(000003609)株式会社豊田中央研究所 (4,200)
【Fターム(参考)】