説明

複合燃料製造方法

【課題】石炭火力発電所の混焼における石炭粒体あるいは微粉炭又は煤粒子や植物系バイオマスの利用を向上できる複合燃料の製造方法を提供する。
【解決手段】
粒径2mm以下の可燃粒体又は繊維長100mm以下繊維太さ2mm以下の可燃繊維体に液体充填材を付着させる工程と、液体充填材の付着した可燃粒体又は繊維体に粒径2mm以下の微粉炭又は煤粒子を付着させ混合しつつ熱風加熱して複合粒体を造粒する造粒混合工程と、を含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、バイオマス等の可燃粒体と煤などの炭素微粒子をも含む微粉炭とを混合した組成物からなる複合燃料を製造する方法に関する。
【背景技術】
【0002】
バイオマスとは、元来、生態学における生物現存量を示す概念で、化石資源を除くエネルギー源や原材料などの生物資源全体を指す用語として、一般的に、再生可能な生物由来の有機性資源としてよく知られている。
【0003】
バイオマスは「廃棄物系」「未利用系」「作物系」に大別され、「廃棄物系」とは、生活や産業活動によって生じるいわゆる副産物、一般に、産業廃棄物を示しており、「未利用系」とは、現状では有効利用されていない農産物の非食用部、間伐材、林地残材などであり、その他が、作物系となっている。
【0004】
近年、地球温暖化問題、石油資源枯渇問題等々により、循環型のエネルギーであるバイオマスエネルギーとして化石燃料の代替となり得る新エネルギーの一つ植物系のバイオマス燃料が注目されている。植物系バイオマスが燃えるときに二酸化炭素は出ている。その二酸化炭素は原材料の草や木が育つ間に吸収したものなので、全体で見ると二酸化炭素排出ゼロと見なされ、バイオマス燃料の使用により二酸化炭素の総排出量が増えないと考えられている。
【0005】
バイオマスエタノール、バイオディーゼルなど液体系のバイオマス燃料が石油資源を一部代替し得るとして注目されているが、固体系のバイオマス燃料でも、例えば、効率よく燃焼させるため微粉炭として石炭を使用する石炭火力発電においてバイオマス混焼技術が開発されている(例えば、非特許文献1参照)。
【先行技術文献】
【特許文献】
【0006】
【非特許文献1】「FOCUS NEDO」 Vol.4 No. 15, pp15−16, 第15号平成16年7月10日発行
【発明の概要】
【発明が解決しようとする課題】
【0007】
バイオマス混焼技術、すなわち物性及び燃焼性が大きく異なる石炭及び植物系バイオマスを効率良く混焼させるための技術では、既存の石炭火力発電の設備を使用するため、さまざまな取り組みがなされている。
【0008】
石炭火力発電所におけるバイオマス混焼は、大別して2種類の方法がある。一つは、木幹や木皮(バーク)の削りチップなど木質バイオマスを燃料石炭とともに既設のミル(微粉炭機)に投入して粉砕し粉末として、微粉炭とバイオマス粒の混合燃料を既設のバーナを用いてボイラで燃焼させる方法と、もう一つは、石炭用微粉炭機とは別に木質バイオマス専用のミルを設けかつ、石炭用バーナとは別にバイオマス用バーナを設けてボイラで燃焼させる方法である。
【0009】
前者のバイオマス混焼方法は、木質バイオマスと燃料石炭をともに微粉炭機にて粉砕しているので火力発電設備改造が少ない。石炭火力発電の通常の微粉炭機では繊維質の多い木質バイオマスが粉砕しにくいために、微粉炭機へ投入するバイオマスの混合割合が数%を越えると微粉炭機の電力消費量が増加する。
【0010】
後者の木質バイオマス専用のミルを設けるバイオマス混焼方法では、微粉炭とバイオマスの混合割合を大きくとることができるが、前者に比べて大幅なボイラ設備改修の必要がある。
【0011】
一方、固定床燃焼方式、流動床燃焼方式、噴流床燃焼方式のいずれの石炭火力発電においても、石炭を粉砕し粒体あるいは微粉炭としてボイラで燃焼させる。よって、いずれのバイオマス混焼方法の方法でも、従前と変わらず、微粉炭機は必要であり、微粉炭機による大量石炭の粉砕処理により、本来の燃焼に供さない微粉炭の未使用分の増加する。すなわち、燃焼に利用されない石炭粒体あるいは微粉炭のリサイクルや廃棄処理が必要となる。
【0012】
さらに、石炭火力発電の他、石油火力発電においても、その燃焼後の排煙から大量の未燃カーボンを含む重油灰(煤塵)が集塵機により集積され、その煤粒子のリサイクルや廃棄処理が必要となる。ここでは、煤など重油灰(煤塵)に含まれる炭素を主成分とする微粒子を煤粒子と称する。
【0013】
そこで、本発明の目的は、火力発電所の混焼における石炭粒体あるいは微粉炭又は煤粒子や植物系バイオマスの利用を向上できる複合燃料の製造方法を提供することにある。
【課題を解決するための手段】
【0014】
本発明の複合燃料の製造方法は、粒径2mm以下の可燃粒体又は繊維長100mm以下繊維太さ2mm以下の可燃繊維体に液体充填材を付着させる工程と、
前記液体充填材の付着した可燃粒体又は繊維体に粒径2mm以下の微粉炭又は煤粒子を付着させ混合しつつ熱風加熱して複合粒体を造粒する造粒混合工程と、を含むことを特徴とする。
【0015】
上記の複合燃料の製造方法においては、前記可燃粒体又は繊維体が、コーヒー抽出糟、茶殻、大豆糟、漢方薬抽出糟、焼酎搾り糟、柑橘類果皮粉砕物、オガ屑及び製紙スラッジの粉砕物からなる群より選ばれた1種以上の粉末原料であることとすることができる。
【0016】
上記の複合燃料の製造方法においては、前記可燃粒体又は繊維体の表面に微粉炭又は煤粒子を付着させて表面に微粉炭又は煤粒子の層を形成することとすることができる。
【0017】
上記の複合燃料の製造方法においては、前記混合工程で得られた前記複合粒体をプレス成型機により成型する工程を含むこととすることができる。
【0018】
上記の複合燃料の製造方法においては、前記複合粒体をプレス成型機により板状に成型する工程を含むこととすることができる。
【発明の効果】
【0019】
本発明によれば、バイオマス等の粉砕物からなる植物系可燃粒体又は繊維体に液体充填材を付着させ、液体充填材付着の可燃粒体又は繊維体に微粉炭又は煤粒子を所定の割合で混合し熱風加熱しつつ、造粒することにより、複合粒体の複合燃料が生成される。さらに、複合粒体の複合燃料を、可燃粒体又は繊維体間の粘結材としての液体充填材と微粉炭又は煤粒子の層を圧着することにより、例えば、板状の高密度成型燃料を得ることができ、貯蔵及び輸送に適した固体燃料を製造できる。この固体燃料の破砕及び粉砕処理により、フレーク状の複合燃料として使用できる。
【0020】
微粉炭又は煤粒子のそれぞれの粒子形状、サイズや比重に違いがある場合、均一に混合しても粉体のままでは搬送や移動中の振動などにより偏りが出るが、均一な混合に引き続き造粒すると、粒一つ一つの中の各成分の比率が一定のまま固定化される。
【0021】
粉炭のままでは流動性が高く、一気に流れすぎ微粉炭機に留まらない、発塵性が高く輸送効率が悪いなど、粉体であるので様々な問題が発生するが、造粒による嵩密度が増加した複合粒体によってかかる問題を解消することができる。
【0022】
微粉炭又は煤粒子を複合粒体にすることにより、粒体単位重量あたりの表面積が小さくなるので、水分を徐々に外部に放出でき、造粒することにより複合粒体同士との接する部分が少なくなり、乾燥性を制御することができる。
【0023】
また、石炭とバイオマスを同時に混焼すると、燃焼効率が上昇したり、或いはバイオマスに含まれる窒素分が石炭に含まれる窒素分より少ないため、排ガス中におけるNOxの濃度を低減できるとともに、石炭のみの燃焼において生成される熱合成NOxの低減を図ることもできる。またプレス成型機による成型燃料の成型時の高速回転化を図ることにより、成型燃料の量産性が向上できるとともに、製造コストを低減できる。更に板状の成型燃料の破砕及び粉砕処理によって、各種ボイラーに用いられるフレーク状燃料や、火力発電に用いられる微粉状燃料など、多目的用途に対応した複合燃料を製造できる。この結果、微粉状複合燃料の混焼により燃焼性を改善できるとともに、低負荷燃焼時における高効率化を図ることができる。
【図面の簡単な説明】
【0024】
【図1】本発明の実施形態の複合燃料製造方法における複合粒体の製造手順を示すブロック線図である。
【図2】本発明の実施形態の複合燃料製造方法における粗混合工程に用いる攪拌タンク及び液体充填材タンクを示す概略斜視図である。
【図3】本発明の実施形態の複合燃料製造方法における混合造粒工程に用いる複合燃料製造装置を示す概略斜視図である。
【図4】本発明の実施形態の複合燃料製造方法における例えば板状に成型された複合燃料の製造を示す概略斜視図である。
【図5】本発明の実施形態の複合燃料製造方法における例えば板状に成型された複合燃料の粉砕を示す概略斜視図である。
【図6】本発明の実施例の複合燃料の発熱量の重油灰中水分量依存性を示すグラフである。
【符号の説明】
【0025】
12 植物残渣粉末
13 液体充填材
14 微粉炭又は煤粒子
15 第1混合原料
17 液体充填材タンク
21 攪拌タンク
22 アジテータ
31 ハウジング
32 スクリューアジテータ
33 ホッパ
34 排出口
35 複合粒体
35b 板状の複合燃料
36 乾燥熱風循環配管
37 湿度調整配管
38 微粉炭又は煤粒子の調整配管
41、42 平板型
51、52 平行粉砕ロール
【発明を実施するための形態】
【0026】
以下に本発明の実施形態を図面を参照しつつ説明する。
【0027】
<複合粒体の原料>
複合粒体の原料は、微粉炭又は煤粒子、植物系可燃粒体又は繊維体及び液体充填材である。
【0028】
粒径2mm以下の石炭粒や石炭粉(微粉炭)又は煤粒子を含む微粉炭又は煤粒子を用意する。煤粒子は粒径をサブマイクロメートル(数百nm)から数百μmの炭素を主成分とする粒子である。石炭の粉粒体はその粒径により、少なくとも2種に分級され、例えば、粒径1mm以下とこれを越える粒径に分けておく。微粉炭又は煤粒子は製鉄所、火力発電所からの廃棄物として供給されるものが好ましく利用される。原材料の煤粒子は燃焼後に電気集塵機で回収された重油灰(煤塵)(EP(Electron Particle)灰)であってもよく、EP灰から有価金属を回収した後のEP灰であっもよい。石炭の粉粒体では200メッシュ(目開75μm)以下の微粉炭を大量に含む原料の使用が好ましい。原材料の石炭には、褐炭、亜瀝青炭、瀝青炭等の炭種にかかわらず広範囲の石炭を原料とすることができる。
【0029】
植物系可燃粒体又は繊維体はバイオマス粉砕物が好ましい。植物系バイオマス粉砕物は、植物残渣廃棄物である各種の食品飲料工場から、例えば、コーヒー抽出糟、茶殻、大豆糟、焼酎搾り糟、柑橘類果皮粉砕物などが各工場から供給される。また、例えば、漢方薬抽出糟などは製薬工場で或る程度粉砕されて供給される。
【0030】
さらに、植物残渣には、木工所から供給されるオガ屑などのバイオマス粉砕物も挙げられる。
【0031】
さらにまた、製紙工場からの廃棄物として供給される製紙スラッジも植物系可燃粒体として利用できる。製紙工場では再生紙工場も含めて、原料リサイクルが進んでおり、その中で再生紙製造における古紙からパルプ繊維を回収するだけでなく製紙用無機薬品である炭酸カルシウム、クレー、タルクを回収する技術も進んでおり、回収後の残分の製紙スラッジにはパルプ短繊維やインク成分等も含まれているため焼却できる。よって製紙スラッジも植物残渣に含めることができる。
【0032】
これら植物残渣を用いて、水分率が20%以下に自然乾燥され、かつ粒径が2mm以下粒状物であれば粉砕せずに、これより大きい場合には粒径が2mm以下の粒状に粉砕されて、植物系可燃粒体が生成される。或いは、長い植物残渣の場合、最大直径(太さ)が2mm以下、最大長さ(繊維長)100mm以下の繊維状又は棒状に粉砕されて、可燃繊維体が生成される。ここでは、説明上、可燃繊維体も含めて可燃粒体と総称する。
【0033】
また、粒径2mm以下の可燃粒体又は繊維長100mm以下繊維太さ2mm以下の可燃繊維体とするのは、これらの範囲外では植物系可燃粒体表面に塗される微粉炭又は煤粒子の付着量が不足するからである。
【0034】
液体充填材は粘結材として機能する。液体充填材として、水、廃油などが挙げられる。廃油は自動車整備工場からの廃棄物として供給されるエンジンオイルなどの廃油が好ましく利用される。
【0035】
<原料の調製>
図1は本発明の実施形態の複合燃料の製造手順を示すブロック線図である。
【0036】
<植物残渣>
植物残渣を、例えば、天日干しにして脱水、乾燥する(図1のステップS1)。なお、フィルタリングにより植物残渣から金属片など挟雑物を予め取り除いておく。
【0037】
その後、植物残渣を、粉砕し粉末にする(図1のステップS2)。但し、コーヒー抽出糟など既に所定粒度の粉末となっているものは粉砕工程は不要となる。
【0038】
その後、植物残渣粉末を、JIS標準篩を用いて少なくとも2種類に分級する(図1のステップS3)。
【0039】
次に、分級された植物残渣粉末をそれぞれ容器に貯留する(図1のステップS4)。
【0040】
<微粉炭又は煤粒子>
製鉄所、石炭火力発電所からの廃棄物として供給される石炭粉粒体を、天日干しにして脱水、乾燥する(図1のステップS21)。なお、フィルタリングにより石炭粉粒体から金属片など挟雑物を予め取り除いておく。同様に、石油火力発電所などから供給された煤粒子の水分調整を行って保存しておく。
【0041】
その後、石炭粉粒体を、JIS標準篩を用いて少なくとも2種類に分級する(図1のステップS23)。
【0042】
その後、石炭粉粒体から分級された微粉炭及び煤粒子などをそれぞれ容器に貯留する(図1のステップS24)。
【0043】
<粘結材:液体充填材>
自動車整備工場などからの廃棄物として供給される各種の廃油をろ過する(図1のステップS31)。すなわち、フィルタリングによりそれぞれ廃油から金属片など挟雑物を予め取り除いておく。
【0044】
その後、分類された廃油ごとに、それぞれ容器に貯留する(図1のステップS34)。
【0045】
粘結材としては、更に、水も利用でき、さらに、パルプ産業廃棄物である黒液、廃油、廃グリース等の工業廃棄物、および工業糖蜜等を使用することにより、低い成型圧力で高強度、高燃焼効率複合燃料を製造することもできる。
【0046】
<粗混合工程>
図2に示すように、それぞれ計量された分級された植物残渣粉末12の1種類と微粉炭又は煤粒子14の1種類と廃油などの液体充填材13とを、混合し、第1混合原料15を得る(図1のステップS45)。水に代表される粘結材の注入方法は液体噴霧されず、攪拌タンク21内のアジテータ22の分散力が優れているためスプレー無しの棒状一括注液でもよい。
【0047】
この工程では、攪拌タンク21内に、植物残渣粉末12、液体充填材13及び微粉炭又は煤粒子14を投入して、アジテータ22で投入物を攪拌させつつ混合する。これにより、植物残渣粉末12の表面全体に比較的効率良く液体充填材13を付着させ、さらに、微粉炭又は煤粒子14も付着させ、第1混合原料15を得る。
【0048】
なお、この工程では、液体充填材タンク17から液体充填材13を噴霧して他の投入物と同時に混合させたが、植物残渣粉末12の投入後、液体充填材13を先に投入し、その後、微粉炭又は煤粒子14を後から投入し混合してもよい。
【0049】
また、植物残渣粉末12に液体充填材13を接触させて植物残渣粉末12の表面全体に液体充填材13を付着させる方法としては、攪拌タンク21に植物残渣粉末12を搬送するベルトコンベヤ(図示せず)などの上の載せて搬送しているときに、この植物残渣粉末12に液体充填材13を先に噴霧しておく方法も挙げられる。すなわち、可燃粒体の表面に微粉炭又は煤粒子を被覆する方法としては、含浸法(浸漬法)、塗布法、噴霧法等を適宜使用できる。
【0050】
<混合造粒工程>
次に、本発明の混合造粒工程を添付の図面に基づいて具体的に説明する。
【0051】
上記の粗混合工程にて粗混練された第1混合原料15を図3に示すような複合燃料製造装置で調製混合しつつ造粒する(図1のステップS46)。
【0052】
図3に示す複合燃料製造装置は、長手中空シリンダ型のハウジング31と、このハウジング31内にその長手方向に沿って設けられたスクリューアジテータ32と、を備えている。複合燃料製造装置は、図3に示すように、ハウジング31を水平方向から傾斜するように支持台(図示せず)に支持され、高い側のハウジング31の投入始端側に上方に開いたホッパ33を設け、低い側のハウジング31の排出終端側に下方に開いた排出口34が設けられている。排出口34の下方には、得られる造粒物の搬送手段が可動自在に設けられている。
【0053】
スクリューアジテータ32は、ハウジング31の長手方向に伸長する回転軸32b周りに螺旋状に配列された複数の攪拌幹体32c(歯体)が植設され、回転軸32bがフィーダ用モータ(図示せず)により回転駆動されるように構成されている。スクリューアジテータ32の回転により、ホッパ33からハウジング31内に投入された第1混合原料15がハウジング31の投入始端側から排出終端側へに攪拌幹体32cで圧送しつつ複合粒体35を造粒されるように構成されている。スクリューアジテータ32の回転速度に応じて、その複数の攪拌幹体32c(歯体)の各々の形状を変化させたものを使用したり、攪拌幹体32c(歯体)の螺旋状に配列のピッチを変化させたものを使用することにより、造粒される複合粒体の粒度を調整する。
【0054】
更に、図3に示すような複合燃料製造装置には、ハウジング31の投入始端側から排出終端側へ乾燥熱風が循環する配管が施されている。配管36はハウジング31の投入始端側のホッパ33の上端にてその一端吸気口が開放接続され、その他端は排出終端側の排出口34上に吐出口が開放接続され、その途中に気流乾燥器が配置される。
【0055】
この乾燥熱風循環配管での熱風加熱は、加熱ガス発生源(図示せず)からの酸素の少ないガスを吹込むことにより行うことが好ましく、この加熱により複合粒体の乾燥が同時に行われる。上記循環ガスは水蒸気を多く含みかつ酸素の少ない安全な雰囲気で循環されることが好ましい。また熱風加熱温度を80〜100℃の範囲内に限定したのは、80℃未満では複合粒体中に十分な量の水蒸気が保持されず、100℃を越えると圧力を大気圧以上の圧力に上昇させる必要があるからである。
【0056】
更に、図3に示すような複合燃料製造装置におけるハウジング31の投入始端側のホッパ33近傍には、液体充填材タンク(図示せず)から又は水槽から液体充填材を湿度調整のために噴霧する配管37が設けられている。湿度調整配管37はその吐出口がハウジング31に開放接続され、バルブ操作によりその途中の第1混合原料15に液体充填材が添加される。
【0057】
また更に、図3に示すような複合燃料製造装置におけるハウジング31の中間点近傍には、微粉炭又は煤粒子タンク(図示せず)から、分級され乾燥した微粉炭又は煤粒子を湿度調整及び微粉炭又は煤粒子層コーティングのために供給する配管38が設けられている。微粉炭又は煤粒子調整配管38はその吐出口がハウジング31に開放接続され、バルブ操作によりその途中の第1混合原料15に微粉炭又は煤粒子が添加される。
【0058】
次に、上記のように構成された複合燃料製造装置の作用について説明する。
【0059】
第1混合原料15は予め計量されホッパ33に溜められた後、バルブ操作により一気にハウジング31内へ投入される。粉塵が発生する場合、集塵管(図示せず)の接続により、外部への粉塵漏れを防止できる。
【0060】
ホッパ33に投入された第1混合原料15は、所定量ずつ下方に移動し、ハウジング31内を通って排出口34から落下する。第1混合原料15はハウジング31内を通過する際には熱風にさらされ、水分を奪われて乾燥する。このような乾燥移動することにより、第1混合原料15は徐々に乾燥され複合粒体35となる。
【0061】
詳述すれば、一括投入された原第1混合原料15は、スクリューアジテータ32の回転によって発生する高い剪断力と強力な撹拌混合力によって、あたかも粉砕機を通過させたかのような状態に微細化され、均一分散される。植物残渣と微粉炭又は煤粒子の間の液体架橋(水又は廃油)により、植物残渣と微粉炭又は煤粒子が接近し、原料全体の嵩密度が次第に増加する。そして更なる混合継続で、植物残渣と微粉炭又は煤粒子の凝集体同士が粘結材の液体架橋により接合し、造粒の核を形成する。
【0062】
そして、造粒の原理として粘結材の架橋内の圧力は負圧であり、粘結材の表面張力と相まって植物残渣と微粉炭又は煤粒子の間に働く付着力となる。
【0063】
そして、植物残渣と微粉炭又は煤粒子の間にはこのような粘結材架橋に代表される付着力と、重力や機械力に代表される分離力が働き、そのバランスの結果として或るサイズの複合粒体が形成される。アジテータ速度を上げると複合粒体同士の接触機会が増加し粒の成長速度が速まる一方、分離力が強くなり到達できるサイズが小さくなる。逆にアジテータ速度を下げると分離力が弱まり、複合粒体をより大きく成長させることができる。よって造粒の進行度に合わせてアジテータ速度を最適にして、目標サイズの複合粒体を得ることができる。
【0064】
一方、液体架橋を形成する粘結材の添加比率は、多い方が複合粒体の成長速度が速くなり、また大きな複合粒体を得ることが可能となる。しかし多すぎると各々の複合粒体のサイズが収束せずに成長を続け、複合粒体表面に押出される粘結材が過多となり、複合粒体が崩壊し、やがて全体が一体化していわゆる「混練」の状態となる。
【0065】
複合粒体の形成(造粒)は複合粒体自体が回転運動をすることが本質的に重要な要素であるので、スクリューアジテータ32の攪拌幹体32cとの接触による瞬間的な回転運動だけではなく、その後の慣性による回転運動も必要な場合には、更にはハウジング31を回転させ、材料全体の「転動」を助ける構造を設けてもよい。
【0066】
複合粒体の整粒を撹拌造粒で行う場合、複合粒体の形状は真球形から離れてその表面の凹凸も多く見られる。しかし、複合粒体表面が濡れた状態となっても、熱風乾燥により、造粒された複合粒体同士の固着を防止することができる。また、造粒終了前に乾燥した微粉炭又は煤粒子を投入混合し、表面の粘結材を吸収させることによりこうした固着を防ぐことも可能となる。この際、乾燥した微粉炭又は煤粒子を添加することにより複合粒体表面への「コーティング処理」が可能となる。複合粒体の表面に微粉炭又は煤粒子層を形成し、自然乾燥また粘着が低下しない温度で加熱乾燥すればよい。
【0067】
なお、上記では製造装置のバッチ運転を説明したが、嵩密度増加や単重増加を目的として処理量を重視しつつ、粒内混合度や形状および粒度分布にとらわれない場合には連続運転を選択してもよい。
【0068】
<プレス成型工程>
図4に示すように、複合燃料製造装置で得られた複合粒体35を空冷等により室温まで冷却した後に、プレス成型機により所定の形状に成型することができる。
【0069】
一対の平板型の一方の平板型41上に複合粒体35を供給し(図4(a))、複合粒体35の上から平板型の他方の平板型42を圧力をかけて押圧し(図4(b))、薄い板状の複合燃料35bに成型できる(図4(c))。
【0070】
また、所定間隙で離間した外周面が平滑な一対の平行ロールを有するプレス成型機(図示せず)で、平行ロール間に複合粒体35を供給して連続的に薄い板状に成型してもよい。
【0071】
図5に示すように、得られた板状の複合燃料35bを所定堅さまで乾燥させた後、所定間隙で離間しそれぞれが外周面に平行歯群が設けらた一対の平行粉砕ロール51、52により、ベルトコンベアなどで板状の複合燃料35bを平行粉砕ロール間に供給して不連続的に粉砕して粉砕片を生成してもよい。
【0072】
プレス成型機により強い剪断力で繊維質の植物残渣粉末に与えながら高い圧縮力で板状の複合燃料35bが成型されるので、繊維質の植物残渣粉末が互いに強く絡み合い、密度の高い燃料を得ることができる。この結果、変形し易くなって成型し易くなった粘結材的性質を有する植物残渣粉末間に微粉炭又は煤粒子が圧着されて一体化されるので、板状の複合燃料35bを微粉砕化処理しても、植物残渣粉末及び微粉炭又は煤粒子の単離が起り難い。従って、機械的強度が高く貯蔵性の良好な種々の形状及び寸法の板状の複合燃料35bを製造できる。
【実施例1】
【0073】
石炭火力発電の熱量保証を以下の実験により確認した。
【0074】
火力発電所から供給された微粉炭と、飲料工場から供給されたコーヒー抽出糟と、自動車整備工場から供給されたエンジンオイル(廃油)と、を用いた。
【0075】
微粉炭は、200メッシュ(目開75μm)以下75%、100メッシュ以下90%及び水分20%以下の粉体であった。
【0076】
コーヒー抽出糟は、コーヒーミルで粉砕された、いわゆる粗挽き(18〜20メッシュ)、中挽き(24〜28メッシュ)及び細挽き(30〜32メッシュ)を主に含む水分20%以下の粒体であった。
【0077】
上記微粉炭とコーヒー抽出糟(植物残渣:可燃粒体)と廃油とを、1:0.5:0.001(重量部)の配合割合で混合し、試料1として、同1:1:0.001(重量部)の配合割合で混合し、試料2として、同1:1.5:0.001(重量部)の配合割合で混合し、試料3として、上記の複合燃料製造装置で調製しつつ造粒して、複合粒体の燃料を製造した(下記、表1参照)。
【0078】
コーヒー抽出糟に代えて、食品飲料工場から供給された茶殻、製薬工場から供給された漢方薬抽出糟、食品飲料工場から供給された大豆糟及び製紙工場から供給された製紙スラッジ(それぞれ水分20%以下)を用いて、それ以外上記試料1〜3と同様にして、下記表2〜5に示す配合割合で、試料4〜15を製造して、それぞれ複合粒体の燃料を製造したところ、すべて熱量保証を満たすことを確認した。
【0079】
【表1】

【0080】
【表2】

【0081】
【表3】

【0082】
【表4】

【0083】
【表5】

【実施例2】
【0084】
石炭火力発電の熱量保証を以下の実験によりさらに確認した。
【0085】
石油発電所から供給された煤粒子の2つのロット(湿潤煤粒子:重油灰1(水分46.84wt%)及び重油灰2(水分32.63wt%))を、それぞれ乾燥(水分0wt%)して成分を調べた。その結果を表6に示す。
【0086】
【表6】

さらに、原料に微粉炭に代え煤粒子(重油灰)とした以外、上記実施例1と同様に上記コーヒー抽出糟(原料a)及びエンジンオイル(0.001重量部)を用い、下記の表7の配合割合(重量部)で混合し、複合燃料製造装置で調製しつつ造粒して、複合燃料(試料1、2、3)を製造して、熱量分析を行ったところ、原料a割合が試料1に比べ試料3で3倍に増加しても熱量保証を満たすことを確認した。
【0087】
【表7】

さらにまた、試料1、2、3,の複合燃料の発熱量の重油灰中の水分量を代えたものを調製し、それぞれに関する発熱量を測定し発熱量の水分量依存について調べた。試料1については0%から14.7%,30.0%,39.2%へ、試料2については0%から29.1%へ、試料3については0%から30.0%へ変化させた。その結果を表8に示す。
【0088】
【表8】

上記実験(乾燥(水分0wt%)をも含む)の試料1、2、3の複合燃料○、□、△の発熱量の重油灰中水分量依存を図に示す。バイオマスなどの可燃粒体の配合割合と微粉炭又は煤粒子の水分量調節とを行えば、所望の発熱量を達成し得る複合燃料が製造できる事が分かった。
【0089】
以上により、本発明に係る複合燃料製造方法について、可燃粒体として、コーヒー抽出糟、漢方薬抽出糟、茶殻、大豆糟、及び製紙スラッジを用いた実施形態について説明したが、本発明はこれに限定されず、可燃粒体として、焼酎搾り糟、柑橘類果皮粉砕物、オガ屑及び木屑の粉砕物からなる群より選ばれた1種以上の粉末原料を用いて、当業者が容易になしえる追加・削除・変更・改良等は、本発明に含まれる。

【特許請求の範囲】
【請求項1】
粒径2mm以下の可燃粒体又は繊維長100mm以下繊維太さ2mm以下の可燃繊維体に液体充填材を付着させる工程と、
前記液体充填材の付着した可燃粒体又は繊維体に粒径2mm以下の微粉炭又は煤粒子を付着させ混合しつつ熱風加熱して複合粒体を造粒する造粒混合工程と、を含むことを特徴とする複合燃料の製造方法。
【請求項2】
前記可燃粒体又は繊維体が、コーヒー抽出糟、茶殻、大豆糟、漢方薬抽出糟、焼酎搾り糟、柑橘類果皮粉砕物、オガ屑及び製紙スラッジの粉砕物からなる群より選ばれた1種以上の粉末原料であることを特徴とする請求項1に記載の複合燃料の製造方法。
【請求項3】
前記可燃粒体又は繊維体の表面に微粉炭又は煤粒子付着させて表面に微粉炭又は煤粒子の層を形成することを特徴とする請求項1または2に記載の複合燃料の製造方法。
【請求項4】
前記混合工程で得られた前記複合粒体をプレス成型機により成型する工程を含むことを特徴とする請求項1〜3のいずれか1に記載の複合燃料の製造方法。
【請求項5】
前記複合粒体をプレス成型機により板状に成型する工程を含むことを特徴とする請求項4に記載の複合燃料の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2011−140610(P2011−140610A)
【公開日】平成23年7月21日(2011.7.21)
【国際特許分類】
【出願番号】特願2010−17254(P2010−17254)
【出願日】平成22年1月28日(2010.1.28)
【出願人】(509337584)
【出願人】(509337595)
【Fターム(参考)】