説明

超音波・光化学ハイブリッド反応装置

【課題】反応容器の中に超音波と光エネルギーを同時に導入し、協奏効果により効率的に処理を行うことができる超音波・光化学ハイブリッド反応装置を提供する。
【解決手段】超音波・光化学ハイブリッド反応装置100は、反応容器110と、超音波発生手段120と、光発生手段130と、制御手段140とを備える。超音波発生手段120は、超音波発振器121と、超音波振動子122と、超音波放射体123とから構成され、超音波放射体123は、超音波振動子122の先端に取り付けられ、超音波エネルギーを放射する円柱状または円筒状の放射体であり、反応容器110の内部に挿入され、超音波振動子122から発生する超音波が、超音波放射体123の先端面および側面が放射面として反応容器110の内部へ超音波を放射する。制御手段140は、超音波発生手段120と光発生手段130を単独または同時に超音波と光を発生するように制御する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、各種の化学反応の促進、無機・有機化合物の分解や合成、および物質の分散、乳化、抽出、分解等の処理を行う装置に関する。詳しくは、被処理物によって処理容器の中に超音波と光エネルギーを単独または同時に導入し、効率的に処理を行うことができる超音波・光化学ハイブリッド反応装置に係るものである。
【背景技術】
【0002】
光化学反応を用いて光化学反応物(物質)を製造すること、光エネルギーで反応速度が速くなり、高収率で製品が得られることが従来から周知されている。
【0003】
例えば、発光部が原料液体中に浸漬され、交流により点灯され、間隔をおいて配列された複数本の放電灯を有する光化学反応装置が提案されている(例えば、特許文献1参照)。
【0004】
一方、周波数20kHz〜数百kHzの超音波を用いて化学反応を促進し、高収率を得ることも周知されている。例えば、反応槽の側面に超音波振動子を配置し、振動子の放射面から超音波を放射する構成を有する反応装置も提案されている(例えば、特許文献2参照)。
【0005】
しかし、反応槽の底面または側面の外側から数個の超音波振動子を取り付ける場合、超音波エネルギーの放射面積が小さいため、反応槽内の反応物を均一に照射することができない、反応装置の大型化が困難である。
【0006】
これを解決するために、超音波エネルギーの放射面積が大きくし、超音波エネルギーが均一に反応槽中の反応物を照射することができ、実用化に適した超音波反応装置も提案されている(例えば、特許文献3参照)。
【0007】
この場合、反応槽内に円柱または円筒状の超音波放射体を配置することによって、超音波エネルギーの放射面積が大きくし、超音波エネルギーが均一に反応槽中の反応物を照射することができる。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2001−19647号公報
【特許文献2】特開2000−202277号公報
【特許文献3】特開2003−200042号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、上記した特許文献1に開示の光化学反応装置は、紫外線(UV)等の光エネルギーを利用して反応を促進させることしかできない欠点があった。
【0010】
また、上記した特許文献2,3に開示の超音波反応装置は、周波数20kHz〜数百kHzの超音波エネルギーを利用して反応を促進させることしかできない欠点があった。
【0011】
しかし、実際の化学処理過程の中では、異なる物質に対して反応を促進できる外部から印加されるエネルギーの種類も異なり、そのため、超音波と光を併用し、協奏効果により効率的に処理を行うことができる反応装置が期待されている。
【0012】
そこで、本発明は、反応容器の中に超音波と光エネルギーを同時に導入し、協奏効果により効率的に処理を行うことができる超音波・光化学ハイブリッド反応装置を提供することを目的とする。
【課題を解決するための手段】
【0013】
上記課題を解決するため、本発明に係る超音波・光化学ハイブリッド反応装置は、反応液が充填され、または流通される反応容器と、前記反応容器内の反応液に対して少なくとも1つの周波数の超音波を照射する超音波発生手段と、前記反応容器の内部に挿入され、前記反応液に対して光を照射する光発生手段と、前記超音波発生手段と前記光発生手段を制御する制御手段とを備え、前記制御手段は、前記超音波発生手段と前記光発生手段を単独または同時に超音波と光を発生するように制御することを特徴とするものである。
【0014】
例えば、前記超音波発生手段は、超音波発振器と、超音波振動子と、前記超音波振動子の先端に取り付けられ、超音波エネルギーを放射する円柱状または円筒状の超音波放射体とを有し、前記超音波放射体は、前記反応容器の内部に挿入され、前記超音波振動子から発生する超音波が、該超音波放射体の先端面および側面が放射面として前記反応容器の内部へ超音波を放射する。
【0015】
また例えば、前記超音波発生手段は、超音波発振器と、超音波振動子と、前記超音波振動子に取り付けられ、超音波エネルギーを放射する振動板とを有し、前記超音波振動子および振動板は、前記反応容器の底面に設けられ、下部超音波エネルギーを前記処理容器の内部へ放射する。
【0016】
また例えば、前記超音波発生手段は、超音波発振器と、超音波振動子とを有し、前記超音波振動子は、前記反応容器の外周面に設けられ、前記反応容器の側壁を介して超音波エネルギーを前記処理容器の内部へ放射する。
【0017】
また例えば、前記超音波発生手段は、超音波発振器と、超音波振動子と、前記振動子が取り付けられ、前記反応容器の外周面を挟み込む可能なクランプとを有し、前記クランプは、前記超音波振動子から発生する超音波を前記反応容器に伝達し、前記反応容器の側壁を介して超音波エネルギーを前記処理容器の内部へ放射する。
【発明の効果】
【0018】
本発明によれば、超音波・光化学ハイブリッド反応装置は、超音波発生手段と、光発生手段と、超音波発生手段と光発生手段を制御する制御手段とを備え、超音波発生手段と光発生手段を単独または同時に超音波と光を発生するように制御することで、被処理物によって反応容器の中に超音波と光エネルギーを同時に導入し、協奏効果により効率的に処理を行うことができると共に、超音波反応または光化学反応を単独に行うことも可能である。
【0019】
また、超音波発生手段は、超音波振動子の先端に取り付けられ、超音波エネルギーを放射する円柱状または円筒状の超音波放射体とを有し、該超音波放射体は、反応容器の内部に挿入され、超音波振動子から発生する超音波が、該超音波放射体の先端面および側面が放射面として反応容器の内部へ超音波を放射することで、より均一な超音波反応場が得られると共に、装置のスケールアップが容易に実現できる。
【0020】
また、超音波発生手段は、超音波振動子に取り付けられ、超音波エネルギーを放射する振動板とを有し、超音波振動子および振動板は、反応容器の底面に設けられ、下部から超音波エネルギーを反応容器の内部へ放射することで、反応容器中で定在波の超音波反応場を形成することができると共に、比較的に高い周波数の超音波を発生する場合、容易に実現できる。
【0021】
また、超音波発生手段の超音波振動子は、反応容器の外周面に設けられ、反応容器の側壁を介して超音波エネルギーを反応容器の内部へ放射することで、流通管式の反応容器に利用で、連続的に反応処理を行うことができる。
【0022】
また、超音波発生手段は、超音波振動子と、振動子が取り付けられ、反応容器の外周面を挟み込む可能なクランプとを有し、該クランプは、超音波振動子から発生する超音波を反応容器に伝達し、反応容器の側壁を介して超音波エネルギーを反応容器の内部へ放射することで、既成の流通管式の反応容器に簡単に取り付けることができ、連続的に反応処理を行うことができる。
【図面の簡単な説明】
【0023】
【図1】第1の実施の形態の超音波・光化学ハイブリッド反応装置100の構成を示す図である。
【図2】超音波・光化学ハイブリッド反応装置100Aの構成を示す図である。
【図3】第2の実施の形態の超音波・光化学ハイブリッド反応装置200の構成を示す図である。
【図4】第3の実施の形態の超音波・光化学ハイブリッド反応装置300の構成を示す図である。
【図5】第4の実施の形態の超音波・光化学ハイブリッド反応装置400の構成を示す図である。
【発明を実施するための形態】
【0024】
以下、本発明に係る超音波・光化学ハイブリッド反応装置を実施するための形態を、図を参照して説明する。
【0025】
図1は、本発明の第1の実施の形態の超音波・光化学ハイブリッド反応装置100の構成を示す図である。
【0026】
図1に示すように、超音波・光化学ハイブリッド反応装置100は、反応容器110と、超音波発生手段120、光発生手段130と、制御手段140と、マグネチックスターラー150とを備える。
【0027】
反応容器110は、外側に反応温度を制御する循環液用ジャケットが設けられている。ジャケットには循環液入口と循環液出口が配置されている。また、反応容器110の上部には反応物入口が設けられている。反応容器110の下部にはマグネチックスターラー150が配置され、反応容器110の中に撹拌子が入れられている。反応容器110の上部に配置された蓋であるフランジ111に超音波振動子122、光源ランプ130が固定される。反応液が反応容器110の中に充填される。
【0028】
超音波発生手段120は、超音波発振器121と、超音波振動子122と、超音波放射体123とから構成される。超音波発振器121は、超音波振動子122を駆動する電気信号を出力することができる。超音波振動子122は、少なくとも1つの周波数の超音波振動を発生することができる。ここで、例えば、周波数40kHzの超音波振動子を用いる。超音波放射体123は、超音波振動子122の先端に取り付けられ、超音波エネルギーを放射する円柱状または円筒状の放射体である。超音波放射体123は、反応容器110の内部に挿入され、超音波振動子122から発生する超音波が、該超音波放射体123の先端面および側面が放射面から反応容器110の内部へ放射される。
【0029】
また、超音波放射体123は、円柱または円筒状、例えば長さが少なくとも1つの超音波振動の周波数に対して、該超音波振動の半波長の整数倍に設定されている。超音波放射体123は、先端面から超音波を放射するように形成される。
【0030】
なお、超音波放射体123は、先端および側面が放射面として超音波を放射することによって、超音波エネルギーの放射面積が大きくし、超音波エネルギーが均一に反応容器110中の反応液を照射することが可能となる。この場合、超音波放射体123の長手方向の長さは、例えば、超音波振動子122の発振周波数に対応する波長λである場合、λ/2の整数倍とされる。超音波放射体123の直径はλ/2〜λ/10される。
【0031】
光発生手段130は、電源制御部131と、光源ランプ132と、保護管133とから構成される。電源制御部131は、タイマー、電源回路等が組み込まれ、光源ランプ132から延出するケーブルの端子に接続されており、光源ランプ132に電源電圧を供給するようになっている。光源ランプ132は、例えば、紫外線(UV)ランプである。光源ランプ132は、石英ガラス管等からなる保護管133内に液密に挿入されて、反応液中に浸漬される。保護管133は、光源ランプ132の外周を覆うように設けられ、光源ランプ132との間に空間を形成されておる。この空間は、超音波振動による光源ランプ132への影響を抑える機能があり、場合によって冷却水を循環するためのジャケットとして利用されることも可能である。
【0032】
制御手段140は、超音波発生手段の超音波発振器121と、光発生手段130の電源制御部131とを単独または同時に超音波と光を発生するように制御するものである。なお、タイマー、温度制御回路等を組み込むことができる。
【0033】
図2は、超音波・光化学ハイブリッド反応装置100Aの他の例を示す図である。図2に示すように、大量生産の場合、超音波・光化学ハイブリッド反応装置100Aは、金属製の反応容器110Aと、超音波発生手段120と、光発生手段130と、制御手段140と、撹拌器150Aとから構成される。超音波発生手段120の超音波放射体123の寸法、および光発生手段130の光源ランプ132の寸法は、反応容器110Aの寸法に合わせて設計される。なお、反応容器110Aの容量によって、複数の超音波発生手段120または複数の光発生手段130を設けるようにしてもよい。
【0034】
このように本実施の形態においては、超音波・光化学ハイブリッド反応装置100は、反応容器110(110A)と、超音波発生手段120と、光発生手段130と、制御手段140とを備える。超音波発生手段120は、超音波発振器121と、超音波振動子122と、超音波放射体123とから構成され、超音波放射体123は、超音波振動子122の先端に取り付けられ、超音波エネルギーを放射する円柱状または円筒状の放射体であり、反応容器110(110A)の内部に挿入され、超音波振動子122から発生する超音波が、超音波放射体123の先端面および側面が放射面として反応容器110(110A)の内部へ超音波を放射する。制御手段140は、超音波発生手段120と光発生手段130を単独または同時に超音波と光を発生するように制御する。
【0035】
これにより、反応容器110(110A)の中に超音波と光エネルギーを同時に導入し、協奏効果により効率的に処理を行うことができると共に、超音波反応または光化学反応を単独に行うことも可能である。
【0036】
また、超音波発生手段120は、超音波振動子122の先端に取り付けられ、超音波エネルギーを放射する円柱状または円筒状の超音波放射体123を有し、該超音波放射体123は、反応容器110(110A)の内部に挿入され、超音波振動子122から発生する超音波が、該超音波放射体の先端面および側面が放射面として反応容器の内部へ超音波を放射することで、より均一な超音波反応場が得られると共に、装置のスケールアップが容易に実現できる。
【0037】
図2は、本発明の第2の実施の形態の超音波・光化学ハイブリッド反応装置200の構成を示す図である。
【0038】
図2に示すように、超音波・光化学ハイブリッド反応装置200は、反応容器210と、超音波発生手段220と、光発生手段230と、制御手段240とを備える。
【0039】
反応容器210は、外側に反応温度を制御する循環液用ジャケットが設けられている。ジャケットには循環液入口と循環液出口が配置されている。また、反応容器210の上部には反応物入口を有する蓋が設けられている。反応容器210の下部には超音波振動子222が配置される。光源ランプ230は反応容器210の上部に配置されている。
【0040】
超音波発生手段220は、超音波発振器221と、超音波振動子222と、振動板223とから構成される。超音波発振器221は、超音波振動子222を駆動する電気信号を出力することができる。超音波振動子222は、少なくとも1つの周波数の超音波振動を発生することができる。ここで、例えば、周波数40kHzの超音波振動子を用いる。超音波振動子222は、振動板223に固定され、振動板223は、フランジを介して反応容器210の下部に取り付けられている。超音波振動子122から発生する超音波が、振動板223の表面から反応容器210の内部へ放射される。
【0041】
光発生手段230は、電源制御部231と、光源ランプ232と、保護管233とから構成される。上述した第1の実施の形態と同様の構成を有する。詳細な説明を省略する。
【0042】
制御手段240は、超音波発生手段220の超音波発振器221と、光発生手段230の電源制御部231とを単独または同時に超音波と光を発生するように制御するものである。
【0043】
このように本実施の形態においては、超音波・光化学ハイブリッド反応装置200は、反応容器210と、超音波発生手段220と、光発生手段230と、制御手段240とを備える。超音波発生手段220は、超音波発振器221と、超音波振動子222と、超音波放射体223とから構成され、超音波振動子222は、振動板223に固定され、振動板223は、フランジを介して反応容器210の下部に取り付けられている。超音波振動子122から発生する超音波が、振動板223の表面から反応容器210の内部へ放射される。制御手段240は、超音波発生手段220と光発生手段230を単独または同時に超音波と光を発生するように制御する。
【0044】
これにより、反応容器210の中に超音波と光エネルギーを同時に導入し、協奏効果により効率的に処理を行うことができると共に、超音波反応または光化学反応を単独に行うことも可能である。
【0045】
また、超音波発生手段220は、超音波振動子222に取り付けられ、超音波エネルギーを放射する振動板223を有し、超音波振動子222および振動板223は、反応容器210の底面に設けられ、下部から超音波エネルギーを反応容器210の内部へ放射することで、反応容器210中で定在波の超音波反応場を形成することができると共に、比較的に高い周波数の超音波を発生する場合、容易に実現できる。
【0046】
図4は、本発明の第3の実施の形態の超音波・光化学ハイブリッド反応装置300の構成を示す図である。この場合、流通管式の反応装置である。
【0047】
図4に示すように、超音波・光化学ハイブリッド反応装置300は、反応容器310と、超音波発生手段320と、光発生手段330と、制御手段340とを備える。
【0048】
反応容器310は、円筒状に形成された筒部の両端にフランジ311,312により封止されている。一端のフランジ311には、光発生手段330を取り付けるための装着部を有し、他端のフランジ312には、反応液の入口313が設けられている。また、反応液の出口314は、筒部に設けられている。反応容器310の筒部の外周面には複数の超音波振動子322が配置される。光源ランプ330はフランジ311に取り付けられている。
【0049】
超音波発生手段320は、超音波発振器321と、複数の超音波振動子322とから構成される。超音波発振器321は、超音波振動子322を駆動する電気信号を出力することができる。超音波振動子322は、少なくとも1つの周波数の超音波振動を発生することができる。ここで、例えば、周波数28kHzの超音波振動子を用いる。超音波振動子322は、反応容器310の筒部の外周面に固定されている。超音波振動子322から発生する超音波が、反応容器310の筒部の内表面から反応容器310の内部へ放射される。
【0050】
光発生手段330は、電源制御部331と、光源ランプ332と、保護管333とから構成される。上述した第1の実施の形態と同様の構成を有する。詳細な説明を省略する。
【0051】
制御手段340は、超音波発生手段320の超音波発振器321と、光発生手段330の電源制御部331とを単独または同時に超音波と光を発生するように制御するものである。
【0052】
このように本実施の形態においては、超音波・光化学ハイブリッド反応装置300は、反応容器310と、超音波発生手段320と、光発生手段330と、制御手段340とを備える。超音波発生手段320は、超音波発振器321と、複数の超音波振動子322とから構成され、超音波振動子322は、反応容器310の筒部の外周面に配置される。超音波振動子322から発生する超音波が、反応容器310の筒部を振動させ、内表面から反応容器310の内部へ放射される。制御手段340は、超音波発生手段320と光発生手段330を単独または同時に超音波と光を発生するように制御する。
【0053】
これにより、反応容器310の中に超音波と光エネルギーを同時に導入し、協奏効果により効率的に処理を行うことができると共に、超音波反応または光化学反応を単独に行うことも可能である。
【0054】
また、超音波振動子322は、反応容器310の外周面に設けられ、反応容器310の側壁を介して超音波エネルギーを反応容器の内部へ放射することで、連続的に反応処理を行うことができる。
【0055】
図5は、本発明の第4の実施の形態の超音波・光化学ハイブリッド反応装置400の構成を示す図である。図5(a)は、超音波・光化学ハイブリッド反応装置400の側面図であり、図5(b)は、超音波振動系の構成を示す図である。超音波・光化学ハイブリッド反応装置400は、流通管式の反応装置である。
【0056】
図5に示すように、超音波・光化学ハイブリッド反応装置400は、反応容器410と、超音波発生手段420と、光発生手段430と、制御手段440とを備える。
【0057】
反応容器410は、円筒状に形成された筒部の両端にフランジ411,412により封止されている。一端のフランジ411には、光発生手段430を取り付けるための装着部を有し、他端のフランジ412には、反応液の入口413が設けられている。また、反応液の出口414は、筒部に設けられている。反応容器410の長さの中央部にクランプを介して超音波振動子422が装着される。光源ランプ430はフランジ411に取り付けられている。
【0058】
超音波発生手段420は、超音波発振器421と、超音波振動子422と、クランプ423から構成される。超音波発振器421は、超音波振動子422を駆動する電気信号を出力することができる。超音波振動子422は、少なくとも1つの周波数の超音波振動を発生することができる。ここで、例えば、周波数20kHzの超音波振動子を用いる。超音波振動子422は、反応容器410の筒部の外周面に固定されている。クランプ423は、第1のクランプ部材423aと、第2のクランプ部材423bと、連結ネジ423とから構成されている。超音波振動子422から発生する超音波が、クランプ423を介して反応容器410の筒部を振動させ、内表面から反応容器410の内部へ放射される。なお、反応容器410の長さ方向に所定間隔で複数のクランプ423および超音波振動子422を配置するようにしてもよい。
【0059】
光発生手段430は、電源制御部431と、光源ランプ432と、保護管433とから構成される。上述した第1の実施の形態と同様の構成を有する。詳細な説明を省略する。
【0060】
このように本実施の形態においては、超音波・光化学ハイブリッド反応装置400は、反応容器410と、超音波発生手段420と、光発生手段430と、制御手段440とを備える。超音波発生手段420は、超音波発振器421と、超音波振動子422とから構成され、超音波振動子422は、クランプ423を介して反応容器410の筒部に配置される。超音波振動子422から発生する超音波が、クランプ423を介して反応容器410の筒部を振動させ、内表面から反応容器410の内部へ放射される。制御手段440は、超音波発生手段420と光発生手段430を単独または同時に超音波と光を発生するように制御する。
【0061】
これにより、反応容器410の中に超音波と光エネルギーを同時に導入し、協奏効果により効率的に処理を行うことができると共に、超音波反応または光化学反応を単独に行うことも可能である。
【0062】
また、超音波発生手段420は、少なくとも1つの周波数の超音波振動を発生する超音波振動子422と、超音波振動子422が取り付けられ、反応容器410の外周面を挟み込む可能なクランプ423とを有し、該クランプ423は、超音波振動子422から発生する超音波を反応容器410に伝達し、反応容器410の側壁を介して超音波エネルギーを反応容器410の内部へ放射することで、既成の流通管式の反応容器に簡単に取り付けることができ、連続的に反応処理を行うことができる。
【0063】
なお、上述した実施の形態においては、制御手段は独立に設けたものについて説明したが、これに限定されるものではない。例えば、制御手段を超音波発生手段の超音波発振器または光発生手段の電源制御部に設けるようにしてもよい。また、制御手段を超音波発生手段の超音波発振器と光発生手段の電源制御部にそれぞれ一部設けるようにしてもよい。また、制御手段、超音波発生手段の超音波発振器、および光発生手段の電源制御部を一緒に配置してもよい。
【0064】
また、上述した実施の形態においては、光源ランプは、紫外線(UV)ランプとしたが、これに限定されるものではない。例えば、スペクトルの可視光部だけでなく、赤外部、紫外部をも含むもので、波長はおよそ100〜1000ナノメートル光を発生することができるランプを用いてもよい。
【産業上の利用可能性】
【0065】
この発明は、各種の化学反応の促進、無機・有機化合物の分解や合成、および物質の分散、乳化、抽出、分解等の処理に超音波と光エネルギーを単独または同時に導入し、効率的に処理を行う目的に利用できる。
【符号の説明】
【0066】
100,100A,200,300,400・・・超音波・光化学ハイブリッド反応装置、110,100A,210,310,410・・・反応容器、120,220,320,420・・・超音波発生手段、121,221,321,421・・・超音波発振器、122,222,322,422・・・超音波振動子、123・・・超音波放射体、130,230,330,430・・・光発生手段、131,231,331,431・・・電源制御部、132,232,332,432・・・光源ランプ、133,233,333,433・・・保護管、140・・・制御手段、150・・・マグネチックスターラー、151・・・撹拌子、150A・・・攪拌機、223・・・振動板、423・・・クランプ

【特許請求の範囲】
【請求項1】
反応液が充填され、または流通される反応容器と、
前記反応容器内の反応液に対して少なくとも1つの周波数の超音波を照射する超音波発生手段と、
前記反応容器の内部に挿入され、前記反応液に対して光を照射する光発生手段と、
前記超音波発生手段と前記光発生手段を制御する制御手段とを備え、
前記制御手段は、前記超音波発生手段と前記光発生手段を単独または同時に超音波と光を発生するように制御することを特徴とする超音波・光化学ハイブリッド反応装置。
【請求項2】
前記超音波発生手段は、超音波発振器と、超音波振動子と、前記超音波振動子の先端に取り付けられ、超音波エネルギーを放射する円柱状または円筒状の超音波放射体とを有し、
前記超音波放射体は、前記反応容器の内部に挿入され、前記超音波振動子から発生する超音波が、該超音波放射体の先端面および側面が放射面として前記反応容器の内部へ超音波を放射することを特徴とする請求項1に記載の超音波・光化学ハイブリッド反応装置。
【請求項3】
前記超音波発生手段は、超音波発振器と、超音波振動子と、前記超音波振動子に取り付けられ、超音波エネルギーを放射する振動板とを有し、
前記超音波振動子および振動板は、前記反応容器の底面に設けられ、下部超音波エネルギーを前記処理容器の内部へ放射することを特徴とする請求項1に記載の超音波・光化学ハイブリッド反応装置。
【請求項4】
前記超音波発生手段は、超音波発振器と、超音波振動子とを有し、
前記超音波振動子は、前記反応容器の外周面に設けられ、前記反応容器の側壁を介して超音波エネルギーを前記処理容器の内部へ放射することを特徴とする請求項1に記載の超音波・光化学ハイブリッド反応装置。
【請求項5】
前記超音波発生手段は、超音波発振器と、超音波振動子と、前記振動子が取り付けられ、前記反応容器の外周面を挟み込む可能なクランプとを有し、
前記クランプは、前記超音波振動子から発生する超音波を前記反応容器に伝達し、前記反応容器の側壁を介して超音波エネルギーを前記処理容器の内部へ放射することを特徴とする請求項1に記載の超音波・光化学ハイブリッド反応装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2010−264433(P2010−264433A)
【公開日】平成22年11月25日(2010.11.25)
【国際特許分類】
【出願番号】特願2009−135545(P2009−135545)
【出願日】平成21年5月14日(2009.5.14)
【出願人】(503407797)新科産業有限会社 (3)
【Fターム(参考)】