説明

試料加工方法および装置

【課題】試料加工方法および装置において、集束イオンビームを用いて試料の加工を行う場合に、試料の加工精度を向上することができるようにする。
【解決手段】試料1に位置参照マークを形成し、集束イオンビームによって位置参照マークを走査して、試料1における位置参照マークの位置情報を取得し、この位置情報に基づいて集束イオンビームの試料1に対する照射位置を補正して、試料1の加工を行う試料加工方法であって、試料1上に、マーク部3、4を形成し、集束イオンビームによって、マーク部3、4のいずれかを走査して、マーク部3、4のいずれかの位置情報を取得し、マーク部3、4のいずれかの位置情報に基づいて、集束イオンビームの試料1に対する照射位置を補正して、試料1の加工を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、試料加工方法および装置に関する。例えば、透過型電子顕微鏡による観察に用いるTEM試料の加工など、試料を複数の方向から加工する場合に好適となる試料加工方法および装置に関する。
【背景技術】
【0002】
従来、例えば、透過型電子顕微鏡(Transmission Electron Microscope, TEM)で観察するためのTEM試料を作成する場合に、試料に集束イオンビームを照射して、試料を加工することが行われている。
集束イオンビームによる試料加工では、加工を続けていくと、試料の加工領域が集束イオンビームの電荷によってチャージされていくため、後から加工領域に照射される集束イオンビームが曲げられて正確な加工ができなくなることが知られている。
このため、試料の一部に、位置参照マークを形成しておき、加工用の集束イオンビームを位置参照マークに照射して、試料に対する集束イオンビームの位置ずれを補正する試料加工方法が行われている。
このような試料加工方法および装置として、例えば、特許文献1には、パターン膜加工装置において、基板上に形成されているパターン膜に、集束イオンビームを点状に照射してパターン膜をイオンエッチングして参照パターンを形成し、参照パターンを、集束イオンビームを走査しながら、二次荷電粒子検出器により二次荷電粒子を検出し、画像表示装置に表示するとともに参照パターン位置の画像位置を記憶し、パターン膜を加工するために集束イオンビームの走査範囲を限定して、試料表面の所定位置に、所定回数走査した後、集束イオンビームを参照パターンを含む範囲を走査させて照射して参照パターンを検出し、記憶してある参照位置と比較し、参照位置の移動量を算出し、移動量に基づいて、所定位置を補正するパターン膜修正方法が記載されている。
また、特許文献2には、集束イオンビームを用いて試料を加工する集束イオンビーム加工方法において、所定の時間毎に試料の走査イオン顕微鏡像を取得する工程と、この工程で取得した第(n−1)番目の走査イオン顕微鏡像内の特定領域の画像データD[n−1]と第n番目の走査イオン顕微鏡像内の特定領域の画像データD[n](ただし、n=1,2,3,…)に基づいて像の変位量を求める工程と、求められた変位量だけ集束イオンビームの照射位置をずらして加工位置を補正する工程とを含む方法、およびこの方法を行うための集束イオンビーム加工装置が記載されている。
特許文献2の特定領域には、試料上の位置を参照するために十字溝状のマークが形成されている。
【特許文献1】特公平5−4660号公報
【特許文献2】特開2000−21347号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかしながら、上記のような従来の試料加工方法および装置には、以下のような問題があった。
特許文献1に記載の技術では、加工用の集束イオンビームを参照パターン上に照射することによって、試料上の参照パターンの画像を取得するので、参照するたびに参照パターンが加工されていくため、参照パターンが劣化していく。その結果、参照パターンの画像から算出される位置補正量の精度が経時的に悪化していくという問題がある。
特許文献2に記載の技術では、特許文献1に記載の技術と同様に、特定領域に集束イオンビームを繰り返し照射するので、特定領域が加工され、特定領域に形成されたマークの画像が変化していくものの、直前の特定領域の画像に対する最新の特定領域の画像の移動量を比較して、集束イオンビームの位置補正量を求めるので、加工による経時的なマーク形状の劣化の影響を低減することができるようになっている。
しかしながら、集束イオンビームの照射方向を切り替えて加工を行う場合、マークに対して、斜め方向に照射される集束イオンビームは、マークの形状を非対称的に変化させるため、位置補正量の誤差が大きくなるという問題がある。
【0004】
本発明は、上記のような問題に鑑みてなされたものであり、集束イオンビームを用いて試料の加工を行う場合に、試料の加工精度を向上することができる試料加工方法および装置を提供することを目的とする。
【課題を解決するための手段】
【0005】
上記の課題を解決するために、本発明の試料加工方法は、試料に位置参照マークを形成し、集束イオンビームによって前記位置参照マークを走査して、前記試料における前記位置参照マークの位置情報を取得し、該位置情報に基づいて前記集束イオンビームの前記試料に対する照射位置を補正して、前記試料の加工を行う試料加工方法であって、前記試料上に、前記位置参照マークを複数形成し、前記集束イオンビームによって、前記複数の位置参照マークのいずれかを走査して、前記複数の位置参照マークのいずれかの位置情報を取得し、前記複数の位置参照マークのいずれかの位置情報に基づいて、前記集束イオンビームの前記試料に対する照射位置を補正して、前記試料の加工を行う方法とする。
この発明によれば、試料上に、位置参照マークを複数形成し、集束イオンビームによって、それら複数の位置参照マークのいずれかを走査して、複数の位置参照マークのいずれかの位置情報を取得する。そして、取得した複数の位置参照マークのいずれかの位置情報に基づいて、集束イオンビームの試料に対する照射位置を補正して、試料の加工を行う。このため、試料の加工において、照射位置を補正するために、位置参照マーク1個当たりの集束イオンビームの照射量が低減されるので、位置参照マークの形状劣化を低減することができる。
【0006】
また、本発明の試料加工方法では、前記複数の位置参照マークは、それぞれ、前記集束イオンビームの複数の照射方向のいずれかに略沿う方向に凹凸形状が形成されてなり、前記集束イオンビームを走査させる前記位置参照マークは、前記集束イオンビームの照射方向に略沿う方向に凹凸形状が形成された位置参照マークを選択することが好ましい。
この場合、位置参照マークを走査する場合に、集束イオンビームの照射方向に略沿う方向に凹凸形状が形成された位置参照マークを選択するため、集束イオンビームが、位置参照マークの凹凸形状の形成方向に照射されるため、位置参照マークの形状劣化が低減される。
【0007】
また、本発明の、集束イオンビームを走査させる位置参照マークは集束イオンビームの照射方向に略沿う方向に凹凸形状が形成された位置参照マークを選択する試料加工方法では、前記複数の位置参照マークは、前記試料の加工を行う前に、該加工に用いる集束イオンビームによって形成されることが好ましい。
この場合、試料の加工を行う集束イオンビームによって、試料の加工を行う前に、位置参照マークを形成するので、集束イオンビームの照射方向に沿う方向に凹凸形状が形成された位置参照マークを容易に形成することができる。
【0008】
本発明の試料加工装置は、試料上に形成される複数の位置参照マークの形成位置情報をそれぞれ記憶するマーク位置情報記憶部と、前記試料に集束イオンビームを照射する集束イオンビーム照射部と、該集束イオンビーム照射部から照射される前記集束イオンビームの照射中心軸に対して、前記試料の位置および姿勢を可変に保持する試料保持部と、前記集束イオンビームが前記試料に照射されることで放射される二次荷電粒子の強度を検出する二次荷電粒子検出器と、前記試料保持部および前記集束イオンビーム照射部を制御して、前記集束イオンビームを前記試料上で走査させるビーム走査制御部と、該ビーム走査制御部によって前記集束イオンビームを走査させる走査領域を、前記位置参照マークを含む領域に設定するマーク読取走査領域設定部と、該マーク読取走査領域設定部によって設定された前記走査領域における前記集束イオンビームの走査に同期して、前記二次荷電粒子検出器で検出された前記二次荷電粒子の強度を取得することで、前記位置参照マークを含む領域の画像を取得する画像取得部と、該画像取得部によって取得された画像を画像処理することで、前記画像内の前記位置参照マークの位置を算出する位置情報算出部と、該位置情報算出部によって算出された前記位置参照マークの情報を、予め記憶された前記位置参照マークの形成位置情報と比較して、集束イオンビームの照射位置補正量を算出し、該照射位置補正量によって、前記ビーム走査制御部における走査基準位置を変更する位置補正制御部とを備え、前記マーク読取走査領域設定部は、前記位置参照マークを含む領域を、前記マーク位置情報記憶部に形成位置情報が記憶された複数の位置参照マークに対応する複数の領域の間で選択的に切り替えることができるようにした構成とする。
この発明によれば、試料保持部に試料を保持し、集束イオンビーム照射部から照射される集束イオンビームの照射中心軸に対して、加工面が直交するように試料を位置決めする。次に、マーク読取走査領域設定部によって、記憶部に形成位置情報が記憶された複数の位置参照マークのうち1つを選択して、この位置参照マークを含む領域を走査領域に設定し、ビーム走査制御部によって、この走査領域に、集束イオンビーム照射部からの集束イオンビームを走査させる。
そして、画像取得部によって、集束イオンビームの走査に同期して二次荷電粒子検出器で検出された二次荷電粒子の強度を取得することで、位置参照マークを含む領域の画像を取得する。
次に位置情報算出部によって、この画像を画像処理し、位置参照マークの位置を算出する。
位置補正制御部では、位置情報算出部によって算出された位置参照マークの位置を、記憶部に記憶された位置参照マークの形成位置情報と比較して、集束イオンビームの照射位置補正量を算出し、この照射位置補正量によって、ビーム走査制御部における走査基準位置を変更する。
これにより、試料に集束イオンビームの照射を繰り返すことで、集束イオンビームの試料に対する照射位置がずれても、位置参照マークの画像に基づいて照射位置を補正することができる。
そして、走査領域に設定する位置参照マークを含む領域は、複数の位置参照マークに対応する複数の領域の間で選択的に切り替えられるようになっているため、位置参照マーク1個当たりの集束イオンビームの照射量が低減されるので、位置参照マークの形状劣化を低減することができる。
なお、本発明の試料加工装置は、本発明の試料加工方法を行うために用いることができる装置となっている。
【0009】
また、本発明の試料加工装置では、前記マーク読取走査領域設定部は、前記試料の加工を行うための前記集束イオンビームの照射方向に応じて、前記位置参照マークを含む領域を、複数の領域の間で選択的に切り替えることができるようにすることが好ましい。
この場合、集束イオンビームの照射方向に応じて、位置参照マークを含む領域を選択的に切り替えることができるので、照射方向による劣化が少なくなる位置参照マークを選択することで、位置参照マークの劣化を低減することができる。
【発明の効果】
【0010】
本発明の試料加工方法および装置によれば、位置参照マークの形状劣化を低減することができるので、集束イオンビームを用いて試料の加工を行う場合に、試料の加工精度を向上することができるという効果を奏する。
【発明を実施するための最良の形態】
【0011】
以下では、本発明の実施形態について添付図面を参照して説明する。すべての図面において、実施形態が異なる場合であっても、同一または相当する部材には同一の符号を付し、共通する説明は省略する。
【0012】
[第1の実施形態]
まず、本発明の第1の実施形態に係る試料加工装置について説明する。
図1は、本発明の第1の実施形態に係る試料加工装置の概略構成を示す模式的な斜視図である。図2は、本発明の第1の実施形態に係る試料加工装置の概略構成を示す模式的な断面図である。図3は、本発明の第1の実施形態に係る試料加工方法によって加工された試料の一例を示す模式的な斜視図である。図4(a)は、図3のA視(B視)の部分拡大図である。図4(b)は、図4(a)のC−C断面図である。図5は、本発明の第1の実施形態に係る試料加工装置の制御ユニットの機能ブロック図である。
なお、図中に記載のXYZ座標系、xyz座標系は、方向参照の便宜のために各図共通に設けたものである。XYZ座標系は、装置設置面に固定された座標系であり、Z軸正方向が鉛直方向の上側を示し、XY平面が水平面を示す。xyz座標系は、試料に固定された座標系であり、後述する加工面1aがxy平面に平行で、z軸正方向からz軸負方向に向かう方向が、加工面1aに直交する加工を行う場合の集束イオンビーム照射方向になっている。
【0013】
本実施形態の試料加工装置100は、図1、2に示すように、真空室13と、イオンビーム照射系20(集束イオンビーム照射部)と、試料1を保持する試料台14と、試料台14を可動保持する試料ステージ16と、二次荷電粒子検出器18と、ガス銃11と、制御ユニット30と、表示部38とを備えている。
真空室13は、内部を所定の真空度まで減圧可能になっており、上記の制御ユニット30および表示部38を除く各構成品はそれらの一部または全部が真空室13内に配置されている。
【0014】
このような構成を有する試料加工装置100は、例えば、半導体ウェハや半導体チップなどからなる試料1を、イオンビーム照射系20から出射されるイオンビーム20A(集束イオンビーム)によって加工するものである。加工種類は特に限定されないが、特に試料1を複数方向から加工する場合に適しており、例えば、試料1に走査型電子顕微鏡(Scanning Electron Microscope, SEM)などで断面観察するために断面を形成する加工や、試料1から透過型電子顕微鏡で観察するためのTEM試料を切り出す加工に好適に用いることができるものである。
【0015】
まず、本実施形態の試料加工における試料1の加工形状の一例について説明する。
本実施形態の試料1から、図3に示すように、図示上側(z軸正方向側)の加工面1aをz軸負方向側(図示矢印A参照)にエッチングすることで、穴部1A、1B、および穴部1A、1Bで挟まれたzx平面に平行な壁部1dを形成し、観察断面を含むTEM試料2を壁部1dの中間部から切り出す。
本実施形態では、イオンビーム20Aのxy平面上での照射位置の位置補正を行うための位置参照マークであるマーク部3を形成するようにしている。
また、TEM試料2を壁部1dから切り出す場合、イオンビーム20Aの照射方向を図示矢印Bの方向に変更してエッチングを行う。この加工を行う前に、イオンビーム20Aの照射方向に直交する方向の照射位置の補正を行う位置参照マークであるマーク部4を、TEM試料2の切り出し位置の側方のマーキング面1c上に形成するようにしている。
【0016】
マーク部3(4)の形状は、イオンビーム20Aをマーク部3(4)上に走査することで発生する二次荷電粒子23の強度からそれぞれの画像を取得できる形状であって、その画像からマーク部3(4)のそれぞれの一定位置を特定できる形状であれば、どのような形状でもよく、本実施形態では、図4(a)、(b)に示すように、直径D(D)、深さh(h)の円筒穴を採用している。ここで、マーク部3(4)の位置は、円筒穴の上端または下端の円の中心O(O)の位置として取得される。
【0017】
以下、試料加工装置100の各構成について説明する。
イオンビーム照射系20は、本実施形態では、光軸が鉛直方向に沿って配置された集束イオンビーム鏡筒を備えており、真空室13内の試料台14の上方に配置されている。そのため、試料台14上に載置された試料1に対して鉛直上方(図示Z軸正方向)からイオンビーム20Aを照射することで、試料1を鉛直下方(図示Z軸負方向)に向かってエッチングすることができるようになっている。
また、イオンビーム照射系20は、制御ユニット30と電気的に接続され、制御ユニット30の制御信号によってイオンビーム20Aの照射位置や照射条件の制御が行われる。
【0018】
イオンビーム照射系20は、集束イオンビーム鏡筒内に、イオンを発生させるとともに流出させるガスフィールドイオン源21と、ガスフィールドイオン源21から引き出されたイオンを集束イオンビームであるイオンビーム20Aに成形するイオン光学系25とを備えている。
【0019】
ガスフィールドイオン源21は、特に図示しないが、例えば、高真空状態に保持されたイオン発生室、先端が原子レベルで尖鋭化されたピラミッド状をなし、タングステンやモリブデンからなる針状の基材に、白金、パラジウム、イリジウム、ロジウム、金等の貴金属を被覆してなるエミッタ、イオン室に微量の希ガス(例えばArガス)を供給するガス供給源、引出電極、および冷却装置などの構成を備える。
このような構成により、ガスフィールドイオン源21は、エミッタと引出電極の間に電圧を印加することで、希ガスイオンが発生させ(電界イオン化)、この希ガスイオンによるイオンビームをイオン光学系25に向けて射出できるようになっている。
【0020】
イオン光学系25は、例えば、ガスフィールドイオン源21側から真空室13側に向けてガスフィールドイオン源21からのイオンビームを集束するコンデンサーレンズと、イオンビームを絞り込む絞りと、イオンビームの光軸を調整するアライナと、イオンビームを試料に対して集束する対物レンズと、試料上でイオンビームを走査する偏向器とが、この順に配置されて構成される。
【0021】
試料ステージ16は、図2に示すように、X軸、Y軸まわりのチルト移動を行うチルト機構16aと、X軸、Y軸、Z軸に沿う平行移動を行うXYZ移動機構16bと、Z軸回りの回転移動を行うローテーション機構16cとからなり、チルト機構16a上に、試料台14が保持されている。
また、チルト機構16a、XYZ移動機構16b、ローテーション機構16cは、それぞれ、制御ユニット30と通信可能に接続され、制御ユニット30からの制御信号によって移動量が制御される。
このため、試料台14と試料ステージ16とは、イオンビーム照射系20から照射されるイオンビーム20Aの照射中心軸に対して、試料1の位置および姿勢を可変に保持する試料保持部を構成している。
【0022】
二次荷電粒子検出器18は、試料1にイオンビーム20Aが走査される際に、試料1から放射される二次荷電粒子23の強度を検出し、制御ユニット30に二次荷電粒子23の強度の情報を送出するものである。二次荷電粒子検出器18の配置位置は、二次荷電粒子23の強度を検出できれば、特に限定されない。本実施形態では、図1、2に示すように、試料1の斜め上方に配置されている。
【0023】
ガス銃11は、試料1の近傍に、イオンビーム20Aによるエッチングのエッチングレートを高めるためのエッチングレート増大用のガスや、後述するマーク部をデポジションによって形成する場合のデポジション用ガス等のガスを供給するものである。
ガス銃11からデポジション用ガスを供給しながら、試料1にイオンビーム20Aを照射すれば、ガスアシストデポジションを行うことができ、試料1上に金属や絶縁体の堆積物あるいは成膜物を形成することができる。
【0024】
制御ユニット30は、試料加工装置100の制御全般を行うもので、例えば、イオンビーム照射系20、試料ステージ16、二次荷電粒子検出器18など、試料加工装置100を構成する各部と電気的に接続されている。
また、制御ユニット30には、二次荷電粒子検出器18から送られた二次荷電粒子の強度情報に基づいて、イオンビーム20Aの走査範囲の画像を表示したり、その画像に、例えば破断面の位置情報などの文字や記号を重ね合わせて表示したりするためのモニタからなる表示部38が接続されている。
【0025】
制御ユニット30の機能構成は、図5に示すように、画像取込部31(画像取得部)、記憶部32、位置情報算出部33、位置補正制御部34、マーク読取走査領域設定部36、およびビーム走査制御部35からなる。
画像取込部31は、二次荷電粒子検出器18からの二次荷電粒子23の強度の検出出力をイオンビーム20Aの走査位置(照射位置)ごとの輝度データとして取り込み、2次元の画像データを生成して、記憶部32に送出するものである。イオンビーム20Aの走査位置情報は、ビーム走査制御部35から取得される。
【0026】
記憶部32は、画像取込部31が取り込んだ画像データを記憶するとともに、位置情報算出部33、位置補正制御部34、ビーム走査制御部35、マーク読取走査領域設定部36での演算、制御に必要な情報や演算結果などを記憶するものである。
例えば、試料1上でのTEM試料2の切り出し範囲の位置情報や、TEM試料2を切り出すためにイオンビーム20Aを走査させる加工手順の情報や、位置参照マークの形成位置情報であるマーク部3、4の中心位置の情報や、マーク部3、4の画像を取得するためにマーク部3、4を含む領域として設定されたイオンビーム20Aの走査領域の情報などが記憶される。
【0027】
位置情報算出部33は、記憶部32に記憶された画像データを画像処理して、画像データ内に予め試料1上に形成されたマーク部3、4を検出し、イオンビーム20Aで走査した画像データに基づくマーク部3、4の位置を算出するものである。本実施形態では、例えば、マーク部3、4の円画像を抽出して2値化してから円画像の重心を求めることで、中心O、Oの位置を求めることができる。
位置補正制御部34は、位置情報算出部33によって算出されたマーク部3、4の位置を、予め記憶部32に記憶されたマーク部3、4の形成位置情報と比較して、イオンビーム20Aの照射位置補正量を算出し、ビーム走査制御部35に送出するものである。
【0028】
マーク読取走査領域設定部36は、イオンビーム20Aの走査領域が、マーク部3、4を含むいずれかの領域となるように、走査領域の位置情報を設定し、ビーム走査制御部35に送出するものである。
この走査領域は、試料1のイオンビーム20Aを用いた加工によって発生するチャージなどによって、イオンビーム20Aの照射位置がずれた場合でも、マーク部3、4の位置情報を特定できる範囲を走査できるように設定される。
本実施形態では、図4(a)に示すように、マーク部3(4)の中心O(O)を中心として、マーク部3(4)を、余裕を持って覆うようなW×W(W×W)(ただし、W>D、W>D)の正方形領域である走査領域3A(4A)に設定している。この場合、Δ=(W―D)/2、Δ=(W―D)/2が、それぞれ、イオンビーム20Aの照射位置ずれに対する余裕となる。
【0029】
ビーム走査制御部35は、試料ステージ16およびイオンビーム照射系20を制御して、イオンビーム20Aを試料1上で走査させるものである。
すなわち、記憶部32に記憶された加工手順の情報に基づいて、試料ステージ16を制御し、試料台14に保持された試料1の位置、姿勢が、イオンビーム照射系20の照射軸に対して所定の位置、姿勢となるように、試料1を移動させ、イオンビーム照射系20から照射されるイオンビーム20Aを一定の走査領域内でラスタ走査させる。これにより、ラスタ走査の範囲がエッチングされる。
また、同様に、マーク読取走査領域設定部36からの走査領域の位置情報に基づいて、走査領域3A、3Bのいずれかでラスタ走査させる。これにより、ラスタ走査の範囲で発生する二次荷電粒子23による、マーク部3、4のいずれかの画像を取得することが可能となる。
【0030】
制御ユニット30の装置構成は、専用のハードウェアを用いてもよいが、本実施形態では、CPU、メモリ、外部記憶装置、入出力インターフェースなどを備えたコンピュータによって、演算用、制御用のプログラムを実行させることで実現している。
【0031】
次に、試料加工装置100の動作について説明する。
図6は、本発明の第1の実施形態に係る試料加工方法における位置参照マークを形成する工程を説明する模式的な斜視工程説明図である。図7は、図6に示す工程に続いて試料を加工する工程を説明する模式的な斜視工程説明図である。図8(a)は、本発明の第1の実施形態の位置参照マークの経時変化の一例を示す模式的な平面図である。図8(b)は、図8(a)のD−D断面図である。図9(a)は、集束イオンビームの照射方向が斜め方向になる場合の位置参照マークの経時変化の一例を示す模式的な平面図である。図9(b)は、図9(a)のE−E断面図である。図10は、図7に示す工程に続いて他の位置参照マークを形成する工程を説明する模式的な斜視工程説明図である。図11は、図10に示す工程に続いてTEM試料を切り出す工程を説明する模式的な斜視工程説明図である。
【0032】
試料加工装置100を用いた本実施形態の試料加工方法は、試料1上にイオンビーム20Aの照射方向に応じてマーク部3、4を形成するマーク形成工程と、マーク部3、4等の位置参照マークの位置情報を取得するマーク位置情報取得工程と、マーク位置情報取得工程で取得された位置参照マークの位置情報に基づいてイオンビーム20Aの試料1に対する照射位置を補正して試料1の加工を行う試料加工工程とを備える。
【0033】
はじめに試料台14上の基準位置に試料1を保持させる。そして、記憶部32に記憶された加工手順の情報にしたがって、以下のように試料1を加工していく。
まず、ビーム走査制御部35によって、試料ステージ16を駆動し、イオンビーム照射系20の照射軸を加工面1aの法線方向に一致させる。このとき、図6におけるz軸は、図1、2におけるZ軸に一致されている。また、xy平面に平行な加工面1a上の任意の位置は、XYZ座標系における座標(X,Y,Z)によって記述される(ただし、Zは定数)。
【0034】
次に、加工面1aをz軸負方向に加工する場合のマーク部3を形成するマーク形成工程を行う。
ビーム走査制御部35は、記憶部32からマーク部3の形状および形成位置の情報を取得し、それらの情報に基づいて、イオンビーム20Aが、点Oを中心とする直径Dの円の範囲を走査し、加工面1aから深さhの範囲をエッチングする。これにより、図4に示すようなマーク部3が形成される。
深さhは、マーク部3を読み取るためにイオンビーム20Aを走査したときに二次荷電粒子23によって、識別可能な画像が取得できる程度の深さであればよい。このため、マーク部3の加工量は少ないので、加工中に試料1のチャージの影響はほとんど無視できる。
【0035】
次に、ビーム走査制御部35は、穴部1A、1Bを形成するための情報を記憶部32から取得し、図6における走査領域5A、5Bの範囲にイオンビーム20Aを走査してエッチングを行う。すなわち、図3における傾斜面1b、マーキング面1c、壁部1dなどの形状を形成していく。
このとき、加工が進行すると試料1がチャージされることでイオンビーム20Aが曲げられて、イオンビーム20Aの照射位置が目標位置からずれていく。このため、本方法では、マーク位置情報取得工程を行ってから、試料加工工程を行い、必要に応じて、これらを繰り返しながら、穴部1A、1Bを加工していく。マーク位置情報取得工程を行うタイミングは、適宜設定することができるが、位置精度が粗くてよい場合には低頻度で行い、位置精度を要する部分の加工、例えば、壁部1dの側面を形成する加工などでは、高頻度で行うことが好ましい。
【0036】
マーク位置情報取得工程では、マーク読取走査領域設定部36によって、走査領域3Aの位置情報がビーム走査制御部35に送出される。ビーム走査制御部35では、走査領域3Aをラスタ走査する。また、その際に放出される二次荷電粒子23の強度を二次荷電粒子検出器18によって検出し、走査位置の情報とともに、画像取込部31に送出する。
画像取込部31では、二次荷電粒子検出器18の検出出力を走査位置ごとの輝度データとして取り込み、走査領域3Aの2次元の画像データを生成して、記憶部32に記憶させる。走査領域3Aは、マーク部3を含む領域のため、この画像データには、マーク部3のエッジ部またはマーク部3の底面の円画像が含まれる。
次に、位置情報算出部33によって、この画像データから、マーク部3の中心Oの位置を算出する。例えば、本実施形態では、画像処理によって走査領域3A内の円画像を抽出し2値化してから円画像の重心を求め、走査領域3Aに対する相対的な位置情報を位置補正制御部34に送出する。
以上で、マーク部3に対するマーク位置情報取得工程が終了する。
【0037】
次に、ビーム走査制御部35は、走査領域を加工面1a上で加工を行う領域に移動して、イオンビーム20Aの照射し、試料加工工程を行う。
その際、まず、位置補正制御部34によって、位置情報算出部33で取得された中心Oの走査領域3Aに対する相対的な位置情報を予め記憶部32に記憶されたマーク部3の形成位置情報と比較し、位置情報算出部33で算出された中心Oの位置が、マーク部3の形成位置情報からずれていた場合に、このずれ量からイオンビーム20Aの照射位置補正量を算出し、ビーム走査制御部35に送出する。
本実施形態では、イオンビーム20Aに曲がりが発生せず、照射位置に狂いが生じない場合、走査領域3Aはマーク部3の中心Oと走査領域3Aの対角線の交点とは一致する。イオンビーム20Aの照射位置がずれていると、試料1上での走査領域3Aの位置が移動するため、マーク部3の中心Oが、走査領域3Aの中心に対して位置ずれを起こす。
ビーム走査制御部35では、位置補正制御部34から送出された照射位置補正量によって、記憶部32に記憶された加工位置の情報を補正した位置に、イオンビーム照射系20を走査していく。
【0038】
このように、マーク位置情報取得工程と試料加工工程とを繰り返して、加工面1aをz軸方向に加工していく。そして、図7に示すように、TEM試料2の切り出しを行うための壁部1d、加工面1aの外縁部から壁部1dに向かって深さが漸増する2つの傾斜面1b、TEM試料2を切り出す位置の側方(x軸負方向)に位置する壁部1dのy軸方向負方向側の側面においてマーク部4を形成するためのマーキング面1c、TEM試料2のx軸方向の側面を形成する2箇所の切断溝1eを形成する。
本実施形態では、TEM試料2を切り出すため壁部1dの基端部を切断する際、yz平面内において、壁部1dの傾斜に略沿った方向から、イオンビーム20Aを照射するため、マーキング面1cは、壁部1dの側面に対して、加工面1a側から基端部側に向かうにつれて、y軸負方向側に突出するような傾斜を有する平面となっている。
【0039】
マーク位置情報取得工程と試料加工工程とを繰り返すと、イオンビーム20Aによって、走査領域3Aもエッチングされていく。例えば、深さhだけエッチングされると、図8(a)、(b)に示すように、走査領域3Aは加工面1aから深さhの角穴部6Aに加工され、マーク部3は、その穴底面から深さh(加工面1aから深さ(h+h))の穴部6Bに加工される。
この場合、マーク部3は、イオンビーム20Aの照射方向にエッチングして形成されているため、エッチング深さhが変化しても、xy平面上の位置は変化しない。このため、加工面1aに平行な位置を補正するための参照位置マークとしては、経時的に安定しているものである。
【0040】
ここで、マーク部3の画像を取得するイオンビーム20Aの照射方向が、z軸に対して傾斜された場合について説明する。
この場合、図9(a)、(b)に示すように、マーク部3は、照射方向の傾斜に沿って斜めにエッチングされ、走査領域3A、マーク部3が、それぞれ斜め穴部7A、7Bに変化する。このように、中心Oに対して非対称に加工が進行するため、図9(a)に示すように、斜め穴部7Aのエッジは長円状となり、斜め穴部7Bの底面の隅エッジは円状となり、それぞれから中心を求めると、点Q、Rの位置が得られ、いずれを用いても、マーク部3の中心Oから、x軸方向にずれてしまう。
したがって、この場合には、照射位置補正量は、経時的にずれてしまうことになる。
そこで、本実施形態では、イオンビーム20Aの照射方向を変更して試料加工する場合には、照射方向にエッチングされた他のマーク部を用いてイオンビーム20Aの照射位置補正を行う。
【0041】
次に、上記工程で形成された壁部1dの基端部を切断して、TEM試料2を切り出す試料加工を行う。本実施形態では、x軸方向に直交し、yz平面内で、傾斜面1bの傾斜に略沿う斜め方向を、照射方向とする。
まず、ビーム走査制御部35によって、試料ステージ16のチルト機構16aを駆動し、イオンビーム照射系20の照射軸を加工面1aに対して傾斜させ、図10の照射方向が、図1、2のZ軸負方向に一致するように設定する。
【0042】
この状態からマーク部4を形成するマーク形成工程を行う。
ビーム走査制御部35は、記憶部32からマーク部4の形状および形成位置の情報を取得し、それらの情報に基づいて、試料ステージ16を駆動し、図10に示すように、イオンビーム20Aが、点Oを中心とする直径Dの円の範囲を走査し、マーキング面1cから深さhの範囲をエッチングする。これにより、図4に示すようなマーク部4が形成される。
【0043】
次に、マーク部4に対するマーク位置情報取得工程を行う。すなわち、ビーム走査制御部35は、上記と略同様にして、マーク読取走査領域設定部36から走査領域4Aの位置情報を取得し、走査領域4Aをラスタ走査し、二次荷電粒子検出器18、画像取込部31によって、マーク部4の画像データを取得する。そして、位置情報算出部33によって、この画像データから、マーキング面1c上におけるマーク部4の中心Oの位置を算出し、位置補正制御部34に送出する。
以上で、マーク部4に対するマーク位置情報取得工程が終了する。
【0044】
次に、図11に示すように、2箇所の切断溝1eに挟まれた壁部1dの基端部の切断領域8を切断する試料加工工程を行う。
まず、位置補正制御部34によって、位置情報算出部33で取得された中心Oの位置情報を予め記憶部32に記憶されたマーク部4の形成位置情報と比較し、位置情報算出部33で算出された中心Oの位置が、マーク部4の形成位置情報からずれていた場合に、このずれ量からイオンビーム20Aの照射位置補正量を算出し、ビーム走査制御部35に送出する。
ビーム走査制御部35では、位置補正制御部34から送出された照射位置補正量によって、記憶部32に記憶された切断領域8の位置情報を補正した位置に、イオンビーム照射系20を走査していく。
そして、必要に応じてこのようなマーク位置情報取得工程と試料加工工程とを繰り返して、切断領域8を照射方向にエッチングし、図3に示すように、TEM試料2を切り出す。
この試料加工工程において、走査領域4Aが繰り返し走査される場合、上記走査領域3Aの場合で説明したのと同様に、走査領域4Aおよびマーク部4が照射方向にエッチングされていくが、上記と同様に、マーク部4の中心Oのマーキング面1cに平行な平面での位置は、経時的に安定しているため、正確な照射位置補正を行うことができる。
以上で、試料1から、TEM試料2を切り出す試料加工が終了する。
【0045】
本実施形態の試料加工装置100を用いた試料加工方法によれば、試料1に対してイオンビーム20Aの照射方向を変更して試料加工を行う場合に、照射方向に応じて、イオンビーム20Aの照射位置を補正するための位置参照マークとしてマーク部3、4を設けるので、それらに対してマーク位置情報取得工程を繰り返しても、マーク部3、4が取得すべき位置情報に係る形状劣化を低減することができるので、イオンビーム20Aを用いて試料の加工を行う場合に、試料の加工精度を向上することができる。
【0046】
[第2の実施形態]
次に、本発明の第2の実施形態に係る試料加工方法について説明する。
図12は、本発明の第2の実施形態に係る試料加工方法によって加工された試料の一例を示す模式的な斜視図である。
【0047】
本実施形態の試料加工方法は、上記第1の実施形態に係る試料加工装置100を用いて行うことができるものであり、図12に示すように、イオンビーム20Aの1つの照射方向に対応して、複数の位置参照マークであるマーク部51、52を設けて試料加工を行う方法である。以下、上記第1の実施形態と異なる点を中心に説明する。
【0048】
本実施形態の試料加工方法について、図12に示す試料50に穴部50Aを加工する場合の例で説明する。
試料50は、試料1と同様の直方体状の部材であり、加工面50aが、試料50に固定されたxyz座標系のxy平面に平行に設けられている。
穴部50Aは、加工面50aから、長辺がx軸方向、短辺がy軸方向に延びる矩形状の範囲をz軸負方向に向かって、一定深さまでエッチングされた角穴であり、内側面50B(y軸正方向側)、50b、50c、50dと、底面50eとから形成される。
ここで、内側面50Bは、試料50内を断面観察するための断面である。このため、内側面50Bの形成位置および加工面精度は、内側面50b、50c、50dに比べて高精度であることが求められる。
【0049】
本実施形態では、まず、加工面50aに、位置参照マークであるマーク部51、52を形成するマーク形成工程を行う。
マーク部51、52は、穴部50Aを形成する近傍位置に、それぞれに対する走査領域51A、51Bが重ならない位置に並列して設けられている。
マーク部51、52の形状は、本実施形態では、図4に示すように、上記第1の実施形態のマーク部3、4と同様の形状と同様な円穴であり、それぞれ中心O、O、直径D、D、深さh、hである。また、走査領域51A、51Bの大きさは、上記第1の実施形態と同様に余裕を持った大きさの正方形領域からなり、各直径に応じてそれぞれW×W、W×Wに設定される。
マーク部51、52を形成するイオンビーム20Aの条件は、照射方向が、後述する粗加工工程および仕上げ加工工程の照射方向に一致しており、マーク部51、52を良好な形状精度で形成することができれば、それぞれ異なっていてもよいし、共通の条件としてもよい。また、マーク部51,52は、それぞれを順次形成してもよいし、同時に形成してもよい。
【0050】
次に、内側面50Bの位置のy方向負方向側に位置する内側面50C(図示二点鎖線参照)と、内側面50b、50c、50dと、底面50eとからなる角穴を形成する粗加工工程と、内側面50Cを内側面50Bの位置までエッチングして、内側面50Bを観察可能な断面に仕上げる仕上げ加工工程とをこの順に行う。すなわち、本実施形態では、照射方向が同一の2種類の加工工程を備える場合の例になっている。
これらの加工工程において、照射方向は一定で、加工面50aの法線方向である(図12の矢印a参照)。また、これらの粗加工工程および仕上げ加工工程では、それぞれ上記第1の実施形態と同様に、マーク位置情報取得工程、試料加工工程を順次繰り返して加工を進める。
【0051】
粗加工工程では、加工効率を向上するため、イオンビーム20Aのビーム径や出力などの条件を仕上げ加工工程に比べて大きくしたり、あるいはガス銃11からエッチングレート増大用のガスを供給することで、エッチングレートの高いエッチングを行ったりして、加工速度を優先した条件で加工を行う。
本実施形態では、この粗加工工程では、マーク読取走査領域設定部36によって走査領域51Aを選択することにより、マーク部51を参照して、マーク位置情報取得工程を行い、それにより、照射位置補正量を算出して、試料加工工程を行う。
【0052】
次に、仕上げ加工工程では、加工精度を向上するため、イオンビーム20Aのビーム径や出力などの条件を粗加工工程に比べて小さくするなどして、加工速度よりも照射位置精度を優先した条件で加工を行う。
本実施形態では、この仕上げ加工工程では、マーク読取走査領域設定部36によって走査領域52Aを選択することにより、マーク部52を参照して、マーク位置情報取得工程を行い、それにより、照射位置補正量を算出して、試料加工工程を行う。
【0053】
本実施形態の試料加工方法によれば、粗加工工程では、加工速度が優先されたイオンビーム20Aによって、走査領域51Aが走査されるため、イオンビーム20Aの実質的なビーム径が大きくなっている。このため、マーク部51のエッジ部が、経時的に劣化しやすくなっている。まが、イオンビーム20Aの曲がりなどによって、照射方向がわずかにずれた場合には、マーク部51の中心位置がずれやすくなっている。
このようなマーク部51の劣化による照射位置補正量の変化ずれは、マーク部51の深さ方向がイオンビーム20Aの照射方向に一致しているため、粗加工工程では許容できる程度の微小なものである。一方、粗加工工程後に行う、仕上げ加工工程では、許容できない劣化になっている可能性がある。
本実施形態では、仕上げ加工工程では、粗加工工程では参照されないマーク部52を参照するので、粗加工工程におけるイオンビーム20Aの照射位置補正を良好に行うことができ、仮に、マーク部51が粗加工工程で劣化していたとしても、内側面50Bを位置精度が良好な状態で加工することができる。
【0054】
次に、本実施形態の変形例について説明する。
本変形例は、試料50の加工が、粗加工工程であるか、仕上げ加工工程であるか、あるいは複数の加工工程を備えるか否かを問わず、マーク読取走査領域設定部36によって、複数の位置参照マークであるマーク部51、52を経時的に選択的に切り替えて参照するようにしたものである。
例えば、マーク部51、52を、交替して参照しながら、加工を進める。あるいは、マーク部51の参照回数が一定回数を超えたら、マーク部52を参照する。
本変形例によれば、マーク部51、52が、仮に、劣化するとしても、劣化の進行が少ない状態で、参照することが可能となるので、位置精度が良好な加工を行うことができる。
【0055】
なお、上記の説明では、試料の加工時において位置参照マークを走査する集束イオンビームの照射方向に一致する方向に、位置参照マークがエッチングされている場合の例で説明したが、位置参照マークの劣化が許容範囲であれば、位置参照マークのエッチング方向と、位置参照マークを走査する集束イオンビームの照射方向とは異なっていてもよい。すなわち、位置参照マークのエッチング方向と、位置参照マークを走査する集束イオンビームの照射方向とは、略一致していればよい。
例えば、図12に示すように、試料50の加工において、照射方向が矢印aと矢印bとの2方向を切り替えて加工を行う場合に、矢印bの加工によって、マーク部51、52の劣化が許容範囲であれば、マーク部51、52を矢印bの加工時の位置参照マークとして用いてもよい。
【0056】
また、上記の説明では、位置参照マークが集束イオンビームによるエッチングによって形成された穴部の場合の例で説明したが、線状の溝部等の凹部によって形成されていてもよい。例えば、円を描く溝部からなっていてもよい
また、上記の説明では、位置参照マークは走査領域における平面視形状が円状の例で説明したが、位置参照マークの平面視形状はこれに限定されない。例えば、平面視X字状、十字状、V字状、多角形状など、平面状での一定の位置が特定可能な適宜形状を採用することができる。
【0057】
また、上記の説明では、位置参照マークが集束イオンビームによるエッチングによって凹部として形成された場合の例で説明したが、デポジションによって、凸部からなる位置参照マークを形成してもよい。すなわち、位置参照マークは、エッチングおよびデポジションの少なくてもいずれかによって形成される適宜の凹凸形状を採用することができる。
【0058】
また、上記の第1の実施形態の説明では、マーク部4を、照射方向に略直交するマーキング面1cを形成してから形成する場合の例で説明したが、マーク部4をエッチングする深さが確保することができれば、マーキング面1cの傾斜は、照射方向に交差していてもよい。例えば、壁部1dの側面、あるいは壁部1dの側面をy軸方向負方向突出させて面に形成してもよい。
【0059】
また、上記の第1の実施形態の説明では、マーク部4を、穴部1Aを形成してから設ける場合の例で説明したが、加工可能であれば、穴部1Aを形成する前に穴部1Aに相当する試料1を貫通させて形成し、その後に、穴部1Aを形成してもよい。
この場合、穴部1Aを形成する際のチャージを除去する必要がないため、チャージ除去を行う場合に比べて、加工工程が簡素化される。
【0060】
また、上記の説明では、位置参照マークの個数が、2個の場合の例で説明したが、必要に応じて、2個以上の適宜数の位置参照マークを設けてもよい。例えば、加工時の集束イオンビームの照射方向に応じた複数個、加工時の工程数に応じた複数個、位置参照マークの寿命に応じた複数個などを必要に応じて設けることができる。
【0061】
また、上記に説明した各実施形態、変形例に記載されたすべての構成要素は、技術的に可能であれば、本発明の技術的思想の範囲で、置換したり、組み合わせたりして実施することができる。
【図面の簡単な説明】
【0062】
【図1】本発明の第1の実施形態に係る試料加工装置の概略構成を示す模式的な斜視図である。
【図2】本発明の第1の実施形態に係る試料加工装置の概略構成を示す模式的な断面図である。
【図3】本発明の第1の実施形態に係る試料加工方法によって加工された試料の一例を示す模式的な斜視図である。
【図4】図3のA視(B視)の部分拡大図、およびこの部分拡大図のC−C断面図である。
【図5】本発明の第1の実施形態に係る試料加工装置の制御ユニットの機能ブロック図である。
【図6】本発明の第1の実施形態に係る試料加工方法における位置参照マークを形成する工程を説明する模式的な斜視工程説明図である。
【図7】図6に示す工程に続いて試料を加工する工程を説明する模式的な斜視工程説明図である。
【図8】本発明の第1の実施形態の位置参照マークの経時変化の一例を示す模式的な平面図、およびそのD−D断面図である。
【図9】集束イオンビームの照射方向が斜め方向になる場合の位置参照マークの経時変化の一例を示す模式的な平面図、およびそのE−E断面図である。
【図10】図7に示す工程に続いて他の位置参照マークを形成する工程を説明する模式的な斜視工程説明図である。
【図11】図10に示す工程に続いてTEM試料を切り出す工程を説明する模式的な斜視工程説明図である。
【図12】本発明の第2の実施形態に係る試料加工方法によって加工された試料の一例を示す模式的な斜視図である。
【符号の説明】
【0063】
1、50 試料
1a 加工面
1c マーキング面
2 TEM試料
3、4、51、52 マーク部(位置参照マーク)
3A、4A、51A、52A 走査領域
11 ガス銃
14 試料台(試料保持部)
16 試料ステージ(試料保持部)
18 二次荷電粒子検出器
20 イオンビーム照射系(集束イオンビーム照射部)
20A イオンビーム20A(集束イオンビーム)
30 制御ユニット
31 画像取込部(画像取得部)
32 記憶部
33 位置情報算出部
34 位置補正制御部
35 ビーム走査制御部
36 マーク読取走査領域設定部

【特許請求の範囲】
【請求項1】
試料に位置参照マークを形成し、集束イオンビームによって前記位置参照マークを走査して、前記試料における前記位置参照マークの位置情報を取得し、該位置情報に基づいて前記集束イオンビームの前記試料に対する照射位置を補正して、前記試料の加工を行う試料加工方法であって、
前記試料上に、前記位置参照マークを複数形成し、
前記集束イオンビームによって、前記複数の位置参照マークのいずれかを走査して、前記複数の位置参照マークのいずれかの位置情報を取得し、
前記複数の位置参照マークのいずれかの位置情報に基づいて、前記集束イオンビームの前記試料に対する照射位置を補正して、前記試料の加工を行うことを特徴とする試料加工方法。
【請求項2】
前記複数の位置参照マークは、
それぞれ、前記集束イオンビームの複数の照射方向のいずれかに略沿う方向に凹凸形状が形成されてなり、
前記集束イオンビームを走査させる前記位置参照マークは、
前記集束イオンビームの照射方向に略沿う方向に凹凸形状が形成された位置参照マークを選択することを特徴とする請求項1に記載の試料加工方法。
【請求項3】
前記複数の位置参照マークは、
前記試料の加工を行う前に、該加工に用いる集束イオンビームによって形成されることを特徴とする請求項2に記載の試料加工方法。
【請求項4】
試料上に形成される複数の位置参照マークの形成位置情報をそれぞれ記憶するマーク位置情報記憶部と、
前記試料に集束イオンビームを照射する集束イオンビーム照射部と、
該集束イオンビーム照射部から照射される前記集束イオンビームの照射中心軸に対して、前記試料の位置および姿勢を可変に保持する試料保持部と、
前記集束イオンビームが前記試料に照射されることで放射される二次荷電粒子の強度を検出する二次荷電粒子検出器と、
前記試料保持部および前記集束イオンビーム照射部を制御して、前記集束イオンビームを前記試料上で走査させるビーム走査制御部と、
該ビーム走査制御部によって前記集束イオンビームを走査させる走査領域を、前記位置参照マークを含む領域に設定するマーク読取走査領域設定部と、
該マーク読取走査領域設定部によって設定された前記走査領域における前記集束イオンビームの走査に同期して、前記二次荷電粒子検出器で検出された前記二次荷電粒子の強度を取得することで、前記位置参照マークを含む領域の画像を取得する画像取得部と、
該画像取得部によって取得された画像を画像処理することで、前記画像内の前記位置参照マークの位置を算出する位置情報算出部と、
該位置情報算出部によって算出された前記位置参照マークの情報を、予め記憶された前記位置参照マークの形成位置情報と比較して、集束イオンビームの照射位置補正量を算出し、該照射位置補正量によって、前記ビーム走査制御部における走査基準位置を変更する位置補正制御部とを備え、
前記マーク読取走査領域設定部は、
前記位置参照マークを含む領域を、前記マーク位置情報記憶部に形成位置情報が記憶された複数の位置参照マークに対応する複数の領域の間で選択的に切り替えることができるようにしたことを特徴とする試料加工装置。
【請求項5】
前記マーク読取走査領域設定部は、
前記試料の加工を行うための前記集束イオンビームの照射方向に応じて、前記位置参照マークを含む領域を、複数の領域の間で選択的に切り替えることができるようにしたことを特徴とする請求項4に記載の試料加工装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2009−139132(P2009−139132A)
【公開日】平成21年6月25日(2009.6.25)
【国際特許分類】
【出願番号】特願2007−313464(P2007−313464)
【出願日】平成19年12月4日(2007.12.4)
【出願人】(503460323)エスアイアイ・ナノテクノロジー株式会社 (330)
【Fターム(参考)】