説明

Fターム[5H740KK01]の内容

電力変換一般 (12,896) | 主回路スイッチング素子への制御信号の伝達 (818) | 直接駆動するもの (626)

Fターム[5H740KK01]に分類される特許

1 - 20 / 626




【課題】主素子の出力静電容量の増大を防止し、接合容量充電電流に起因するターンオン損失を抑制する半導体スイッチを提供する。
【解決手段】逆導通性能を有し、高耐圧な電圧駆動型スイッチング素子である主素子1と、主素子1に比べ耐圧が低い逆流防止素子3と、主素子1の負極と逆流防止素子3の負極とを接続して主素子1の正極を正極端子とし、逆流防止素子3の正極を負極端子とし、正極端子と負極端子間に負極端子から正極端子に向かう方向が順方向となるように接続し、主素子1と同等の耐圧を有する高速還流ダイオード4と、主素子1の正極に正電圧が印加される方向に接続し、少なくとも主素子1の耐圧より低い電圧パルスを発生するとともに主素子1又は逆流防止素子3がオフする時期と略同期して電圧パルスを出力する予備電圧印加回路5と、を備えた半導体スイッチ。 (もっと読む)


【課題】電圧偏差量または電位量をフィードバックすることなく、複数直列接続された各半導体スイッチング素子の電圧分担を均等化させる。
【解決手段】電圧検出回路7により、直列接続された2つの半導体スイッチング素子A,Bの電圧を、そのうちの片方の半導体スイッチング素子Aの電位を基準にして検出し、比較器10において、半導体スイッチング素子A,Bの電圧を比較し、電圧偏差極性信号をフィードバックする。タイミング制御演算回路12により、1回のスイッチング毎に、前記電圧偏差極性信号に基づいて制御方向を決定し、次回のスイッチング時のゲート信号に対する制御量に対して、決定した制御方向に固定値の制御量を加算し、加算後の制御量を出力すると共に、その加算後の制御量を保持する。そして、タイミング制御回路13により、前記制御量に基づいて、ゲート信号の変化のタイミングを調整する。 (もっと読む)


【課題】入力に帰還する同相ノイズが小さく、小型化・高効率化が容易なブリッジレス・ブースト・コンバータ方式のスイッチング電源装置を提供する。
【解決手段】インダクタンスが略等しい第一及び第二昇圧インダクタ12,14と、マイナス端子が制御グランド20に接続された平滑コンデンサ16を備える。制御回路30によってオン・オフされる第一及び第二スイッチング素子22,26、及びそれらと相補的にオン・オフする整流素子24,28を備える。同じ巻数の3巻線を有する入力線インダクタ42を備え、第一巻線48の出力端48bが第一昇圧インダクタ12の入力端12aに接続され、第二巻線50の出力端50bが第二昇圧インダクタ14の入力端14aに接続される。第三巻線52の入力端52aが制御グランド20に接続され、出力端52bが交流遮断コンデンサ44を介して第二昇圧インダクタ14の入力端14aに接続される。 (もっと読む)


【課題】電力損失が少なく、低コストなスイッチング素子の駆動回路を提供する。
【解決手段】スイッチング素子の駆動回路は、電源と、前記電源の正極性端子とスイッチング素子の制御端子との間に挿入される第1スイッチと、前記電源の負極性端子と前記スイッチング素子の制御端子との間に挿入される第2スイッチと、前記スイッチング素子の電流出力端子に一端が接続される第3スイッチと、前記スイッチング素子の前記電流出力端子に一端が接続される第4スイッチと、前記第3スイッチの他端に高電位側の端子が接続され、前記第4スイッチの他端に低電位側の端子が接続される電圧出力部とを含む。 (もっと読む)


【課題】ノーマリーオフ化したGaN−HEMTを電源回路に用いた場合、長期間電源をオフしている間にノーマリーオンに戻るのを防止する制御回路を提供する。
【解決手段】制御回路は、ソース、ゲート及びドレインを有する第1のスイッチング素子と、第2のスイッチング素子を介して前記ゲートに電圧を供給するバッテリーと、第3のスイッチング素子を介して前記ゲートにPWM信号を供給するPWM信号発生回路と、電源がオフの状態で、前記第2のスイッチング素子をオンして前記ゲートに前記バッテリーの電圧を供給すると共に、前記第3のスイッチング素子をオフし、電源がオンの状態で、前記第3のスイッチング素子をオンして前記ゲートに前記PWM信号電圧を供給すると共に、前記第2のスイッチング素子をオフするゲート制御回路とを有する。 (もっと読む)


【課題】固定が容易で且つ設置スペースを削減できるようにしたスイッチング素子の駆動回路を提供する。
【解決手段】多層配線板8の下面が主電流経路6上に搭載する搭載面とされているため、その多層配線板8の搭載面を平坦面にすることができる。したがって、主電流配線6は、その上面が平坦な設置面として形成されていれば、単に多層配線板8の搭載面を主電流配線6の上面に配置することで設置できる。これにより、コイルLを容易に固定でき設置スペースを削減できる。 (もっと読む)


【課題】スイッチング周波数が高くても、適切にトランジスタの保護を行うことが可能なトランジスタ保護回路を提供する。
【解決手段】本発明の一実施形態に係るトランジスタ保護回路10は、駆動回路30によって電源40の高電位側電圧または低電位側電圧がゲート端子に印加されて、スイッチング制御される電圧駆動型のトランジスタ20の保護を行うためのトランジスタ保護回路である。このトランジスタ保護回路10は、トランジスタ20の保護を実行する保護指令を受けたときに、電源40の高電位側電圧を次第に低下させる電源制御部12を備える。 (もっと読む)


【課題】スイッチング素子をオフするように制御しているにもかかわらず、オフできない異常状態を検出し、スイッチング素子の熱破壊を防止することができる電子装置を提供する。
【解決手段】IGBT110dに流れる電流が電流閾値より大きくなると、電流検出回路125は、IGBT110dに電流が流れていると判断する。制御回路128は、駆動信号がIGBT110dのオフを指示しているにもかかわらず、電流検出回路125がIGBT110dに電流が流れていると判断すると、IGBT110dをオフできない異常状態にあると判断する。そして、オフ保持用FET123aをオンする。その結果、IGBT110dのゲートから電荷が放電され、IGBT110dがオフする。そのため、駆動信号がIGBT110dのオフを指示しているにもかかわらず、IGBT110dをオフできない異常状態を検出し、IGBT110dの熱破壊を防止できる。 (もっと読む)


【課題】電圧制御形の駆動対象スイッチング素子を駆動して且つ集積回路を備える新たな駆動回路およびその製造方法を提供する。
【解決手段】電圧制御形の駆動対象スイッチング素子を駆動して且つ集積回路を備える駆動回路において、前記駆動対象スイッチング素子の開閉制御端子に電荷を充電するための充電経路を備え、前記集積回路には、電流量を規制する内側流通規制要素と、前記充電経路を介した電流の流通および遮断を制御する制御手段と、前記制御手段の出力端子を前記集積回路内の部材に接続することで前記内側流通規制要素を前記充電経路として用いるか前記集積回路の備える外部出力端子に接続するかを切り替える切替回路と、前記集積回路の外部入力端子からの信号に基づき前記切替回路を操作することで前記切り替えを行う操作手段とを備えることを特徴とするスイッチング素子の駆動回路。 (もっと読む)


【課題】駆動電圧を調整可能な駆動回路を提供すること。
【解決手段】駆動回路10は、チャージポンプ回路部14を備えている。チャージポンプ回路部14は、メインスイッチング素子SW10がターンオンする遷移期間の初期段階において、キャパシタC1に充電された充電電圧に基づいて駆動電源18の電圧Vsを昇圧して駆動電圧Vgprを生成する。チャージポンプ回路部14では、指示信号S1に基づいてキャパシタC1に充電される充電電圧が調整可能に構成されている。 (もっと読む)


【課題】パワー半導体素子のコントロールコンタクトとメインコンタクトとの間のショート回路が、システム全体の全体的な安定性および/または制御性に影響しないような、複数のパワー半導体素子(例えばIGBT)のコントロールコンタクトを駆動するためのシステムを提供する。
【解決手段】複数のパワー半導体素子のためのコントロールコンタクト駆動システムは、パワー半導体素子のコントロールコンタクトをプルアップおよび/またはプッシュダウンするための参照電流を提供するのに適した電流ドライバユニット1と、パワー半導体素子のコントロールコンタクトへの参照電流を増幅および/または分配するのに適した電流ディストリビュータユニット3とを具備する。 (もっと読む)


【課題】複数のスイッチング素子を含む電力変換器において、動作モードに応じてスイッチング速度を制御することによって、サージ電圧抑制およびスイッチング損失低減の両立を図る。
【解決手段】電力変換器50は、スイッチング素子S1〜S4を独立にオンオフ制御して、直流電源10,20および負荷30の間で電力変換を実行する第1の動作モードと、スイッチング素子S1〜S4のうちの2個ずつを共通にオンオフ制御して、直流電源10または20と負荷30の間で電力変換を実行する第2の動作モードとを有する。スイッチング素子S1〜S4の各々のターンオンおよびターンオフ時におけるスイッチング速度は、動作モードに応じて制御される。具体的には、第2の動作モードにおけるスイッチング速度は、第1の動作モードにおけるスイッチング速度よりも高い。 (もっと読む)


【課題】スイッチングデバイスが過電流の状態ではないが、過電流からの保護に先立ち、スイッチングデバイスの遮断時のサージ電圧を抑制するようにする。
【解決手段】本発明は、電流センサ10と、コンパレータ501と、タイマラッチ502と、制御回路80と、トランジスタ95とを備える。電流センサ10は、スイッチングデバイスQ1の電流を検出し、これに応じた検出電圧ESを出力する。コンパレータ501は、検出電圧ESが基準電圧ER1以上のときに信号を出力する。タイマラッチ502は、その出力信号の継続時間が設定時間以上の場合に、サージ抑制検出信号S3を出力する。制御回路80は、そのサージ抑制検出信号S3を基に、スイッチングデバイスQ1をターンオフさせる駆動信号S12を、トランジスタ95に出力する。基準電圧ER1は、スイッチングデバイスQ1に流れる過電流検出時の基準電圧ER2よりも小さい。 (もっと読む)


【課題】高速スイッチングに起因するラジオノイズの低減を図ることの可能な誘導性負荷駆動装置を提供する。
【解決手段】電源と誘導性負荷の一端との間に介挿された第1のスイッチング素子と、前記誘導性負荷の他端とアースとの間に介挿された第2のスイッチング素子と、前記第1及び第2のスイッチング素子の両方がオフの時に前記誘導性負荷の他端から出力される逆起電流を前記電源に回生させる逆起電流回生回路と、を備えた誘導性負荷駆動装置において、前記誘導性負荷の両端或いは片端に接続されたノイズ吸収回路を備える。 (もっと読む)


【課題】FETのゲートドライブ回路に正負の電源を必要とせず、簡単な受動素子のみの回路で、ゲート電位に正極/負極電位を印加しFETの高速スイッチングドライブを可能とする。
【解決手段】電流路が導通する電位を超える電位1を、電流路の一端を基準電位として、制御端に容量素子を介して断続的に印加されるべく構成され、電位1が印加されたとき、電位1が前記定電圧素子1に対して、電流路が導通に要す定電圧素子1の有する降伏電圧1を発生すべく、かつ電位1が定電圧素子2に対して順方向に、電位1が印加された後、電位1が低下されたとき、電位1により容量素子に充電された電位2が電流路の一端を基準電位とし定電圧素子2に対して、電位1と逆極性の、定電圧素子2の有する降伏電圧2を発生すべく、かつ電位2が定電圧素子1に対して順方向に、定電圧素子1と定電圧素子2の直列接続回路を、制御端と電流路の一端との間に介在させた。 (もっと読む)


【課題】単発的な異常が原因でブートストラップ電圧の低下を一時的に検出した場合に、上アームスイッチング素子の動作停止期間を最短に制御することが可能な電力変換装置を提供する。
【解決手段】電圧監視回路24は、ブートストラップコンデンサ22に充電されているブートストラップ電圧(c)を監視する。電圧監視回路24は、上アームスイッチング素子駆動信号(b)の上アームスイッチング素子11への出力を、ブートストラップ電圧(c)が閾値電圧以上であれば実行し、ブートストラップ電圧(c)が閾値電圧よりも低下すれば停止する。停止期間制御回路25は、電圧監視回路24が上アームスイッチング素子11への上アームスイッチング素子駆動信号(b)の出力を停止する期間を制御する。 (もっと読む)


【課題】 半導体装置における負荷電流のゼロ交差検出を提供する。
【解決手段】 ゲート電極と、エミッタとコレクタ電極との間の負荷電流経路と、を有する逆導通トランジスタを含む回路装置が開示される。トランジスタは、負荷電流経路を介し順方向と逆方向に負荷電流を導通できるようにするとともにゲート電極においてそれぞれの信号により活性化または非活性化されるように構成される。回路装置はさらにゲート制御手段と監視手段を含む。ゲート制御手段はゲート電極に接続されるとともに、トランジスタが逆導通状態である場合にゲート電極を介しトランジスタを非活性化するまたはトランジスタの活性化を防止するように構成される。監視手段は、トランジスタが非活性化されるまたは非活性化がゲート制御手段により防止されている間に負荷電流がゼロを交差するときに発生する逆導通トランジスタのコレクタ−エミッタ電圧の突然の上昇を検出するように構成される。 (もっと読む)


【課題】簡単な回路構成により誤動作を防止できる半導体装置を得る。
【解決手段】パワー素子Q1とパワー素子Q2がトーテムポール接続されている。駆動回路1が入力信号INに応じてパワー素子Q2を駆動し、駆動回路2が入力信号/INに応じてパワー素子Q1を駆動する。駆動回路1は、電源に接続された高圧端子と、低圧端子とを有する。抵抗R1の一端がパワー素子Q2のエミッタに接続され、抵抗R1の他端が駆動回路1の低圧端子に接続されている。スイッチング素子Q3が駆動回路1の高圧端子と抵抗R1の一端との間に接続されている。スイッチング素子Q3は入力信号INに応じてオン・オフする。入力信号INがオフ信号の場合に、駆動回路1は低圧端子の電圧VGNDをパワー素子Q2のゲートに供給してパワー素子Q2はオフする。入力信号INがオフ信号の場合に、スイッチング素子Q3はオンする。 (もっと読む)


1 - 20 / 626