説明

遠心回転機のインペラの製造方法

【課題】放電加工により流路を形成し、その放電加工面に生じた変質層を湿式研磨で除去するにあたり、うねりを生じさせることなく研磨面を平滑化できる、インペラの製造方法を提供すること。
【解決手段】かかるインペラ製造方法は、遠心回転機のインペラ10の流路14を放電加工により形成する流路形成工程と、流路14の内壁を湿式研磨により研磨する湿式研磨工程と、を備え、湿式研磨工程では、インペラ10を研磨液23に浸漬した状態でその回転軸線C周りに回転させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、遠心圧縮機などの遠心回転機に使用されるインペラの製造方法に関する。
【背景技術】
【0002】
遠心圧縮機のインペラとして、回転軸に設けられるディスクと、ディスクに対向するカバーと、これらディスクとカバーとの間の空間を仕切る複数のブレードとを備えたものが知られている。
このインペラでは、ディスクとカバーとの互いの対向面と、ブレードの側面とで囲まれた部分が、気体を圧縮するための流路となっている。この流路は、インペラの内周側で軸方向に沿って開口した気体の入口から、外周側へと次第に湾曲し、外周端で出口が径方向に沿って開口した複雑な形状を呈している。これまで、このような流路を有するインペラは、通常、ディスク、カバー、およびブレードを二体または三体の部材に分け、これらの部材を溶接することによって製造されている。ところが、溶接を健全に行うためには、技術的困難が伴う。
【0003】
そこで、一体の素材からインペラを製造することがしばしば行なわれており、この場合に、流路の形成方法として放電加工が採用されている(例えば、特許文献1、2)。放電加工を行うと、被加工物が溶解、凝固を繰り返すため、非常に硬く、かつ多数の割れを伴った変質層が形成される。そこで、特許文献1、2では、この変質層を酸洗により除去している。
また、特許文献3には、放電加工による変質層を酸洗によって除去する際に、攪拌翼を回転させることで酸洗液を攪拌することが記載されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2010−89190号公報
【特許文献2】特開2010−285919号公報
【特許文献3】特開平8−300228号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、本発明者らの検討によれば、湿式研磨を行うと、図12に示すように、研磨量が他の部分よりも少ない微小なスジ状部91が研磨面90に形成されることを確認した。このスジ状部91の存在により、研磨面90が高さ方向にうねってしまう。このうねりWは、遠心回転される流体の流れを阻害するので圧損の原因となる。
【0006】
本発明は、上述した課題に基づいてなされたものであって、その目的は、放電加工により流路を形成した後、その放電加工面に生じた変質層を湿式研磨で除去するにあたり、うねりを生じさせることなく研磨面を平滑化できるインペラの製造方法を提供することにある。
【課題を解決するための手段】
【0007】
本発明者らが、上記のうねりWについて探求したところ、湿式研磨に伴う酸化還元反応により生じる水素ガスがうねりWの原因であることが判明した。つまり、水素ガスが気泡となり研磨面(被加工面)に沿って滞留することによって被加工面と研磨液との接触が妨げられた部分の研磨が進まないため、研磨が進んだ部分と進まない部分とが生じる結果、うねりWが発生する。
ここで、特許文献3と同様に、攪拌翼を回転させて研磨液を撹拌したとしても、うねりWの発生を抑制して研磨面の平滑化を図るのに十分ではない。複雑な形状をしたインペラの流路内にまで研磨液の攪拌効果を及ぼすことが難しいためと解される。
【0008】
そこでなされた本発明の遠心回転機のインペラの製造方法は、インペラの流路を放電加工により形成する流路形成工程と、インペラを研磨液に浸漬することで流路の内壁を湿式研磨する湿式研磨工程と、を備えており、湿式研磨工程では、インペラをその回転軸線周りに回転させる。
本発明では、インペラを回転させることにより、流路内の研磨液が流路に沿って流れるとともに流路外の研磨液も逐次流路内に供給されることで、流路内に所定の流速を持った研磨液流が形成される。この研磨液流によるエネルギが、流路内壁(放電加工面であり、研磨面)から水素ガスを強制的に離脱させる。また、研磨液流に加え、インペラの回転によって流路内壁に生じる振動も、流路内壁からの水素ガスの離脱を促進させる。これにより、水素ガスによって研磨液と流路内壁との接触が妨げられることなく、流路内壁に研磨液が均一に接触する。したがって本発明によると、前述したうねりの発生を回避あるいは抑制できるので、流路内壁を平滑化できる。
なお、本発明において、「湿式研磨」とは、化学研磨および電解研磨の総称として用いる。
【0009】
上述した流路の内壁の平滑化により流路の形状精度が確保されるので、遠心回転機の所定の性能を満足できるが、本発明の発明者らは、性能をより向上するために、次に述べる研磨量の差(ムラ)に着目した。
インペラの流路の形状によっては、研磨液流の流速が流路内の各部位で異なることが想定される。そうすると、流速の速い部位は研磨され易くなり、流速の遅い部位は研磨され難くなるので、流路内の部位によって研磨量にムラが生じうる。
そこで、本発明に係る湿式研磨工程では、インペラの回転数を変化させることが好ましい。
インペラの回転数を変化させるとは、例えば、以下の形態によって実現できる。なお、回転数の変化とは、回転の向きをも含む概念である。
(a)インペラを遠心回転機の運転時と同じ向きに回転させる正回転と、その逆の向きに回転させる負回転とを交互に繰り返す。
(b)(a)において、正回転と負回転との間にインペラの回転を止める無回転を挿入する。
【0010】
本発明によれば、インペラの回転数を変化させると、これに研磨液流の流速変化が追従し、流路内の部位による研磨液流の流速が変わるので、研磨され易い部位と研磨され難い部位とが入れ替わり、研磨量のムラを低減できる。これにより、流路に求められる形状精度をより確保し易くなるので、遠心回転機の性能を向上させることができる。
特に、正回転と負回転との間に無回転を挿入することにより、回転の向きに応じた研磨され易い部位を徐々に移動させることができるので、流路内壁の平滑化に寄与できる。
【0011】
本発明における湿式研磨工程において、インペラを歳差運動させることもできる。
歳差運動をするインペラは、一回転する間にその外周部が上下方向に往復動するので、流路内の特に外周側で研磨液流が上下方向および径方向にも相当の速度を持つ。これにより、水素ガスの流路内壁への滞留をより確実に防止できるので、研磨面をより平滑化できる。
【0012】
本発明における湿式研磨工程において、流路に挿入される電極を備える回転構造体を用いて電解研磨を行ってもよい。
回転構造体は、電極に加え、可動導電体と、固定導電体と、備える。
可動導電体は、電極を支持するとともに、インペラと共に回転する。
固定導電体には、外部から電力が供給される。
電極には、固定電極に供給された電力が可動導電体を介して供給される。
インペラを回転させると、可動導電体がインペラと共に回転するが、固定導電体は回転しない。このため、固定導電体に接続される電源をインペラの回転に伴って移動させる必要がない。したがって、インペラの回転に伴う移動機構を電源に設けることなく、電極への電力供給を維持することができる。
【発明の効果】
【0013】
本発明の遠心回転機のインペラの製造方法によれば、放電加工によって流路内壁に生じた変質層を湿式研磨によって除去する際に、うねりを生じさせることなく研磨面を平滑化できる。
【図面の簡単な説明】
【0014】
【図1】第1実施形態に係る遠心回転機のインペラの平面図である。
【図2】インペラの流路に沿った断面図(図1のII−II矢視図)である。
【図3】第1実施形態で用いる湿式研磨装置を示す図である。
【図4】第2実施形態に係る研磨タイミングチャートである。
【図5】インペラ流路内壁に生じる研磨量の差(ムラ)を示す模式図である。
【図6】第2実施形態の変形例に係る研磨タイミングチャートである。
【図7】第2実施形態の他の変形例に係る研磨タイミングチャートである。
【図8】第3実施形態で用いる湿式研磨装置を示す図である。
【図9】第4実施形態で用いる湿式研磨装置を示す図である。
【図10】第5実施形態で用いる湿式研磨装置を示す図である。
【図11】第5実施形態で用いる湿式研磨装置が備える可動導電体および電極を示す斜視図である。
【図12】研磨面のうねりを模式的に示す斜視図である。
【発明を実施するための形態】
【0015】
以下、添付図面に示す実施形態に基づいてこの発明を詳細に説明する。
〔第1実施形態〕
図1および図2に示すインペラ10は、遠心回転機の回転軸に組み付けられる回転体として、遠心圧縮機などの遠心回転機に搭載されるものである。インペラ10は、遠心回転機の回転軸に同軸に設けられる略円盤状のディスク11と、ディスク11に間隔をおいて対向するカバー12と、ディスク11とカバー12との間を仕切り、気体の流路14を形成する複数の羽根形状のブレード13とを主たる構成要素として備えている、これらディスク11、カバー12およびブレード13を備えたインペラ10は、ステンレス鋼などの高強度耐熱合金からなる一体の素材から放電加工により形成されている。
【0016】
なお、回転軸に沿った回転軸線Cに近い側がインペラ10における内周側であり、遠い側が外周を側である。また、以下では、インペラ10を示す図2における上・下に基づいて上・下が定義されるものとする。さらに、図1において、気体は流路14内を矢印Fの向きに流れる。
【0017】
ディスク11は、回転軸を嵌挿させる軸孔110を有している。ディスク11の表面11aは、外周側から内周側に向かうにつれて次第に上向きに突出するように湾曲している。
ディスク11と同心の円環状とされるカバー12もまた、ディスク11の表面11aの形状に倣って、外周側から内周側に向かうにつれて次第に上向きに突出するように湾曲している。
【0018】
ブレード13は、互いに対向するディスク11の表面11aとカバー12の裏面12aとの間に、回転軸線Cを中心に放射状に設けられている。このブレード13は、ディスク11の表面11aの形状に倣って湾曲するとともにディスク11の周方向に向けても湾曲している。
隣り合うブレード13の一対の側面13a、ディスク11の表面11a、およびカバー12の裏面12aによって区画された空間がそれぞれ、遠心回転機に導入される気体の流路14とされている。
この流路14は、径方向および回転軸方向のいずれに対しても湾曲した形状となっており、放電加工(形彫り放電加工)により形成されている。
【0019】
以上のように構成される回転圧縮機のインペラ10が、図示しない駆動部により回転軸線C周りに回転駆動されると、流路14内に径方向の内周側から外周側へ向かう矢印Fで示される気体の流れが発生するとともに、その気体が回転で生じる遠心力により加速される。これによって、流路14の入口141から吸い込まれた空気が、流路14内で圧縮されて出口142から排出され、図示しない外部機器へと送られる。
【0020】
上記インペラ10を製造する際に、放電加工されることで流路14の内壁(表面11a、裏面12a、側面13a)に生じた変質層を除去する湿式研磨装置20(図3)が用いられる。
湿式研磨装置20は、インペラ10の軸孔110に組み付けられる回転軸22を有するとともにインペラ10を支持する設置台21と、研磨液23と共にインペラ10を収容する研磨液槽24とを備えている。
設置台21は、インペラ10よりも大径の円盤であり、この設置台21上に、インペラ10がカバー12を上に向けて載せられる。回転軸22は、駆動部(モータ)25に接続されている。
【0021】
研磨液23としては、特定の酸、アルカリ、および塩を成分に含むものを用いることができる。化学研摩用の研磨液23としては、例えば、Hを8wt%およびNHHFを4wt%含むものを用いることができる。また、後述する電解研摩用の研磨液23としては、例えば、リン酸(HPO)を85wt%含むものを用いることができる。ここで例示した研磨液はいずれも炭素鋼に適する。
研磨液槽24は、インペラ10を支持する設置台21よりも大きい開口を有し、その内部には、インペラ10の上端まで浸漬するのに足りる量の研磨液23が入れられている。この研磨液槽24は、研磨液23が補充される液入口241と、研磨液23が排出される液出口242とを有しており、図示しない液管理装置による制御の下、金属の溶解により劣化した研磨液23が新しいものに入れ替えられる。
【0022】
次に、上述した湿式研磨装置20による湿式研磨工程を中心に、インペラ10の製造方法を説明する。
先ず、別途外形が形成された一体の素材を形彫り放電加工することにより、各流路14を形成する。これにより、ディスク11、カバー12、ブレード13、および流路14を備えたインペラ10が成形される。
形彫り放電加工は、まず、入口141(または出口142)から、形成される流路14の奥へと電極を送りながら彫り進める。所定の深さまで掘り進めたならば、次に、出口142(または入口141)からも同様に彫ることで、入口141から出口142まで連通した流路14を形成する。用いられる電極は流路14に沿った形状をしている。この電極と被加工物の間に電圧を印加して放電させ、放電時の熱で被加工物を溶解させながら電極形状を被加工物に転写することで流路14を形成する。
【0023】
放電加工面には、前述したように、変質層が形成される。この変質層は、カーボン含有割合が高く、母材よりも硬いために割れ易いので、多くの微小な割れを含む。このような割れが、金属疲労特性を低下させたり、流路14を流れる気体の抵抗となって圧損を増大させるおそれがある。このため、湿式研磨装置20の研磨液23にインペラ10を所定時間浸漬することで、放電加工による変質層を除去する湿式研磨工程(化学研磨工程)を実施する。この湿式研磨工程では、駆動部25により、インペラ10を使用時と同じ向きに正回転R+(図1)させる。
この湿式研磨工程において、研磨液23の成分との酸化還元反応によって放電加工面の表層から所定の深さまでが溶解されることで変質層が除去される。この酸化還元反応に伴い、研磨液23中に水素ガスが発生する。
【0024】
本実施形態は、研磨液23に浸漬されたインペラ10を回転させるところに特徴がある。
そうすることにより、インペラ10の流路14内に、流路14に沿った研磨液23の流れ(研磨液流)を生じさせる。つまり、インペラ10を正回転させると、入口141から流路14内に研磨液23が吸い込まれるとともに、流路14内の研磨液23が出口142に向けて押し出されることにより、流路14に沿って研磨液流が生じる。この研磨液流が持つエネルギにより、水素ガスが流路14の内壁(研磨面)沿いに滞留することを妨げる。したがって、研磨液23を流路14の内壁全体に均一に接触させることができるので、流路14の内壁は、図12のようなうねりWが生じることなく平滑化される。また、インペラ10の回転に伴う振動が研磨面にも及び、この振動が、研磨面から水素ガスが離脱するのを促進させる。
【0025】
インペラ10の回転数は、流路14の研磨液流に十分な流速が得られ、かつ流路14内で乱流を生じさせない程度、例えば、8〜30rpmとすることが好ましい。乱流の影響で研磨液流の速度が遅くなると、インペラ10を回転させる効果が十分に得られなくなるからである。
【0026】
上記の湿式研磨工程の後、必要に応じて、例えば機械加工によって外形の仕上げを行う。以上により、インペラ10が完成する。
【0027】
本実施形態によれば、湿式研磨工程においてインペラ10を回転させることにより、水素ガスによるうねりWの発生を回避または抑制できるので、流路14の内壁を平滑化できる。これにより、インペラ10を用いた遠心回転機は、流路14を流れる気体に対する内壁の抵抗が小さくなるので、圧損を低減できる。
【0028】
〔第2実施形態〕
次に、図4および図5を参照し、本発明の第2実施形態について説明する。なお、第2実施形態以降の説明では、既に説明したものと同様の構成については同じ符号を付し、その説明を省略または簡略する。
第2実施形態においても、第1実施形態と同様、湿式研磨装置20により、インペラ10を回転させながら放電加工面による変質層を除去するが、このとき、インペラ10の回転数を変化させる点で第1実施形態とは相違する。
インペラ10の回転は、遠心回転機の運転時の回転と同じ向きの正回転と、それとは逆向きの負回転とに交互に切り替えられる。例えば、図4に示すように、正回転時の15rpmと、負回転時の−15rpmとに回転数を変化させている。この回転の向きの切り替えは、駆動部25を制御する図示しない制御手段によって行われる。
【0029】
本実施形態は、上述した第1実施形態によって満足される遠心回転機の性能のさらなる向上を図るため、次に述べる研磨量の差(ムラ)を低減するものである。
つまり、湿式研磨装置20により、回転の向きを変えずに正回転(図5のR+)のみさせて研磨を行った場合には、図5に示すように、各流路14の内壁に研磨量の差(ムラ)が生じることがある。インペラ10が正回転する場合、流路14内の内周側から外周側に向けた研磨液流の流速は、流路14の中央部が隣の流路14(図示せず)に向けて凹状に窪んだ凹側143の方が、対向する凸側144よりも速くなるので、凹側143の方が凸側144よりも研磨され易い。したがって、凹側143では研摩量が多く、凸側144では研摩量が少なくなる。このような流路14内壁の研磨量のムラを低減させるため、本実施形態では、インペラ10の回転の向きを切り替える。
【0030】
正回転R+とは逆向きに、インペラ10を回転(負回転R−)させると、凹側143での研磨液23の流速は正回転時よりも遅くなるので、凹側143の研磨量が正回転時に比べて少なくなる。このように、回転の向きを切り替えることによって流路14内の流れが変わり、これに応じて流路14内の各部位の研磨量が変わることで、凹側143が集中的に研磨されるのが回避される。その結果、流路14内壁の研磨量のムラを低減できる。
【0031】
回転の向きを切り替える頻度(時間)は、研磨量のムラが発現しないように、十分に短い時間に設定されることが好ましい。例えば、研磨液23にインペラ10を浸漬する総研磨時間を2〜3時間とすると、この時間に対して十分短い30秒〜15分に設定される。なお、図4には、正回転から研磨を開始する例を示したが、負回転から研磨を開始し、負回転、正回転、負回転の順としてもよい。
また、正回転の時間と負回転の時間は、本実施形態ではいずれも同じ5分間の例を示したが、正回転の時間と負回転の時間が異なっていてもよい。さらに、繰り返される複数回の正回転を異なる時間で行なってもよい。負回転についても同様である。
インペラ10の回転数についても、正回転と負回転を異なる回転数(絶対値)で行なってもよく、また、繰り返される複数回の正回転を異なる回転数で行ってもよい。負回転についても同様である。
上述した回転の向きを切り替える頻度、回転の向きの順序、回転させる時間、および回転数は、以降の各実施形態にも当てはまる。
【0032】
本実施形態によれば、流路14内壁を平滑化できる第1実施形態の効果に加え、回転の向きを切り替えることにより流路14内壁の研磨量のムラを低減できる。これにより、インペラ10の流路14に求められる形状精度をより高いレベルで確保できるので、遠心回転機の所定の性能を向上させることができる。
【0033】
第2実施形態の変形例として、図6のタイミングチャートに示すように、正回転と負回転との間に、インペラ10の回転を止める無回転を挿入することができる。そうすることにより、正回転あるいは負回転から無回転に切り替えるときの研磨液流の流速の変化の度合い(時間変化率)を、正回転から負回転に(またはその逆)直接切り替えるのに比べて、小さくできる。これにより、回転の向きに応じた研磨され易い部位を徐々に移動させることができるので、研磨量のムラを効果的に低減できる。
ただし、本発明は、正回転、無回転、負回転の順で回転を切り替えた後、無回転を挟むことなく正回転を行うことを許容する。つまり、本発明において、正回転、無回転、および負回転の順序は任意である。したがって、例えば、正回転の後には必ず無回転を挿入するが、負回転の後には数回に一度だけ無回転を挿入するようにしてもよい。無回転の時間についても任意に決められる。
【0034】
以上の第2実施形態は、あくまでインペラ10の回転数を変化させる一例として示した。つまり、インペラ10の回転数を第2実施形態(正回転、負回転)、第3実施形態(正回転、負回転、無回転)のように変化させれば、流路14内の研磨液23の流れが変わり、これによって研磨量のムラが発現し難くなるので形状精度の確保に貢献するという共通の効果が得られる。
インペラ10の回転数を変化させる態様としては、その回転の向きを正回転、無回転、正回転の順に切り替える、あるいは、負回転、無回転、負回転の順に切り替えることもできる。
また、第2実施形態により、インペラ10の回転数を正回転時、負回転時ともに一定にした例を示したが、これに限らず、図8(A)や(B)に示すように、本発明は、回転数を連続的に変化させたり、図8(C)に示すように回転数を段階的に変化させることを許容する。
【0035】
〔第3実施形態〕
次に、本発明の第3実施形態として、吊り下げられたインペラ10を回転することのできる湿式研磨装置30を示す。
湿式研磨装置30は、図8に示すように、研磨液槽24と、研磨液槽24を囲む筐体31と、筐体31の上面に回転可能に設けられる回転盤32とを備えている。なお、研磨液槽24の液入口241、液出口242の図示を省略した。図9、図10に示す装置においても同様である。
回転盤32の回転中心には、インペラ10の軸孔110にカバー12側から組み付けられるとともに、駆動部25に接続される回転軸33が設けられている。回転盤32により、インペラ10がカバー12を上、ディスク11を下に向けた姿勢で回転可能に吊り下げられる。吊り下げられたインペラ10は、その全体が研磨液23に浸漬される。
【0036】
本実施形態においても、湿式研磨装置30を用いて、インペラ10を回転させながら湿式研磨を行う。本実施形態のようにインペラ10が吊り下げられていても、インペラ10が設置台21(図3)に載せられた第1,2実施形態と同様、インペラ10の回転により流路14内に研磨液流が生じるために研磨面を平滑化できる。
また、本実施形態においても、第2、3実施形態で述べたように、インペラ10の回転数を変化させることにより、研磨量のムラを低減できる。
なお、湿式研磨時のインペラ10の姿勢は、第1実施形態(図3)や第3実施形態(図8)には限らず、例えば、その回転軸線C(図2)が水平方向に沿うようにインペラ10が支持されていてもよい。
【0037】
〔第4実施形態〕
さらに、図9に、本発明の第4実施形態に係る湿式研磨装置35を示す。
湿式研磨装置35は、回転軸37に支持されたインペラ10を歳差運動させながら、変質層の除去を行うことができる。
【0038】
歳差運動をするインペラ10は、一回転(自転)する間に、その外周部が上下方向に往復動するので、流路14内の特に外周側で研磨液流が上下方向および径方向にも速度を持つことになる。これにより、インペラ10が自転のみする場合よりも、水素ガスの流路14内壁への滞留をより確実に防止できるので、研磨面をより平滑化できる。
なお、本実施形態においても、インペラ10の回転数を変化させ、流路14内の各部位の流速を変化させることによって、研磨量のムラを低減できる。ここで、歳差運動により、インペラ10が一回転する間にも流路14内壁の各部位の流速が次第に変化し、これによって研磨され易い部位の位置も一回転する間で次第に変化するので、研磨量のムラをより発現し難くできる。
【0039】
インペラ10を歳差運動させる機構は任意であり、研磨液23による抵抗を利用してインペラ10の重心を元の回転軸線C上からずらすことで歳差運動させてもよいし、インペラ10自体を強制的に歳差運動させてもよい。また、インペラ10を歳差運動させるにあたり、必ずしも、インペラ10が吊り下げられていなくてもよい。例えば、ディスク11を上に向けた姿勢で下から軸支されたインペラ10を歳差運動させてもよい。
【0040】
〔第5実施形態〕
本発明は、第1〜4実施形態で示した化学研磨の他に電解研磨によって変質層を除去することも包含する。
そこで、第5実施形態として、本発明に電解研磨を適用する場合に好適な電解研磨装置40を図10、図11を参照して説明する。なお、図10には、電解研磨装置40の回転軸線Cから径方向の一方の側のみを示しているが、これと同様に他方の側も構成されている。
電解研磨装置40は、設置台21および回転軸22と、研磨液23を入れる研磨液槽24と、設置台21に設けられる導電性の回転構造体400と、を備えている。
回転構造体400は、各流路14内に挿入される棒状の電極41を支持する可動導電体42と、可動導電体42の上方に配置される円盤状の固定導電体43と、を有している。
【0041】
電極41は、流路14の形状に倣って湾曲して形成されている。電極41は、その一端側が可動導電体42に導通が取られた状態で支持されており、他端側に、流路14の出口142側から挿入される端部41aを有している。この電極41は、出口142側から所定範囲を受け持つことを想定している。
可動導電体42は、設置台21の上面の外周部に複数立設されており、設置台21の回転に伴ってインペラ10と同期して回転する。
固定導電体43は、円環状の導電性を有する軸受44を介して、可動導電体42の上端に支持されている。したがって、固定導電体43は、軸受44を介して、可動導電体42と相互に導通が取られている。また、固定導電体43は、例えば図示しない装置筐体に固定されることで、回転が規制されている。この固定導電体43には、装置外部に設置された電源45が電気的に接続されている。電源45により、固定導電体43、軸受44、および可動導電体42を介して電極41に給電される。
なお、インペラ10と設置台21との間には、絶縁板46が介装されている。また、設置台21および回転軸22は接地されている。
【0042】
本実施形態では、上記の電解研磨装置40を用いて電解研磨工程を行うことにより、放電加工による変質層を除去する。この電解研磨工程では、インペラ10を高電圧、電極41をそれよりも低電圧として通電し、その電位差に基づいて各流路14の内壁の表層を溶解させることで、放電加工面を研磨する。
この工程においても、前述の各実施形態と同様に、インペラ10を回転させる。このとき、可動導電体42はインペラ10および設置台21と共に回転するが、軸受44が設けられているために、固定導電体43には回転が伝わらない。したがって、インペラ10の回転に伴って電源45を移動させることなく、電極41への給電を行うことができる。
【0043】
電極41が受け持つ範囲よりも流路14の入口141側を電解研磨するには、入口141側の湾曲形状に沿った電極を別途設ける。この電極と電極41を用いて電解研摩することで、流路14の長手方向に亘る全域が研磨される。なお、流路14の形状によっては、1つの電極を流路14に挿入し、流路14の全域、または遠心回転機の性能への影響が大きい部分のみを研磨することもできる。
【0044】
本実施形態によっても、インペラ10の回転により流路14内に研磨液流が生じるために研磨面を平滑化できる。本実施形態においても、第2実施形態で述べたように、インペラ10の回転数を変化させることにより、研磨量のムラを低減できる。
【0045】
上記で述べた以外にも、本発明の主旨を逸脱しない限り、上記各実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
【符号の説明】
【0046】
10 インペラ
11 ディスク
12 カバー
13 ブレード
14 流路
20,30,35 湿式研磨装置
22,33,37 回転軸
23 研磨液
24 研磨液槽
40 電解研磨装置
41 電極
42 可動導電体
43 固定導電体
44 軸受
45 電源
91 スジ状部
400 回転構造体
R+ 正回転
R− 負回転
W うねり

【特許請求の範囲】
【請求項1】
遠心回転機のインペラの流路を放電加工により形成する流路形成工程と、
前記インペラを研磨液に浸漬することで前記流路の内壁を湿式研磨する湿式研磨工程と、を備え、
前記湿式研磨工程では、前記インペラをその回転軸線周りに回転させる、
ことを特徴とする遠心回転機のインペラの製造方法。
【請求項2】
前記湿式研磨工程では、
前記インペラの回転数を変化させる、
請求項1に記載の遠心回転機のインペラの製造方法。
【請求項3】
前記湿式研磨工程では、
正回転と負回転とを交互に切り替えることで、前記インペラの回転数を変化させる、
請求項2に記載の遠心回転機のインペラの製造方法。
【請求項4】
前記湿式研磨工程では、
前記正回転と前記負回転との間に、前記インペラの回転を止める無回転を挿入する、
請求項3に記載の遠心回転機のインペラの製造方法。
【請求項5】
前記湿式研磨工程では、
前記インペラを歳差運動させる、
請求項1から4のいずれか一項に記載の遠心回転機のインペラの製造方法。
【請求項6】
前記湿式研磨工程では、
前記流路に挿入される電極と、
前記電極を支持するとともに、前記インペラと共に回転する可動導電体と、
外部から電力が供給される固定導電体と、を備える回転構造体を用いて電解研磨を行い、
前記固定導電体に供給された電力が前記可動導電体を介して前記電極に供給される、
請求項1から5のいずれか一項に記載の遠心回転機のインペラの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2013−104321(P2013−104321A)
【公開日】平成25年5月30日(2013.5.30)
【国際特許分類】
【出願番号】特願2011−247102(P2011−247102)
【出願日】平成23年11月11日(2011.11.11)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】