説明

車両用空調制御装置及び車両用制御装置

【課題】本発明は、アイドリング時の空調装置の制御において燃費を向上させる技術を提供する。
【解決手段】本発明は、車両用熱機関により駆動されるコンプレッサと、冷媒を気化するエバポレータとを有する空調装置の冷房能力を与えられた目標冷房能力に近づけるように制御する車両用空調制御装置を提供する。本車両用空調制御装置は、空調装置の冷房能力を検出する冷房能力検出部と、検出冷房能力と目標冷房能力とを比較して検出冷房能力が前記目標冷房能力に近づくように車両用熱機関の目標回転数を決定する目標回転数決定部と、目標回転数が予め設定された判定値よりも大きいときには空調装置を連続運転モードとし、決定された目標回転数が判定値よりも小さいときには空調装置の作動モードをオンオフ運転モードとする運転モード切替部と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両用熱機関の動力により駆動されて冷媒を圧縮する圧縮機を有して構成される空調装置を備える車両に関し、特に空調装置を制御する車両用空調制御装置に関する。
【背景技術】
【0002】
従来から冷媒を圧縮する圧縮機を内燃機関の動力により駆動する車両用空調制御装置において、内燃機関のアイドリング時の燃費を向上させる制御方法が提案されている。具体的には、たとえば特許文献1では、空調装置の負荷に応じて内燃機関のアイドリング回転数を予め設定された複数の回転数のいずれかに切り替える技術が提案されている。特許文献2乃至5では、圧縮機の作動時間や吐出圧力あるいは車内外の気温といった計測値によって熱負荷を推定し、その推定に基づいてアイドリング回転数を制御する技術が提案されている。特許文献6では、圧縮機のオンオフ作動において、圧縮機のオン時の室温変化速度に基づいて熱負荷を推定し、推定された熱負荷が小さいときには圧縮機のオン時のアイドルアップを禁止する技術も提案されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平6−99726号公報
【特許文献2】特開平6−229273号公報
【特許文献3】特開昭57−181942号公報
【特許文献4】特開昭62−111138号公報
【特許文献5】特開2006−336479号公報
【特許文献6】特開平6−101515号公報
【特許文献7】特開2001−270323号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、上述の各技術は、車両用空調制御装置の制御系の各部分を改善するに止まっていた。これに対しては、本発明者は、車両用空調制御装置の制御系の全体、あるいは車両用空調制御装置と内燃機関制御装置の全体を見直すことによって改善の余地があることを見出した。一方、空調装置の蒸発器から流出する冷媒の温度としての冷媒過熱度を安定させるための膨張弁が普及している(特許文献7)。ところが冷媒過熱度の安定は、エンジン回転数を固定したままで冷媒の流量を絞ることで達成されているので、エンジンに対して余分なエネルギ損失が発生していることが本発明者によって見出された。
【0005】
本発明は、上述の従来の課題を解決するために創作されたものであり、アイドリング時の空調装置の制御において燃費を向上させる技術を提供することを目的とする。
【課題を解決するための手段】
【0006】
以下、上記課題を解決するのに有効な手段等につき、必要に応じて効果等を示しつつ説明する。
【0007】
請求項1の発明は、車両用熱機関により駆動されるコンプレッサと、冷媒を気化するエバポレータとを有する空調装置の冷房能力を与えられた目標冷房能力に近づけるように制御する車両用空調制御装置であって、前記空調装置の冷房能力を検出する冷房能力検出部と、前記検出された冷房能力である検出冷房能力と前記目標冷房能力とを比較し、前記検出冷房能力が前記目標冷房能力に近づくように、前記車両用熱機関の目標回転数を決定する目標回転数決定部と、前記目標回転数が予め設定された判定値よりも大きいときには前記空調装置を連続運転モードとし、前記決定された目標回転数が前記判定値よりも小さいときには前記空調装置の作動モードをオンオフ運転モードとする運転モード切替部と、を備えることを特徴とする。
【0008】
上記発明によれば、目標冷房能力に応じて決定された車両用エンジンの目標回転数が予め設定された判定値より高い場合には、アイドリング回転数の調整によって冷房能力を操作することができるので、コンプレッサ駆動のオンオフに起因するエネルギ損失を抑制することができる。一方、目標冷房能力に応じて、判定値以下のアイドリング回転数が要求される場合には、コンプレッサ駆動のオンオフで適切に冷房することができる。
【0009】
請求項2の発明では、前記車両用空調制御装置は、さらに前記コンプレッサの吐出圧を計測する吐出圧計測部を有し、前記計測された吐出圧を車両用熱機関に送信し、前記判定値は、前記計測された吐出圧を使用して前記車両用熱機関によって決定されていることを特徴とする。
【0010】
上記発明によれば、コンプレッサの吐出圧を使用して判定値が決定されているので、コンプレッサに印加される車両用熱機関の駆動トルクを推定することができる。これにより、コンプレッサの駆動トルクを考慮した判定値を設定することができるので、駆動トルクの低下に応じて判定値を小さくすることによってオンオフ運転モードの頻度を少なくすることができる。この結果、コンプレッサ駆動のオンオフに起因するエネルギ損失を抑制することができる。
【0011】
請求項3の発明では、前記目標回転数決定部は、前記エバポレータから流出した冷媒の温度である冷媒過熱度を検出する過熱度検出部を有し、前記検出された冷媒過熱度に応じて前記目標回転数を調整することを特徴とする。
【0012】
上記発明によれば、冷媒過熱度に応じて目標回転数を調整することができるので、冷房負荷の変動に対して冷媒供給量を機敏に追従させることができる。これにより、たとえば膨張弁の排除あるいは膨張弁の構成の簡素化といった設計自由度、あるいはレシーバ(気液分離機)の貯留容量を小さくするという設計自由度を提供することができる。
【0013】
請求項4の発明では、前記目標回転数決定部は、前記検出された冷媒過熱度の低下に応じて前記目標回転数を低減させることを特徴とする。
【0014】
上記発明によれば、冷媒供給の余剰状態を機敏に検出して目標回転数を低減させることができる。これにより、効果的に燃費を改善することができる。
【0015】
請求項5の発明は、車両用熱機関と空調装置とを制御する車両用制御装置であって、上記記載の車両用空調制御装置と、前記車両用熱機関の回転数を制御し、アイドリング制御の最低回転数を前記判定値として決定して前記車両用空調制御装置に送信する車両用熱機関制御部と、を備える。前記車両用熱機関制御部は、前記目標回転数が前記判定値よりも大きいときには前記目標回転数を目標値として前記車両用熱機関のアイドリング回転数を制御し、前記目標回転数が前記判定値以下のときには前記最低回転数を目標値として前記車両用熱機関のアイドリング回転数を制御することを特徴とする。
【0016】
請求項5の発明では、車両用熱機関と空調装置の協調制御によって車両用熱機関の作動の信頼性を確保しつつ空調装置を効率的に制御することが可能である。本協調制御では、車両用熱機関は、アイドリング制御の最低回転数を判定値として車両用空調制御装置に送信する。車両用空調制御装置は、与えられた判定値から連続運転可能なアイドリング回転数の範囲を知ることができる。
【0017】
これにより、連続運転可能なアイドリング回転数の範囲では、車両用空調制御装置は、車両用熱機関の目標回転値を操作して空調装置の出力を操作することができる一方、車両用空調制御装置は、目標回転数が判定値以下のときにはオンオフ制御を実行することによって効率的な運転を実現することができる。
【0018】
請求項6の発明では、前記判定値は、前記車両用熱機関のエンジン水温と点火時期の少なくとも一方を含む熱機関状態量を使用して決定されていることを特徴とする。
【0019】
上記発明によれば、車両用熱機関のエンジン水温と点火時期の少なくとも一方を含む熱機関状態量を使用して判定値が決定されているので、暖気に起因する車両用熱機関の出力トルクの低下の完了に応じて判定値を小さくすることによってオンオフ運転モードの頻度を少なくすることができる。
【0020】
請求項7の発明では、車両用熱機関により駆動されるコンプレッサと、冷媒を気化するエバポレータとを有する空調装置の冷房能力を与えられた目標冷房能力に近づけるように制御する車両用空調制御装置であって、前記空調装置の冷房能力を検出する冷房能力検出部と、前記検出された冷房能力である検出冷房能力と前記目標冷房能力とを比較し、前記検出冷房能力が前記目標冷房能力に近づくように、前記車両用熱機関の目標回転数を決定する目標回転数決定部と、を備える。前記目標回転数決定部は、前記エバポレータから流出した冷媒の温度である冷媒過熱度を検出する過熱度検出部を有し、前記検出された冷媒過熱度に応じて前記目標回転数を調整することを特徴とする。
【0021】
上記発明によれば、冷媒過熱度に応じて目標回転数を調整することができるので、冷房負荷の変動に対して冷媒供給量を機敏に追従させることができる。上記発明は、判定値に基づく連続運転とオンオフ制御の切替を行わない構成でも実装可能である。ただし、判定値に基づく切替は、連続運転の範囲(アイドリング回転数の範囲)を広くする設計自由度を提供することができるので、冷媒過熱度に応じた目標回転数の調整範囲も広がって顕著な効果を奏することができる。
【0022】
なお、本発明は、車両用空調制御装置だけでなく、たとえば制御方法や制御機能を具現化するコンピュータプログラム、そのプログラムを格納するプログラム媒体あるいはプログラム製品といった形で具現化することもできる。
【図面の簡単な説明】
【0023】
【図1】第1実施形態にかかる内燃機関システム10及び空調制御装置50の構成を示す全体構成図。
【図2】実施形態の空調制御のルーチンを示すフローチャート。
【図3】空調制御装置50の作動の様子を示すタイムチャート。
【図4】第2実施形態にかかる内燃機関システム10及び空調制御装置50aの構成を示す全体構成図。
【図5】第2実施形態にかかる空調制御装置50aの作動状態を示すタイムチャート。
【図6】実施形態と変形例のアイドリング回転数の調整範囲を比較して示すチャート。
【発明を実施するための形態】
【0024】
以下、本発明にかかる車両用空調制御装置を内燃機関を搭載した車両(自動車)に適用した2つの実施形態について、図面を参照しつつ説明する。
【0025】
(第1実施形態)
図1は、第1実施形態にかかる内燃機関システム10及び車両用空調制御装置50(エアコンシステム)の構成を示す全体構成図である。内燃機関システム10は、制御対象としてのエンジン11と制御装置としてのエンジンECU12とを備えている。空気調節システムは、制御対象としての空調装置20と制御装置としての空調制御装置50とを備えている。空調装置20は、コンプレッサ21と、コンデンサ22と、レシーバ23と、膨張弁24と、エバポレータ25とを備えている。なお、エンジン11は、車両用熱機関とも呼ばれる。エンジンECU12は、車両用熱機関制御部とも呼ばれる。車両用空調制御装置50は空調制御装置とも呼ばれる。
【0026】
コンプレッサ21は、エバポレータ25で蒸発した冷媒ガスを吸入し、コンデンサ22で液化しやすいように加圧する定容量式の圧縮機である。コンプレッサ21は、エンジン11によって駆動される。駆動力の伝達は、コンプレッサ21の駆動軸に機械的に連結されたプーリ26と、エンジン11のクランク軸14にクラッチ57aを介して機械的に連結されたプーリ27と、2個のプーリ26,27を連結するベルト28と、を介して行われる。クラッチ57aの連結と非連結は、エアコンECU59によって操作される。
【0027】
コンプレッサ21の状態量には、コンプレッサ21が冷媒を吸入する圧力である吸入圧力と、コンプレッサ21が冷媒を吐出する圧力である吐出圧力とがある。コンプレッサ21の必要トルク(駆動トルク)は、吐出圧力と吸入圧力の差に応じて推定することができる。なお、コンプレッサ21は、可変容量式の構成も利用可能である。ただし、本実施形態は、定容量式のコンプレッサにおいて回転数の調整で冷房能力を操作することができるという顕著な効果を奏する。
【0028】
コンデンサ22は、コンプレッサ21から供給された加圧されたガス状の冷媒を液化させる凝縮機である。冷媒の液化は、コンプレッサ21から吐出供給された加圧冷媒と、図示しないファンから送風される空気や車両の走行に伴いコンデンサ22に吹き付けられる空気との熱交換(空冷冷却)を行うことによって行われる。
【0029】
レシーバ23は、コンデンサ22によって液体と気体の二相の冷媒から液相の冷媒を分離してエバポレータ25に供給する気液分離機である。液相冷媒の分離は、レシーバ23の内部に貯留された液状の冷媒に先端が沈められた配管によって冷媒を送出することによって行われる。レシーバ23は、液状冷媒の貯留機能をも有している。エバポレータ25への高圧液状冷媒の供給は、膨張弁24を介して行われる。
【0030】
エバポレータ25は、冷媒の気化によって熱を奪う装置である。エバポレータ25は、室内あるいは外気を導入し、車室内に冷風を送出するためのエバファン55dを備えている。エバファン55dは、車室内に冷風を送出することによって室温を低下させることができる。エバポレータ25の状態量には、エバポレータ25で熱交換される前の空気の温度であるエバ入口温度と、エバポレータ25で熱交換される後の空気の温度であるエバ出口温度とがある。
【0031】
膨張弁24は、一種の絞り弁であり、レシーバ23とエバポレータ25との間に圧力差を発生させることができる。膨張弁24は、さらに高圧液状冷媒を小さなすき間から吹き出させて膨張させることによって、高圧液状冷媒を低圧・低温の霧状とすることができる。これにより、低圧・低温の霧状の冷媒は、エバポレータ25における急激な気化を可能としている。
【0032】
膨張弁24は、冷媒過熱度に応じて機械的に開度を調整する自動調整弁としての機能を有している。開度の自動調整は、たとえば特許文献7の段落0002等に開示されているようにエバポレータ25の出口側の冷媒流路を膨張弁24に引き込んで、その冷媒の熱で内部空間に密閉されている気体を熱膨張させることによって弁体を移動させることによって実現することができる。
【0033】
空調制御装置50は、エアコンECU59と、冷房能力を設定するための複数のセンサ53、54、56、57、58と、空調装置の状態量を計測するための複数のセンサ51a,51b,55a,55bとを備えている。エアコンECU59は、空調装置20を制御対象とする電子制御装置であり、周知のCPU、ROM、RAM等を備えている。エアコンECU59は、複数のセンサ53、54、56、57、58を使用して目標冷房能力を設定する機能と、目標冷房能力Pt(kW)を目標値として空調装置20を操作する機能とを有している。エアコンECU59は、複数のセンサ51a,51b,55a,55bで空調装置20の状態量を計測しつつ空調装置20を制御する。
【0034】
図2は、実施形態の空調制御のルーチンを示すフローチャートである。本ルーチンは、A/Cスイッチ52のオン操作に応じて起動される。エアコンECU59は、本起動に応じてクラッチ57aを連結状態としてコンプレッサ21の駆動を開始させるとともに、複数のセンサ51a,51b,55a,55bからの検出信号の受信を開始する。
【0035】
ステップS10では、エアコンECU59は、目標性能設定工程を実行する。目標性能設定工程は、空調装置20の目標冷房能力Ptを設定する工程である。目標冷房能力Ptは、本実施形態では、時間当たりにエバポレータ25で熱交換されるべき熱量を意味している。目標冷房能力Ptは、車室内温度、外気の温度、湿度、日射量、および車両の走行速度を使用して設定される。車室内温度は室温センサ53によって計測される。外気の温度は外気温センサ58によって検出される。外気の湿度は湿度センサ54によって検出される。日射量は日射センサ56によって検出される。車両の走行速度は車速センサ57によって検出される。
【0036】
ステップS20では、エアコンECU59は、冷房能力検出工程を実行する。冷房能力検出工程は、空調装置20の現実の検出冷房能力Pd(kW)を検出する工程である。検出冷房能力Pdは、エバポレータ25による熱交換量の計測値として検出される。本計測値は、エバ入口温度とエバ出口温度の差に基づいて計測される。エバ入口温度は入口温度検出センサ55aによって検出される。エバ出口温度は出口温度検出センサ55bによって検出される。
【0037】
ステップS30では、エアコンECU59は、目標回転数決定工程を実行する。目標回転数決定工程は、コンプレッサ21の目標回転数Nrを決定する工程である。目標回転数Nrは、エアコンECU59が有する制御則によって、検出冷房能力Pd(kW)が目標冷房能力Ptに近づくように決定される回転数である。このように、エアコンECU59は、目標回転数決定部として機能している。
【0038】
ステップS40では、エアコンECU59は、目標回転数Nrが判定値Thよりも大きいか否かを判定する。判定値Thは、エンジン11のクランク軸14の最低回転数Nmにおけるコンプレッサ21の回転数の計算値である。本計算値は、2個のプーリ26,27の回転比と最低回転数Nmとを使用して算出される。最低回転数Nmは、内燃機関システム10が有するエンジンECU12から与えられた値である。
【0039】
最低回転数Nmは、たとえばエンジン11の駆動を維持するための最低の回転数として設定される。すなわち、最低回転数Nmは、エンジン11のエンジンストールが発生しない最低の回転数として設定される。最低回転数Nmは、たとえばエンジン水温、点火時期、およびコンプレッサ21の負荷トルクQに基づいてエンジンECU12によって設定される。コンプレッサ21の負荷トルクQは、コンプレッサ21がエンジン11のクランク軸14に与える負荷としてのトルクである。最低回転数Nmは、負荷トルクQが大きな状態では高めに設定されることになる。
【0040】
負荷トルクQは、コンプレッサ21の加圧量に応じてエアコンECU59によって決定される。エアコンECU59は、コンプレッサ21の吐出圧センサ51bと吸入圧センサ51aの差に基づいて加圧量を算出し、その算出値を使用して負荷トルクQを推定する。負荷トルクQの推定は、予め設定されている対応曲線や推定計算式を利用して行われる。負荷トルクQは、実時間でエアコンECU59からエンジンECU12に送信される。
【0041】
エンジン水温は、暖気の完了を確認するために使用され、暖気完了までは最低回転数Nmが高めに設定される。点火時期に関する情報は、点火タイミングが遅いときに最低回転数Nmを高くするために使用される。点火タイミングが遅いときには、トルクの減少の原因となってエンジンストールを生じさせやすいからである。点火タイミングの遅延は、暖気時に排ガス温度を高くすることによって早く触媒温度を上昇させ、これにより排ガスの浄化能力を早期に立ち上げるためのものである。
【0042】
ステップS40での比較判断の結果、目標回転数Nrが判定値Thよりも大きい場合には処理がステップS50に進められ、目標回転数Nrが判定値Th以下の場合には処理がステップS60に進められる。
【0043】
ステップS50では、エアコンECU59は、空調装置20の作動モードを連続運転モードに設定する。連続運転モードは、クラッチ57aを連結状態に維持しつつエンジン11のアイドリング回転数Niを操作してコンプレッサ21が目標回転数Nrに近づくように制御される作動モードである。連続運転モードでは、エアコンECU59は、クラッチ57aを連結状態に維持するとともに目標回転数NrをエンジンECU12に送信する。すなわち、連続運転モードでは、クラッチ57aの非連結が制限(禁止を含む)されることになる。一方、エンジンECU12は、コンプレッサ21が目標回転数Nrに近づくようにアイドリング回転数Niを調整する。
【0044】
ステップS60では、エアコンECU59は、空調装置20の作動モードをオンオフ運転モードに設定する。オンオフモードは、クラッチ57aを連結と非連結の切替操作によって空調装置20の冷房能力を操作する作動モードである。アイドリング回転数Niは、本実施形態では、最低回転数Nmに固定されている。
【0045】
切替操作は、たとえば室温センサ53の計測値に応じて、予め設定されたオン閾値温度を超えたときにオン(クラッチ57aを連結)とし、予め設定されたオフ閾値温度以下となったオフ(クラッチ57aを非連結)とすることによって実現される。オン閾値温度は、オフ閾値温度よりも高く設定することによってヒステリシスが設けられている。
【0046】
このように、本実施形態の空調制御装置50は、エンジン11の駆動を維持するための最低の回転数である最低回転数Nmよりも高い回転が要請されているときには、最低回転数Nmよりも高い回転数の範囲において空調装置20の出力を連続的に制御することができる。一方、本実施形態の空調制御装置50は、最低回転数Nmでの空調装置20の駆動では、冷房能力が過剰となるときには、オンオフ制御を実行することができる。
【0047】
図3は、空調制御装置50の作動の様子を示すタイムチャートである。目標冷房能力は、目標冷房能力Ptの大きさとして線の高さで表現されている。コンプレッサ目標回転数は、コンプレッサ21の目標回転数Nrとして線の高さで表現されている。エンジン目標回転数は、コンプレッサ21の目標回転数Nrを使用して決定されるアイドリング回転数Niの目標値である。エアコンON/OFF状態は、オンオフ運転モードにおけるON状態(クラッチ57aの連結状態)とOFF状態(クラッチ57aの非連結状態)の切替状態を示している。
【0048】
一方、判定値Thは、この例では、点火時期、エンジン水温、およびコンプレッサ21の負荷トルクQと、によって決定される値である。最低回転数Nmは、判定値Thから算出される値である。
【0049】
時刻t1では、エアコンECU59は、目標冷房能力の低下に伴いコンプレッサ目標回転数を低下させる。エンジンECU12は、エアコンECU59から与えられたコンプレッサ目標回転数Nrの低下に伴ってエンジン目標回転数を低下させている。ただし、エアコンのON状態は継続している。目標冷房能力Ptの低下は、たとえば車室内の温度低下によって発生する。この状態では、コンプレッサ目標回転数Nrは、判定値Thよりも大きな値なので、空調装置20が連続運転モードで制御されている(ステップS40,S50)。
【0050】
時刻t2では、目標冷房能力Ptの再度の低下に応じてコンプレッサ目標回転数Nrが低下している。ただし、エンジンECU12は、コンプレッサ21が最低回転数Nmに近づくようにアイドリング回転数Niを操作している。すなわち、エンジンECU12は、コンプレッサ目標回転数Nrの要求をオーバーライドして最低回転数Nmをアイドリング回転数Niの目標値として使用していることになる。一方、エアコンECU59は、クラッチ57aを非連結状態としてエアコンをOFF状態に切り替える。この状態では、コンプレッサ目標回転数Nrは、判定値Th以下の値なので、空調装置20がオンオフ運転モードで制御されている(ステップS40,S60)。
【0051】
時刻t3では、目標冷房能力Ptの再度の低下に応じてコンプレッサ目標回転数Nrが低下している。ただし、エンジンECU12は、時刻t2から引き続きコンプレッサ21が最低回転数Nmに近づくようにアイドリング回転数Niを操作している。この状態では、空調装置20のオン時間のデューティ(時間比率)が時刻t2〜t3のときよりも低下している。このように、オンオフ運転モードでは、オン時間のデューティによって冷房能力が操作されることになる。
【0052】
時刻t4では、エアコンECU59は、目標冷房能力の上昇に応じてコンプレッサ目標回転数を上昇させるとともに、クラッチ57aを連結状態としてエアコンをON状態に切り替える。エンジンECU12は、エアコンECU59から与えられたコンプレッサ目標回転数の上昇に伴ってエンジン目標回転数を上昇させている。目標冷房能力の上昇は、たとえば車両ドア(図示せず)の開放等によって外気が車室内(図示せず)に進入することによって発生する。
【0053】
時刻t4では、エアコンECU59は、クラッチ57aの非連結状態を再び制限している。すなわち、連続運転モードでは、室温がオフ閾値温度以下となって、すなわちクラッチ57aが非連結となる温度に達しても連結状態が維持された状態でエンジン目標回転数の操作で冷房能力の操作が行われる。このような運転モードは、連続運転モードと呼ばれる。
【0054】
時刻t5では、判定値Thが低下している。判定値Thの低下は、たとえば触媒温度の上昇完了に起因する点火時期の遅延の終了、エンジン水温による暖機状態の完了、およびコンプレッサ21の負荷トルクQの低下に起因して発生する。なお、最低回転数Nmは、判定値Thに比例する値なので判定値Thとともに低下している。
【0055】
時刻t6では、エアコンECU59は、目標冷房能力Ptの低下に伴いコンプレッサ目標回転数Nrを低下させている。エンジンECU12は、エアコンECU59から与えられたコンプレッサ目標回転数Nrの低下に伴ってエンジン目標回転数を低下させている。ただし、アイドリング回転数Niは、時刻t1〜t4の判定値Thよりも低い値まで低下している。時刻t5において、判定値Thが低下した状態が継続しているからである。
【0056】
時刻t7では、エアコンECU59は、目標冷房能力の再度の低下に伴いコンプレッサ目標回転数Nrを低下させている。ただし、エンジンECU12は、コンプレッサ目標回転数Nrの要求をオーバーライドして、時刻t5で低下した最低回転数Nmをアイドリング回転数Niの目標値として使用している。
【0057】
このように、第1実施形態では、目標冷房能力に応じて、エンジン11の最低回転数Nmより高いアイドリング回転数Niが要求される場合には、アイドリング回転数Niの調整によって冷房能力を操作することができるので、コンプレッサ21の駆動のオンオフに起因するエネルギ損失を抑制することができる。
【0058】
一方、目標冷房能力に応じて、最低回転数Nm以下のアイドリング回転数Niが要求される場合には、最低回転数Nmを維持しつつコンプレッサ21の駆動のオンオフで適切に冷房することができる。本実施形態では、特に最低回転数Nmが点火時期やエンジン水温、コンプレッサ21の負荷トルクQといった状態量を監視して適切に設定されているので、すなわち低減可能なので、コンプレッサ21の駆動がオンオフ制御となる範囲を抑制することにも成功している。
【0059】
(第2実施形態)
図4は、第2実施形態にかかる内燃機関システム10及び空調制御装置50aの構成を示す全体構成図である。空調制御装置50aは、以下の2つの点で第1実施形態の空調制御装置50と相違し、他の構成を共通とする。第1の相違点は、機械制御式の膨張弁24が電子制御方式の膨張弁24aに変更されている点である。第2の相違点は、冷媒過熱度センサ55cを備えている点である。冷媒過熱度センサ55cは、エバポレータ25の出口側の冷媒流路における冷媒温度を計測する。電子制御方式の膨張弁24aは、エアコンECU59からの指令によって開度調整が行われる。
【0060】
図5は、第2実施形態にかかる空調制御装置50aの作動状態を示すタイムチャートである。本タイムチャートは、A/Cスイッチ52がオン状態において、ユーザが設定温度を上昇させたときの比較例と第2実施形態の制御内容を示している。比較例は、機械制御式の膨張弁24を利用する構成である。ユーザが設定温度を上昇させると、比較例と第2実施形態の制御のいずれにおいてもエバファン55dのブロアレベル(送風量)が低下させられる。
【0061】
冷媒過熱度は、エバファン55dのブロアレベルの低下に起因して下がる。エバファン55dのブロアレベルが低下すると、エバポレータ25での熱交換量が減少して冷媒の温度上昇量が小さくなるからである。比較例では、機械制御式の膨張弁24は、エバポレータ25の出口側の冷媒流路における冷媒温度の下降に応じて自動的に弁開度を絞ることになる。これにより、エバポレータ25への冷媒の供給量が低下して冷媒過熱度が適正な値に戻ることになる。ただし、比較例では、エバポレータ25への冷媒の供給量が低下しているにもかかわらず、エンジン11の回転数とコンプレッサ21の回転数は維持されることになる。
【0062】
一方、第2実施形態では、電子制御方式の膨張弁24aが開度を維持する一方において、エンジン11の回転数が低下してコンプレッサ21の冷媒吐出量が減少することになる。これにより、冷媒供給の余剰状態を機敏に検出して目標回転数を低減させることができるので、エンジン11の回転数が低下した分の燃料消費が低減して燃費が向上することになる。
【0063】
さらに、たとえば膨張弁24の排除あるいは膨張弁24の構成の簡素化といった設計自由度、あるいはレシーバ23(気液分離機)の貯留容量を小さくするという設計自由度を提供することができる。膨張弁24の構成の簡素化は、たとえば精度仕様を緩和させることが可能となる。
【0064】
(他の実施形態)
なお、実施の形態は上記した内容に限定されず、例えば次のように実施してもよい。
【0065】
上記の実施形態では、コンプレッサ21の負荷トルクQに応じて最低回転数Nmを設定しているが、たとえば負荷トルクQを使用することなく、点火時期とエンジン水温の少なくとも一方に応じて最低回転数Nmを設定する変形例として構成してもよい。ただし、上述の実施形態は、負荷トルクQを使用することによってコンプレッサのオンオフ制御の頻度を低下させ、これによりコンプレッサのオンオフに起因するエネルギ損失を変形例の構成より小さくすることができるという利点を有している。
【0066】
図6は、実施形態と変形例のアイドリング回転数の調整範囲を比較して示すチャートである。実施形態では、コンプレッサ21のオンオフ制御を行うことなく、エンジン11の回転数を回転数N2まで低下させることができる。すなわち、実施形態では、最低回転数Nmが回転数N2に設定されるので、アイドリング回転数の調整範囲として操作範囲A1が実現されることになる。一方、変形例では、コンプレッサ21のオンオフ制御を行うことなく低下させることができる回転数が回転数N3なので、アイドリング回転数の調整範囲として操作範囲A2に制限されることになる。回転数N3は、コンプレッサの吐出圧を計測していないので、負荷トルクQを使用することができず、予め設定された運用範囲での負荷トルクQの最大値として設定されている。
【0067】
ただし、変形例においても点火時期とエンジン水温の少なくとも一方に応じて最低回転数Nmが設定されるので、アイドリング回転数の調整範囲を低回転側に広げることによるエネルギ効率の向上の利点が得られる。コンプレッサ21のオンオフ制御では、クラッチ57aの連結のショックでエンジンストールが発生しない回転数N4と、クラッチ57aの非連結状態で安定してアイドリング可能な最低回転数である回転数N1との間を交互に往復する回転数制御となる。
【符号の説明】
【0068】
10…内燃機関システム、11…エンジン、12…エンジンECU、20…空調装置、21…コンプレッサ、22…コンデンサ、23…レシーバ、24,24a…膨張弁、25…エバポレータ、26,27…プーリ、28…ベルト、50,50a…空調制御装置、55d…エバファン、56…日射センサ、57…車速センサ。

【特許請求の範囲】
【請求項1】
車両用熱機関により駆動されるコンプレッサと、冷媒を気化するエバポレータとを有する空調装置の冷房能力を与えられた目標冷房能力に近づけるように制御する車両用空調制御装置であって、
前記空調装置の冷房能力を検出する冷房能力検出部と、
前記検出された冷房能力である検出冷房能力と前記目標冷房能力とを比較し、前記検出冷房能力が前記目標冷房能力に近づくように、前記車両用熱機関の目標回転数を決定する目標回転数決定部と、
前記目標回転数が予め設定された判定値よりも大きいときには前記空調装置を連続運転モードとし、前記決定された目標回転数が前記判定値よりも小さいときには前記空調装置の作動モードをオンオフ運転モードとする運転モード切替部と、
を備えることを特徴とする車両用空調制御装置。
【請求項2】
前記車両用空調制御装置は、さらに前記コンプレッサの吐出圧を計測する吐出圧計測部を有し、前記計測された吐出圧を車両用熱機関に送信し、
前記判定値は、前記計測された吐出圧を使用して前記車両用熱機関によって決定されている請求項1に記載の車両用空調制御装置。
【請求項3】
前記目標回転数決定部は、前記エバポレータから流出した冷媒の温度である冷媒過熱度を検出する過熱度検出部を有し、前記検出された冷媒過熱度に応じて前記目標回転数を調整する請求項1又は2に記載の車両用空調制御装置。
【請求項4】
前記目標回転数決定部は、前記検出された冷媒過熱度の低下に応じて前記目標回転数を低減させる請求項3に記載の車両用空調制御装置。
【請求項5】
車両用熱機関と空調装置とを制御する車両用制御装置であって、
請求項1乃至4のいずれか1項に記載の車両用空調制御装置と、
前記車両用熱機関の回転数を制御し、アイドリング制御の最低回転数を前記判定値として決定して前記車両用空調制御装置に送信する車両用熱機関制御部と、
を備え、
前記車両用熱機関制御部は、前記目標回転数が前記判定値よりも大きいときには前記目標回転数を目標値として前記車両用熱機関のアイドリング回転数を制御し、前記目標回転数が前記判定値以下のときには前記最低回転数を目標値として前記車両用熱機関のアイドリング回転数を制御することを特徴とする車両用制御装置。
【請求項6】
前記判定値は、前記車両用熱機関のエンジン水温と点火時期の少なくとも一方を含む熱機関状態量を使用して決定されている請求項5に記載の車両用制御装置。
【請求項7】
車両用熱機関により駆動されるコンプレッサと、冷媒を気化するエバポレータとを有する空調装置の冷房能力を与えられた目標冷房能力に近づけるように制御する車両用空調制御装置であって、
前記空調装置の冷房能力を検出する冷房能力検出部と、
前記検出された冷房能力である検出冷房能力と前記目標冷房能力とを比較し、前記検出冷房能力が前記目標冷房能力に近づくように、前記車両用熱機関の目標回転数を決定する目標回転数決定部と、
を備え、
前記目標回転数決定部は、前記エバポレータから流出した冷媒の温度である冷媒過熱度を検出する過熱度検出部を有し、前記検出された冷媒過熱度に応じて前記目標回転数を調整することを特徴とする車両用空調制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−81888(P2012−81888A)
【公開日】平成24年4月26日(2012.4.26)
【国際特許分類】
【出願番号】特願2010−230316(P2010−230316)
【出願日】平成22年10月13日(2010.10.13)
【出願人】(000004260)株式会社デンソー (27,639)
【Fターム(参考)】