説明

被覆電線の表面汚れ検出装置

【課題】大きな電流を発生させる電源を不要として、装置の小型化および低コスト化を図る。
【解決手段】被覆電線12の中心導体12aと容量結合する注入電極2と、中心導体12aと容量結合する検出電極3と、検査交流電圧V2を生成すると共に検査交流電圧V2を注入電極2を介して中心導体12aに非接触で注入する交流電圧生成部4と、検査交流電圧V2の注入に起因して被覆電線12に発生する電流Id2の一部を検出電極3を介して入力すると共に検出電圧Vdに変換して出力する電流検出部5と、検査交流電圧V2の電圧値に対する検出電圧Vdの電圧値の比率kを算出すると共に算出した比率kが予め決められた基準比率kref以上のときに、被覆電線12の表面が汚れていると判別する処理部7とを備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被覆電線の表面に生じた汚れ(塵や埃の付着に起因した汚れ)を検出する被覆電線の表面汚れ検出装置に関するものである。
【背景技術】
【0002】
本願発明者は、検出対象体に生じている交流電圧を非接触で検出する各種の電圧検出装置を既に提案している(下記の特許文献1など)。これらの電圧検出装置では、検出対象体に対して検出電極を対向配置することによって、検出対象体と検出電極とを容量結合(静電容量を介して結合)させ、この静電容量を介して検出対象体と検出電極との間に流れる電流に基づいて、検出対象体の交流電圧を検出する。また、特許文献1にも開示されているように、この電圧検出装置は、電路を検査対象体として、電路についての電圧(線間電圧など)も検出することが可能である。
【0003】
しかしながら、電路(通常は、被覆電線で構成される)の表面に塵や埃が付着して汚れの層が形成され、この汚れの層が水分を含んで導電性を帯びる状態に至ることがある。この状態では、電路の芯線(中心導体)と電圧検出装置の検出電極との間に、導電性を有する汚れの層が介在することになるため、結合容量を介して電路の芯線と電圧検出装置の検出電極との間に流れる電流の一部が、この汚れの層を介して漏れ出る結果、検出対象体としての電路の芯線に生じる交流電圧の測定精度が低下するという改善すべき課題が存在している。
【0004】
この課題を改善するため、電圧検出に先立ち、例えば下記の特許文献2に開示されている非接触式表面抵抗測定装置を使用して、検出対象体の表面に汚れの層が形成されているか否かを検出する構成を採用することもできる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2011−53201号公報(第14−15頁、第1図)
【特許文献2】特開2003−84020号公報(第4頁、第1図)
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、この非接触式表面抵抗測定装置を使用する構成には、以下のような解決すべき課題が存在している。すなわち、この非接触式表面抵抗測定装置では、フェライトコイルなどのコイルで渦電流発生部を構成し、このコイルに交流波電圧を印加し、コイルを導電膜(表面抵抗を測定するもの)に近づけることで、導電膜に高周波誘導結合による渦電流を流している。しかしながら、高周波誘導結合によって渦電流を流し得るようにするためには、一般的に、コイルに大きな電流を流す必要が生じる。このため、この非接触式表面抵抗測定装置には、大きな電流を発生させる電源が必要になり、装置が大型化すると共に装置コストが上昇するという解決すべき課題が存在していいる。
【0007】
本発明は、かかる課題を解決すべくなされたものであり、大きな電流を発生させる電源を不要として、装置の小型化および低コスト化を図り得る被覆電線の表面汚れ検出装置を提供することを主目的とする。
【課題を解決するための手段】
【0008】
上記目的を達成すべく請求項1記載の被覆電線の表面汚れ検出装置は、被覆電線の中心導体と容量結合する注入電極と、前記中心導体と容量結合する検出電極と、検査交流電圧を生成すると共に当該検査交流電圧を前記注入電極を介して前記中心導体に非接触で注入する交流電圧生成部と、前記検査交流電圧の注入に起因して前記被覆電線に発生する電流の一部を前記検出電極を介して入力すると共に検出電圧に変換して出力する電流検出部と、前記検査交流電圧の電圧値に対する前記検出電圧の電圧値の比率を算出すると共に当該算出した比率が予め決められた基準比率以上のときに、前記被覆電線の表面が汚れていると判別する処理部とを備えている。
【0009】
また、請求項2記載の被覆電線の表面汚れ検出装置は、請求項1記載の被覆電線の表面汚れ検出装置ポンプ回路において、前記被覆電線の表面が汚れていると前記処理部によって判別されたときにその旨を出力する出力部を備えている。
【発明の効果】
【0010】
請求項1記載の被覆電線の表面汚れ検出装置によれば、生成した検査交流電圧を注入電極を介して被覆電線の中心導体に非接触で注入する交流電圧生成部と、検査交流電圧の注入に起因して被覆電線の表面の汚れの層を介して流れる電流の一部を検出電極を介して入力する電流検出部とを備えて、被覆電線の表面の汚れを検出するため、渦電流発生用の大きな電流を発生させる電源を不要にすることができる結果、装置の小型化および低コスト化を図ることができる。
【0011】
請求項2記載の被覆電線の表面汚れ検出装置によれば、被覆電線の表面が汚れているときに、出力部がその旨を出力するため、被覆電線の表面が汚れていることを確実に把握することができる。
【図面の簡単な説明】
【0012】
【図1】検出装置1の構成図である。
【図2】被覆電線12の表面に汚れの層13が形成されていない状態での検出装置1の動作を説明するための説明図である。
【図3】被覆電線12の表面に汚れの層13が形成されている状態での検出装置1の動作を説明するための説明図である。
【発明を実施するための形態】
【0013】
以下、被覆電線の表面汚れ検出装置の実施の形態について、添付図面を参照して説明する。
【0014】
最初に、被覆電線の表面汚れ検出装置1(以下、「検出装置1」ともいう)の構成について、図面を参照して説明する。
【0015】
検出装置1は、図1に示すように、注入電極2、検出電極3、交流電圧生成部4、電流検出部5、A/D変換部6、処理部7および出力部8を備え、商用電源11から出力された商用電圧Vacを伝送するための被覆電線12の表面が汚れているか否かを非接触で検出する。被覆電線12は、一例として、商用電圧Vacを伝送する中心導体12a、および絶縁被覆12bを備えている。
【0016】
注入電極2および検出電極3は、被覆電線12に対向して非接触の状態で配設されて、中心導体12aとそれぞれ容量結合する。
【0017】
交流電圧生成部4は、電圧生成回路4aおよび電圧増幅回路4bを備えている。電圧生成回路4aは、予め規定された電圧値(振幅)であって、商用電圧Vacの周波数(商用周波数)とは異なる周波数(例えば商用周波数を超える周波数)の交流電圧V1を生成する。電圧増幅回路4bは、交流電圧V1を所定の増幅率で増幅して検査交流電圧V2として注入電極2に出力する。この構成により、交流電圧生成部4は、生成した既知の電圧値(振幅)の検査交流電圧V2を注入電極2を介して被覆電線12の中心導体12aに非接触で注入する。
【0018】
電流検出部5は、信号増幅回路5aおよび検波回路5bを備えている。信号増幅回路5aは、一例として電流電圧変換回路で構成されて、種々の要因で被覆電線12に発生する電流Iのうちの検出電極3を介して入力する電流Idを検出電圧Viに変換して出力する。この場合、この電流Idは、例えば、中心導体12aで伝送される商用電圧Vac、および外来ノイズによって中心導体12aに誘起されるノイズ電圧に起因して生じる電流Id1と、交流電圧生成部4から出力される検査交流電圧V2のうちの中心導体12aに注入される検査交流電圧V2および被覆電線12の表面(絶縁被覆12bの表面)に汚れの層13(図3参照)が存在しているときにはこの層13に注入される検査交流電圧V2に起因して生じる電流Id2との合成電流となる。
【0019】
検波回路5bは、同期検波回路として構成されて、検出電圧Viを交流電圧V1に同期して検波することにより、検出電圧Viに含まれている電圧のうちから、ノイズや商用電圧Vacに起因して発生する電流Id1に基づく電圧Vi1を除去すると共に、交流電圧生成部4による検査交流電圧V2の中心導体12aや汚れの層13への注入に起因して発生する電流Id2に基づく電圧Vi2のみを検出して、この電圧Vi2の振幅(電圧値)に応じて電圧値が変化する直流電圧としての検出電圧Vdを出力する。
【0020】
A/D変換部6は、検出電圧Vdを予め決められた周期でサンプリングすることにより、検出電圧Vdの電圧値を示す電圧データDdを出力する。本例では、検出電圧Vdの電圧値は、上記したように電圧Vi2の振幅(電圧値)に応じて変化するものであるため、電圧データDdは、電流Id2の電流値を示すデータでもある。
【0021】
処理部7は、一例として、CPUおよびメモリ(いずれも図示せず)を備えて構成されている。また、処理部7は、検査交流電圧V2の電圧値に対する電圧データDdで示される電圧値の比率k(=Vd/V2)に基づいて、被覆電線12の表面に汚れの層13が存在するか否か(つまり、被覆電線12の表面が汚れているか否か)を判別する判別処理を実行する。処理部7のメモリには、既知である検査交流電圧V2の電圧値(振幅)と、比率kについての基準比率krefとが予め記憶されている。この場合、基準比率krefとは、被覆電線12の表面の汚れが許容できる状態のときの最大の比率kであり、実験などで予め算出された値である。出力部8は、一例として、液晶ディスプレイなどの表示装置で構成されて、判別処理の結果を画面に文字やマークなどで表示する。
【0022】
次いで、検出装置1の動作について、図面を参照して説明する。
【0023】
まず、図2に示すように、被覆電線12の表面に汚れの層13が存在していないときの動作について説明する。
【0024】
この場合、注入電極2は、被覆電線12の中心導体12aと静電容量C1を介して容量結合している。また、検出電極3は、被覆電線12の中心導体12aと静電容量C2を介して容量結合している。この場合、各静電容量C1,C2は、数pF〜100pF程度であるため、交流電圧V1の周波数を例えば100kHzとしても、各電極2,3と中心導体12aとの間のインピーダンスは10数キロΩ以上の高い値となる。一方、中心導体12aは、商用電源11の内部抵抗Rを介してグランドに接地されるが、この内部抵抗Rの抵抗値は通常高くても数Ω程度であることから、中心導体12aとグランドとのインピーダンスも高くても数Ω程度である。
【0025】
このため、この状態(汚れの層13が存在しない状態)では、交流電圧生成部4から注入電極2を介して中心導体12aに注入された検査交流電圧V2に起因して中心導体12aに発生する電流Id2(交流電圧生成部4から被覆電線12に流れ込む電流)は、その殆どが電流Id1と共に、インピーダンスの低い商用電源11を介してグランドに流れる。したがって、インピーダンスの高い静電容量C2を介して中心導体12aに接続された電流検出部5への電流Id2の入力(破線で示す経路に沿った電流Id2の入力)は殆ど発生しない。これにより、電流検出部5から出力される検出電圧Vdの電圧値は極めて低いものとなる。
【0026】
処理部7は、判別処理において、電圧データDdで示されるこの検出電圧Vdの電圧値についての検査交流電圧V2の電圧値に対する比率kを算出し、さらに、算出した比率kと基準比率krefとを比較する。この場合、上記したように検出電圧Vdの電圧値が極めて低いため、算出される比率kも極めて低い値となり、基準比率kref以下となる。したがって、処理部7は、算出した比率kと基準比率krefとの比較の結果、算出した比率kが基準比率krefを下回るため、被覆電線12の表面の汚れは許容範囲内であると判別する。また、処理部7は、この判別結果を表示装置で構成された出力部8の画面に表示させる。
【0027】
次いで、図3に示すように、被覆電線12の表面に汚れの層13が存在しているときの動作について説明する。一般的に、汚れの層13は、大気中の塵や埃が絶縁被覆12bの表面に付着して形成されると共に、大気中の水分(湿気)を含んだ状態となっている。このため、汚れの層13は、絶縁被覆12bの抵抗値よりも低い抵抗値を示す導体層として機能する。
【0028】
これにより、注入電極2は、汚れの層13と静電容量C1aを介して容量結合し、検出電極3は、汚れの層13と静電容量C2aを介して容量結合する。また、汚れの層13は、被覆電線12の中心導体12aとの間に形成される分布容量C3を介して中心導体12aと容量結合している。この場合においても、各静電容量C1a,C2aは、数pF〜100pF程度であるため、交流電圧V1の上記の周波数に対して、そのインピーダンスは10数キロΩ以上の高い値となる。
【0029】
しかしながら、汚れの層13の方が中心導体12aよりも各電極2,3に近い位置に存在しているため、交流電圧生成部4から注入電極2を介しての被覆電線12への検査交流電圧V2の注入に起因して静電容量C1aに流れる電流Id2は、図3に示すように、その一部の電流Id2aが、汚れの層13および静電容量C2aを介して検出電極3から電流検出部5に入力され、他の一部の電流Id2bが、静電容量C1a、汚れの層13、分布容量C3、中心導体12aおよび商用電源11を介して、電流Id1と共にグランドに流れる。
【0030】
また、汚れの層13の抵抗値が低いほど(被覆電線12の表面の汚れが酷くなるほど)、注入電極2から静電容量C1aを介して汚れの層13に注入される電流Id2aは増加し、その結果、検出電極3から電流検出部5に入力される電流Id2aの電流値も増加する。なお、分布容量C3は、各静電容量C1a,C2aとほぼ同じ数pF〜100pF程度であるため、交流電圧V1の上記の周波数に対して、そのインピーダンスは10数キロΩ以上の高い値となる。このため、分布容量C3を介して中心導体12aに一旦注入された電流Id2bのうち、再度、分布容量C3を介して汚れの層13に伝達され、さらに検出電極3を介して電流検出部5に入力される電流は極めて少ない。したがって、電流検出部5から出力される検出電圧Vdの電圧値は、被覆電線12の表面の汚れが少なくなれば小さくなり、汚れが多くなれば大きくなる(汚れの程度に応じて変化する)。
【0031】
このため、被覆電線12の表面の汚れが許容範囲内のときには、算出される比率kは基準比率kref以下となることから、処理部7は、判別処理において、算出した比率kが基準比率kref以下であるという結果に基づき、被覆電線12の表面の汚れは許容範囲内であると判別する。一方、被覆電線12における表面の汚れが許容範囲を超えるときには、算出される比率kは基準比率krefを上回る状態となることから、処理部7は、判別処理において、算出した比率kが基準比率krefを上回るという結果に基づき、被覆電線12の表面の汚れは許容範囲外である(被覆電線12の表面が汚れている)と判別する。また、処理部7は、この判別結果を表示装置で構成された出力部8の画面に表示させる。
【0032】
このように、この検出装置1では、交流電圧生成部4が被覆電線12の中心導体12aと容量結合する注入電極2を介して検査交流電圧V2を中心導体12aに非接触で注入している状態において、被覆電線12の表面に汚れの層13が存在しているときには、電流検出部5が、この汚れの層13に流れる電流Id2aを被覆電線12の中心導体12aと容量結合する検出電極3を介して入力して検出電圧Vdに変換して出力し、処理部7が、この検出電圧Vdを示す電圧データDdに基づいて被覆電線12の表面が汚れているか否かを判別する。
【0033】
したがって、この検出装置1によれば、上記の交流電圧生成部4および電流検出部5を備えた構成によって、被覆電線12の表面の汚れを検出することができるため、渦電流発生用の大きな電流を発生させる電源を不要にすることができる結果、検出装置1の小型化および低コスト化を図ることができる。
【0034】
また、この検出装置1によれば、被覆電線12の表面が汚れていると処理部7によって判別されたときにその旨を出力する出力部8を備えたことにより、出力部8からの出力に基づいて、被覆電線12の表面が汚れていることを確実に把握することができる。特に本例では、出力部8を表示装置で構成して、判別結果を画面に表示するようにしたことにより、被覆電線12の表面が汚れているとの判別結果を目視にて確実に把握することができる。
【0035】
なお、上記の検出装置1では、処理部7による判別の結果(汚れの層13の有無)を出力部8としての液晶ディスプレイなどの表示装置に表示させる構成を採用しているが、出力部8をインジケータやスピーカ(またはブザー)で構成して、光や音で判別結果を出力する構成を採用することもできる。この構成を採用して、被覆電線12の表面が汚れているときに、インジケータを点灯させたり、スピーカなどを鳴動させることにより、被覆電線12の表面が汚れていることをオペレータに確実に認識させることができる。また、出力部8を伝送装置で構成して、判別結果を他の装置に伝送する構成を採用することもできる。
【符号の説明】
【0036】
1 検出装置
2 注入電極
3 検出電極
4 交流電圧生成部
5 電流検出部
7 処理部
12 被覆電線
12a 中心導体
k 比率
kref 基準比率
V2 検査交流電圧
Vd 検出電圧

【特許請求の範囲】
【請求項1】
被覆電線の中心導体と容量結合する注入電極と、
前記中心導体と容量結合する検出電極と、
検査交流電圧を生成すると共に当該検査交流電圧を前記注入電極を介して前記中心導体に非接触で注入する交流電圧生成部と、
前記検査交流電圧の注入に起因して前記被覆電線に発生する電流の一部を前記検出電極を介して入力すると共に検出電圧に変換して出力する電流検出部と、
前記検査交流電圧の電圧値に対する前記検出電圧の電圧値の比率を算出すると共に当該算出した比率が予め決められた基準比率以上のときに、前記被覆電線の表面が汚れていると判別する処理部とを備えている被覆電線の表面汚れ検出装置。
【請求項2】
前記被覆電線の表面が汚れていると前記処理部によって判別されたときにその旨を出力する出力部を備えている請求項1記載の被覆電線の表面汚れ検出装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2013−19710(P2013−19710A)
【公開日】平成25年1月31日(2013.1.31)
【国際特許分類】
【出願番号】特願2011−151440(P2011−151440)
【出願日】平成23年7月8日(2011.7.8)
【出願人】(000227180)日置電機株式会社 (982)
【Fターム(参考)】