説明

負荷回路の保護装置

【課題】半導体スイッチ、或いは該半導体スイッチの下流側に設けられるスイッチをオンとした場合の突入電流と、負荷に生じる過電流とを区別し、過電流が発生した場合にのみ半導体スイッチを遮断して負荷回路を保護できる負荷回路の保護装置を提供する。
【解決手段】電流計15で検出された検出電流I1と、予め設定した閾値電流IrefをコンパレータCMP1で比較し、検出電流I1が閾値電流Irefに達した場合に、半導体スイッチ11を遮断して負荷回路を保護する。また、バッテリVBと半導体スイッチ11を接続する電線上の電圧Vdを測定し、逆起電力が発生して電圧Vdが低下した場合に、これに伴って閾値電流Irefを低下させる。従って、デッドショート発生時には、いち早く検出電流I1が閾値電流Irefに達して半導体スイッチ11を遮断することができ、突入電流が発生した場合には、検出電流I1が閾値電流に達しないので、誤遮断の発生を防止できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、直流電源と負荷との間に設けられる半導体スイッチを用いて負荷の駆動、停止を制御する負荷回路を、過電流から保護する負荷回路の保護装置に関する。
【背景技術】
【0002】
例えば、車両に搭載されるパワーウィンド駆動用モータ、或いはランプ等の負荷は、バッテリより供給される直流電圧をMOSFET等の半導体スイッチをオン、オフ操作することによりその駆動、停止が制御される。
【0003】
このような負荷回路において、過電流が発生した場合に負荷回路を保護するために、閾値電流を設定しておき、負荷電流がこの閾値電流を超えた場合に、半導体スイッチを遮断する保護装置が設けられている。また、半導体スイッチをオンとした直後に発生する突入電流が閾値電流に達した場合に、半導体スイッチの誤遮断が発生することがあり得るので、従来より、例えば特開平11−51983号公報(特許文献1)に開示されているように、半導体スイッチをオンとした直後において、閾値電流を高く設定することにより半導体スイッチの誤遮断を防止することが提案されている。
【0004】
上記の特許文献1では、負荷回路にシャント抵抗を設け、該シャント抵抗に生じる電圧と予め設定した閾値電圧(閾値電流に対応する電圧)とを対比し、シャント抵抗に生じる電圧が閾値電圧を上回った場合に過電流であるものと判定して半導体スイッチを遮断する。更に、半導体スイッチをオンとした直後において、コンデンサに蓄積した電圧を閾値電圧に加算することにより、閾値電圧を通常よりも高く設定し、突入電流による半導体スイッチの誤遮断を防止することが示されている。つまり、突入電流が発生してシャント抵抗に生じる電圧が上昇した場合でも、半導体スイッチがオンとされた直後には閾値電圧が高く設定されているので、シャント抵抗に生じる電圧が閾値電圧を超えることを防止でき、半導体スイッチの誤遮断を防止することができる。
【0005】
しかしながら、特許文献1に記載された技術では、半導体スイッチをオンとした直後に生じる突入電流による誤遮断を防止することができるものの、半導体スイッチをオンとした直後にデッドショートが発生して過電流が流れた場合に、該半導体スイッチを即時に遮断することができないという問題が発生する。即ち、半導体スイッチをオンとした直後においては、閾値電圧(閾値電流)が通常よりも高く設定されているので、過電流と判定するまでの所要時間が長くなってしまい、この間に電線、半導体スイッチ等の回路部品が過熱するという問題が生じる。
【0006】
また、半導体スイッチの下流側には、複数の負荷が設けられることがあり、更に、各負荷に個別のスイッチが設けられる場合がある。このような場合には、半導体スイッチがオンとされ、その後時間が経過して電流が安定した場合であっても、半導体スイッチの下流側に設けられるスイッチがオンとされた場合には、再度突入電流が流れることになり、この突入電流が閾値電流を上回った場合には、半導体スイッチが誤遮断するという問題が発生する。
【特許文献1】特開平11−51983号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
上述したように、特許文献1に開示された従来例は、半導体スイッチをオンとした直後において、閾値電流を高く設定することにより突入電流による半導体スイッチの誤遮断を防止するようにしているので、半導体スイッチをオンとした直後にデッドショート等に起因する過電流が発生した場合には、過電流と判定するまでに長時間を要してしまうという問題が生じる。
【0008】
更に、半導体スイッチの下流側に複数の負荷が設けられ、更に、これらの負荷を駆動するためのスイッチが設けられる場合には、このスイッチがオンとされることにより半導体スイッチに突入電流が流れ、この突入電流により半導体スイッチが誤遮断するという問題が発生する。
【0009】
本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、半導体スイッチ、或いは該半導体スイッチの下流側に設けられるスイッチをオンとした場合の突入電流と、負荷に生じる過電流とを区別し、過電流が発生した場合にのみ即時に半導体スイッチを遮断して負荷回路を保護することが可能な負荷回路の保護装置を提供することにある。
【課題を解決するための手段】
【0010】
上記目的を達成するため、本願請求項1に記載の発明は、直流電源、半導体スイッチ及び負荷を備えた負荷回路に過電流が流れた際に、前記半導体スイッチを遮断して前記負荷回路を保護する負荷回路の保護装置において、前記半導体スイッチに流れる電流を検出する電流検出手段と、前記直流電源と前記半導体スイッチとを接続する電線の任意の点に生じる電圧を検出する電圧検出手段と、過電流を判断するための閾値電流を設定すると共に、前記電圧検出手段で検出される電圧に応じて前記閾値電流を調整する閾値電流調整手段と、前記電流検出手段による検出電流が前記閾値電流に達したか否かを判定し、前記検出電流が前記閾値電流に達したと判定した場合に、遮断信号を出力する遮断制御手段と、外部入力信号に基づいて前記半導体スイッチのオン、オフを切り換えると共に、前記遮断信号が供給された際に、前記半導体スイッチを遮断する駆動制御手段と、を備えたことを特徴とする。
【0011】
請求項2に記載の発明は、前記閾値電流調整手段は、前記電圧検出手段で検出される電圧が低下した場合に、これに応じて前記閾値電流を低下させることを特徴とする。
【0012】
請求項3に記載の発明は、前記電圧検出手段で検出される電圧に上限電圧、及び下限電圧を設定し、前記閾値電流調整手段は、前記下限電圧と上限電圧との間で前記閾値電流を一次関数的に変化させると共に、前記下限電圧以下、及び上限電圧以上の電圧領域では前記閾値電流を一定値に保持することを特徴とする。
【発明の効果】
【0013】
本発明に係る負荷回路の保護装置では、電流検出手段により半導体スイッチに流れる電流を検出し、この検出電流が予め設定した閾値電流に達した場合に、半導体スイッチを遮断して負荷回路を過熱から保護する。また、直流電源と半導体スイッチを接続する電線上の任意の点の電圧を検出し、この電圧に応じて閾値電流を調整する。例えば、検出した電圧が低下した場合に閾値電流を低下させる。従って、負荷回路にデッドショートが発生した場合に、検出電流が急激に上昇すると共に、直流電源と半導体スイッチとを接続する電線に逆起電力が発生することにより閾値電流が低下するので、より早い時点で検出電流が閾値電流に達して半導体スイッチを遮断することができる。
【0014】
また、半導体スイッチがオンとされたり、該半導体スイッチの下流側に設けられるスイッチがオンとされて突入電流が発生した場合には、閾値電流が低下するものの、この低下量は少ないので、検出電流が閾値電流に達することはない。従って、不定期でオン、オフが操作されるスイッチ操作に起因する突入電流による半導体スイッチの誤遮断を防止することができる。
【発明を実施するための最良の形態】
【0015】
以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の一実施形態に係る負荷回路の保護装置が適用された負荷回路の構成を示す回路図である。同図に示すように、この負荷回路1は、例えば車両に搭載されるランプ、モータ等の負荷12a〜12cの駆動を制御するための回路であり、車両に搭載されるバッテリ(直流電源)VBと各負荷12a〜12cとの間にMOSFET等の半導体スイッチ11が設けられ、該半導体スイッチ11のオン、オフを制御することにより、各負荷12a〜12cの駆動、停止が制御される。更に、負荷12a,12bの上流側には、スイッチ13a,13bが設けられており、負荷12a,12bの駆動、停止を個別に操作することができる。
【0016】
バッテリVBと半導体スイッチ11を接続する電線上には、該電線上の点の電圧を検出するための電圧計14(電圧検出手段)が設けられている。また、半導体スイッチ11と各負荷12a〜12cを接続する電線上には半導体スイッチ11に流れる電流を検出するための電流計15(電流検出手段)が設けられている。そして、電圧計14で検出される電圧信号、及び電流計15で検出される電流信号は、制御回路17に出力される。
【0017】
制御回路17は、電圧計14より出力される電圧信号に基づいて過電流であるか否かを判定するための閾値電流(これをIrefとする)を決定する閾値電流調整部21(閾値電流調整手段)と、該閾値電流調整部21で決定した閾値電流Irefと電流計15で検出される検出電流(これをI1とする)を比較するコンパレータCMP1(遮断制御手段)と、該コンパレータCMP1の出力信号、及び半導体スイッチ11のオン、オフを切り換える外部信号が入力される論理回路AND1を備えている。
【0018】
電流計15は、電流センサやシャント抵抗を用いて半導体スイッチ11に流れる電流を検出する。また、電流センス機能を備える半導体スイッチを用いる場合には、半導体スイッチから直接電流信号を取り出す構成としても良い。
【0019】
論理回路AND1の出力信号は、半導体スイッチ11のオン、オフの切り換え制御を行う駆動回路(駆動制御手段)16に出力される。
【0020】
コンパレータCMP1は、プラス側入力端子に閾値電流Irefが供給され、マイナス側入力端子に検出電流I1が供給される。そして、検出電流I1が閾値電流Irefを上回った場合に、コンパレータCMP1の出力信号はHレベルからLレベルに切り替わる。
【0021】
閾値電流調整部21は、電圧計14で検出される電圧(これをVdとする)に基づいて、閾値電流Irefを調整する。図2は、閾値電流調整部21の構成を示す回路図である。図2に示すように、閾値電流調整部21は、抵抗R1、ダイオードD1、抵抗R2、R3の直列接続回路を備え、抵抗R1の一端である点p1には電圧Vdが供給され、抵抗R3の一端はグランドに接続されている。また、ダイオードD1と抵抗R2の接続点である点p4はダイオードD2を介して下限電圧Vminが出力される点p2に接続され、更に、点p4はツェナーダイオードZD1を介してグランドに接続されている。また、抵抗R2とR3の接続点が閾値電流信号の出力点p3とされている。
【0022】
このような構成により、図2に示す点p1に電圧Vdが供給され、点p2には電圧の下限値を決める下限電圧Vmin(例えば、5[V])が供給されると、点p3に生じる電圧が閾値電流信号として生成され、この閾値電流信号が図1に示すコンパレータCMP1に出力される。以下、図3に示す特性図を参照して詳細に説明する。
【0023】
いま、電圧Vdが小さい値であり、下限電圧Vmin以下である場合には、点p4の電圧は下限電圧Vminに支配されるので、点p4の電圧は一定値Vminとなる。その結果、点p3の電圧は例えば4[V]の一定値となる。そして、電圧4[V]は閾値電流30[A]に対応付けられており、最小の閾値電流は30[A]となる(図3のg1の領域)。
【0024】
また、電圧Vdが下限電圧Vminよりも大きくなると、点p4の電圧は下限電圧Vminよりも大きくなるので、点p3に生じる電圧は上昇する。即ち、電圧Vdの上昇に伴って点p3に生じる電圧は一次関数的に増加する(図3のg2の領域)。そして、電圧VdがツェナーダイオードZD1の設定電圧である上限電圧Vmax(例えば20[V])に達すると、点p4の電圧は上限電圧Vmaxで一定値となる。その結果、点p3の電圧は例えば16[V]の一定値となる。そして、電圧16[V]は閾値電流90[A]に対応付けられており、最大の閾値電流は90[A]となる(図3のg3の領域)。
【0025】
上記のことから、閾値電流調整部21では、電圧計14で検出される電圧Vdに基づいて、30〜90[A]の範囲で閾値電流を変動させることができる。ここで、電圧Vdが下限電圧Vmin以下となった場合に閾値電流Irefを一定値とすることにより、通常時の電圧変動やノイズによる半導体スイッチ11の誤遮断を防止できる。また、上限電圧Vmaxを半導体スイッチ11の耐性以下の電圧に設定することにより、デッドショート発生時に半導体スイッチ11を保護することができる。
【0026】
なお、上記では閾値電流調整部21が図2に示す回路構成を備える例について説明したが、本発明はこれに限定されるものではなく、マイコンやICを用いてソフトウェア的に閾値電流調整部21を構成することも可能である。
【0027】
次に、図4に示す特性図を参照して、本実施形態に係る負荷回路の保護装置の動作について説明する。図4において、曲線S1は半導体スイッチ11に流れる電流、即ち、電流計15で検出される電流I1の変化を示す特性図であり、曲線S2は電圧計14で検出される電圧Vdの変化を示す特性図であり、曲線S3は閾値電流調整部21で設定される閾値電流Irefの変化を示す特性図である。また、曲線S4は、従来技術を採用した場合の閾値電流の変化を示す特性図である。
【0028】
いま、図1に示すスイッチ13a,13bが共にオフとされている状態で、制御回路17にオン信号が入力されると、コンパレータCMP1の出力はHレベルであるから論理回路AND1の出力がHレベルとなる。このHレベル信号を受けて、駆動回路16は半導体スイッチ11をオンとする。そして、図4に示す時刻t0において半導体スイッチ11がオンとされると、負荷12cに電流が流れる。この際、突入電流が発生し、図4の符号q1に示すように検出電流I1(曲線S1)が急激に上昇する。この電流上昇に伴って、半導体スイッチ11とバッテリVBとの間の電線には、該電線に存在するインダクタンス成分により逆起電力が発生することになり、電圧Vd(曲線S2)が減少する。これに伴って、閾値電流Iref(曲線S3)は低下する。この場合において、閾値電流Irefの低下量はそれほど大きくならず、検出電流I1は閾値電流Irefを上回ることはなく、コンパレータCMP1の出力信号はHレベルを維持する。即ち、半導体スイッチ11のオン状態が維持される。その後、曲線S1に示す検出電流I1は通常電流まで低下し、これに伴って電圧Vdも通常電圧まで上昇するので、閾値電流Irefは通常の数値に戻る。
【0029】
その後、時刻t1にて負荷回路1にデッドショート(バッテリVBとグランドが直接短絡するような事故)が発生した場合には、検出電流I1(曲線S1)は急激に上昇し、更に、この電流増加に伴って過大な逆起電力が発生するので、電圧Vd(曲線S2)は急激に低下し、閾値電流Iref(曲線S3)も同様に急激に低下する。その結果、時刻t3にて検出電流I1が閾値電流Irefを上回ることになり、図1に示すコンパレータCMP1のマイナス側入力端子に供給される信号がプラス側入力端子に供給される信号を上回るので、コンパレータCMP1の出力信号がLレベルに変化する。
【0030】
その結果、論理回路AND1の出力信号がLレベルに切り替わり、駆動回路16は半導体スイッチ11を遮断する。従って、負荷回路1にデッドショートが発生した場合には、時刻t3の時点で半導体スイッチ11を遮断することができ、負荷回路1を構成する半導体スイッチ11、及び電線等の各種構成要素を過熱から保護することができる。
【0031】
また、従来例で示した曲線S4に示す閾値電流と対比すると、従来例の場合では、時刻t4で検出電流I1が曲線S4に示す閾値電流を上回ることになり、本実施形態に係る負荷回路の保護装置を採用することにより、デッドショート発生時にはより早い時点で半導体スイッチ11を遮断することができることが理解される。
【0032】
次に、図5に示す特性図を参照して、半導体スイッチ11がオンとされ、突入電流が収まって通常電流となった後に、スイッチ13aまたは13bがオンとされた場合の動作を説明する。図5において、曲線S11は半導体スイッチ11に流れる電流、即ち、電流計15で検出される電流I1の変化を示す特性図であり、曲線S12は電圧計14で検出される電圧Vdの変化を示す特性図であり、曲線S13は閾値電流調整部21で設定される閾値電流Irefの変化を示す特性図である。また、曲線S14は、従来技術を採用した場合の閾値電流の変化を示す特性図である。
【0033】
図5に示すように、時刻t10で半導体スイッチ11がオンとされ、電流が通常電流まで低下した後、時刻t11でスイッチ13aがオンとされると、符号q11に示すように、再度突入電流が発生し、検出電流I1(曲線S11)が上昇する。しかし、前述した半導体スイッチ11をオンとした場合と同様に、閾値電流Iref(曲線S13)が低下するものの、検出電流I1が閾値電流Irefを上回ることはなく、半導体スイッチ11のオン状態が維持される。即ち、半導体スイッチ11がオンとされているときに、該半導体スイッチ11の下流側に設けられているスイッチ13aがオンとされた場合に、半導体スイッチ11が誤遮断することを防止できる。
【0034】
これに対して、従来例で示した曲線S14に示す閾値電流と対比すると、従来例の場合では、曲線S14に示すように閾値電流は半導体スイッチ11がオンとされた時刻t10から徐々に下降しており、符号q11に示す時点で検出電流I1を下回ることになる。従って、突入電流により半導体スイッチ11が誤遮断してしまうことになる。即ち、本実施形態に係る保護装置を採用することにより、半導体スイッチ11の下流側に設けられているスイッチを操作することによる半導体スイッチ11の誤遮断を確実に防止できる。
【0035】
このようにして、本実施形態に係る負荷回路の保護装置では、バッテリVBと半導体スイッチ11との間の電線上の任意の点に生じる電圧Vdを検出し、この電圧Vdに応じて閾値電流Irefを調整し、検出電流I1が閾値電流Irefを上回った場合に、半導体スイッチ11を遮断する。そして、デッドショートが発生した場合には過大な逆起電力が発生するので、電圧Vdが大きく低下し、これに伴って閾値電流Irefが大きく低下するので、より早い時点で半導体スイッチ11を遮断することができる。
【0036】
また、半導体スイッチ11をオンとした直後には、突入電流により逆起電力が発生するものの、閾値電流Irefの低下量はそれほど大きくなく、検出電流I1が閾値電流Irefを上回ることはない。このため、突入電流による半導体スイッチ11の誤遮断を防止できる。更に、半導体スイッチ11をオンとした直後にデッドショートが発生した場合には、即時に半導体スイッチ11を遮断することができる。
【0037】
また、半導体スイッチ11をオンとし、電流が安定した後に下流側のスイッチ13a,13bがオンとされた場合であっても、この際に生じる突入電流は閾値電流Irefを上回ることはなく、半導体スイッチ11が誤遮断することを回避することができる。
【0038】
以上、本発明の負荷回路の保護装置を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。
【0039】
例えば、上記した実施形態では、車両に搭載される負荷回路を保護するための保護装置について説明したが、本発明はこれに限定されるものではない。また、上記した実施形態では、半導体スイッチ11の下流側に3個の負荷12a〜12cが設けられる場合について説明したが、本発明はこれに限定されるものではなく、負荷の個数が1個、2個、4個以上の場合でも良い。
【産業上の利用可能性】
【0040】
負荷回路にデッドショートが発生した場合に、即時に半導体スイッチを遮断して回路を過熱から保護する上で極めて有用である。
【図面の簡単な説明】
【0041】
【図1】本発明の一実施形態に係る保護装置が適用された負荷回路の構成を示すブロック図である。
【図2】本発明の一実施形態に係る負荷回路の保護装置に用いられる閾値電流調整部の構成を示す回路図である。
【図3】本発明の一実施形態に係る負荷回路の保護装置に用いられる閾値電流調整部で設定される電圧と閾値電流との関係を示す特性図である。
【図4】本発明の一実施形態に係る負荷回路の保護装置の、検出電流及び閾値電流を示す特性図である。
【図5】本発明の一実施形態に係る負荷回路の保護装置の、検出電流及び閾値電流を示す特性図である。
【符号の説明】
【0042】
1 負荷回路
11 半導体スイッチ
12a〜12c 負荷
13a,13b スイッチ
14 電圧計(電圧検出手段)
15 電流計(電流検出手段)
16 駆動回路(駆動制御手段)
17 制御回路
21 閾値電流調整部(閾値電流調整手段)
AND1 論理回路
CMP1 コンパレータ(遮断制御手段)

【特許請求の範囲】
【請求項1】
直流電源、半導体スイッチ及び負荷を備えた負荷回路に過電流が流れた際に、前記半導体スイッチを遮断して前記負荷回路を保護する負荷回路の保護装置において、
前記半導体スイッチに流れる電流を検出する電流検出手段と、
前記直流電源と前記半導体スイッチとを接続する電線の任意の点に生じる電圧を検出する電圧検出手段と、
過電流を判断するための閾値電流を設定すると共に、前記電圧検出手段で検出される電圧に応じて前記閾値電流を調整する閾値電流調整手段と、
前記電流検出手段による検出電流が前記閾値電流に達したか否かを判定し、前記検出電流が前記閾値電流に達したと判定した場合に、遮断信号を出力する遮断制御手段と、
外部入力信号に基づいて前記半導体スイッチのオン、オフを切り換えると共に、前記遮断信号が供給された際に、前記半導体スイッチを遮断する駆動制御手段と、
を備えたことを特徴とする負荷回路の保護装置。
【請求項2】
前記閾値電流調整手段は、前記電圧検出手段で検出される電圧が低下した場合に、これに応じて前記閾値電流を低下させることを特徴とする請求項1に記載の負荷回路の保護装置。
【請求項3】
前記電圧検出手段で検出される電圧に上限電圧、及び下限電圧を設定し、前記閾値電流調整手段は、前記下限電圧と上限電圧との間で前記閾値電流を一次関数的に変化させると共に、前記下限電圧以下、及び上限電圧以上の電圧領域では前記閾値電流を一定値に保持することを特徴とする請求項2に記載の負荷回路の保護装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2010−158109(P2010−158109A)
【公開日】平成22年7月15日(2010.7.15)
【国際特許分類】
【出願番号】特願2008−334807(P2008−334807)
【出願日】平成20年12月26日(2008.12.26)
【出願人】(000006895)矢崎総業株式会社 (7,019)
【Fターム(参考)】