説明

電極用導電性組成物

【課題】電極用導電性組成物において、電極活物質および導電助剤の導電性を阻害せずに分散安定化を図るとともに、電極活物質の電解液に対する濡れ性を向上させること、並びに、本発明の電極用導電性組成物を用いて作製される電池、キャパシタの性能を向上させることを目的とする。
【解決手段】導電材料と、溶剤と、濡れ向上剤からなる導電性組成物であって、
前記導電材料は、かさ密度0.01〜0.20g/cm、体積抵抗率0.001〜0.1Ω・cm(圧縮密度0.9g/cmの時)であり、前記導電性組成物が、顆粒状かつ、固形分が20〜60重量%であることを特徴とする電極用導電性組成物。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、二次電池およびキャパシタを構成する電極を作製するために使用する導電性組成物に関する。特に、本発明の電極用導電性組成物は、リチウム二次電池、ニッケル水素二次電池、燃料電池、キャパシタ等に用いることができるが、特にリチウムイオン二次電池、リチウムイオンキャパシタに用いると好適である。
又、本発明は、大電流での放電特性あるいは充電特性、サイクル特性、及び電極合材層の導電性に優れ、電極集電体と電極合材層との接触抵抗が小さい電極を具備するリチウム二次電池に関する。
【背景技術】
【0002】
近年、デジタルカメラや携帯電話のような小型携帯型電子機器が広く用いられるようになってきた。これらの電子機器には、容積を最小限にし、かつ重量を軽くすることが常に求められてきており、搭載される電池においても、小型、軽量かつ大容量の電池の実現が求められている。また、自動車搭載用等の大型二次電池においても、従来の鉛蓄電池に代えて、大型の非水電解質二次電池の実現が望まれている。
【0003】
そのような要求に応えるため、リチウム二次電池の開発が活発に行われている。リチウム二次電池の電極としては、リチウムイオンを含む正極活物質と導電助剤と有機バインダー等からなる電極合材を金属箔の集電体の表面に固着させた正極、及び、リチウムイオンの脱挿入可能な負極活物質と導電助剤と有機バインダー等からなる電極合材を金属箔の集電体の表面に固着させた負極が使用されている。
【0004】
一般的に、正極活物質としては、コバルト酸リチウム、マンガン酸リチウム等のリチウム遷移金属複合酸化物が用いられているが、これらは電子伝導性が低く、単独での使用では十分な電池性能が得られない。そこで、カーボンブラック(例えば、アセチレンブラック)等の炭素材料を導電助剤として添加することで導電性を改善し、電極の内部抵抗を低減することが試みられている。とりわけ電極の内部抵抗を低減することは、大電流での放電を可能とすることや、充放電の効率を向上させる上で非常に重要となっている。
【0005】
一方、負極活物質としては、通常グラファイト(黒鉛)が用いられている。黒鉛はそれ自身が導電性を有しているものの、黒鉛とともに導電助剤としてアセチレンブラック等のカーボンブラックを添加すると充放電特性が改善されることが知られている。これは、一般に用いられる黒鉛粒子は大きいために、黒鉛単独で使用すると電極層に充填された時の隙間が多くなってしまうが、導電助剤としてカーボンブラックを併用した場合は、微細なカーボンブラック粒子が黒鉛粒子間の隙間を埋めることで接触面積が増え、抵抗が下がるためではないかと思われる。しかしながら、この場合も導電助剤の分散が不十分であると、導電効果が低減する。
【0006】
この様に、とりわけ電極の内部抵抗を低減することは、大電流での放電を可能とすることや、充放電の効率を向上させる上で非常に重要な要素の一つとなっている。
【0007】
しかしながら、導電性に優れた炭素材料(導電助剤)は、ストラクチャーや比表面積が大きいため凝集力が強く、リチウム二次電池の電極合材形成用スラリー中に均一混合・分散することが困難である。そして、導電助剤である炭素材料の分散性や粒度の制御が不十分な場合、均一な導電ネットワークが形成さないために電極の内部抵抗の低減が図れず、その結果、活物質であるリチウム遷移金属複合酸化物やグラファイト等の性能を十分に引き出せないという問題が生じている。また、電極合材中の導電助剤の分散が不十分であると、部分的凝集に起因して電極板上に抵抗分布が生じ、電池として使用した際に電流が集中し、部分的な発熱及び劣化が促進される等の不具合が生ずることがある。
【0008】
また、金属箔等の電極集電体上に電極合材層を形成する場合、多数回充放電を繰り返すと、集電体と電極合材層の界面や、電極合材層内部における活物質と導電助剤界面の密着性が悪化し、電池性能が低下する問題がある。これは、充放電におけるリチウムイオンのドープ、脱ドープにより活物質及び電極合材層が膨張、収縮を繰り返すために、電極合材層と集電体界面及び、活物質と導電助剤界面に局部的なせん断応力が発生し界面の密着性が悪化するためと考えられている。そしてこの場合も、導電助剤の分散が不十分であると、密着低下が著しくなる。これは、粗大な凝集粒子が存在すると、応力が緩和されにくくなるためであると思われる。
【0009】
また、電極集電体と電極合材間の問題として、例えば正極の集電体としてアルミニウムを用いると、この表面に絶縁性の酸化皮膜が形成され、電極集電体と電極合材間の接触抵抗が上昇するといった問題もある。
【0010】
前述の様な電極集電体と電極合材間の不具合に対して、いくつかの提案がなされている。例えば特許文献1及び特許文献2には、カーボンブラック等の導電剤を分散した塗膜を、電極下地層として集電極上に形成する方法が試みられているが、この場合も導電剤の分散が悪いと十分な効果が得られない。
【0011】
リチウム二次電池においては導電助剤である炭素材料の分散が重要なポイントの一つである。特許文献3、特許文献4には、カーボンブラックを溶剤に分散する際に、分散剤として界面活性剤を用いる例が記載されている。しかしながら、界面活性剤は炭素材料表面への吸着力が弱いため、良好な分散安定性を得るには界面活性剤の添加量を多くしなければならず、この結果、含有可能な活物質の量が少なくなり、電池容量が低下してしまう。また、界面活性剤の炭素材料への吸着が不十分であると、炭素材料が凝集してしまう。また、一般的な界面活性剤では、水溶液中での分散と比較して、有機溶剤中での分散効果が著しく低い。
【0012】
また、特許文献5及び特許文献6には、カーボンブラックを溶剤又は水に分散する際に、分散樹脂を添加することでカーボンスラリーの分散状態を改善し、そのカーボンスラリーと、活物質とを混合して、電極用合材を作製する方法が開示されている。しかしながら、この方法では、カーボンブラックの分散性は向上するものの、比表面積の大きな微細なカーボンブラックの分散を行う場合には大量の分散樹脂が必要となること、及び分子量の大きな分散樹脂がカーボンブラック表面を被覆してしまうこと等から、導電ネットワークが阻害され電極の抵抗が増大し、結果的にカーボンブラックの分散向上による効果を相殺してしまう場合がある。
【0013】
更に、電極材料の分散性の向上と併せて、充放電の効率を向上させる上で重要な要素としては、電極の電解液に対する濡れ性の向上が挙げられる。電極反応は、電極材料表面と電解液との接触界面で起こるため、電解液が電極内部まで浸透し電極材料が良く濡れることが重要となる。電極反応を促進させる方法としては、微細な活物質や導電助剤を用いて電極の表面積を増大させる方法が検討されているが、特に炭素材料を用いる場合は、電解液に対する濡れが悪く、実際の接触面積が大きくならないため、電池性能の向上が難しいといった問題がある。
【0014】
電極の濡れ性を改善する方法として、特許文献7には、電極中に繊維径1〜1000nmの炭素繊維を含有させることで、活物質粒子間に微細な空隙を持たせる方法が開示されている。しかしながら、通常、炭素繊維は複雑に絡み合っているため、均一な分散が難しく、炭素繊維を混ぜるだけでは、均一な電極を作製することができない。また、同文献では、分散制御のために炭素繊維の表面を酸化処理した炭素繊維を使用する方法も挙げられているが、炭素繊維を直接、酸化処理すると、炭素繊維の導電性や強度が低下してしまうという問題がある。また、特許文献8には、炭素粉末を主剤とする負極材料に高級脂肪酸アルカリ塩の様な界面活性剤を吸着させ、濡れ性を改善する方法が開示されているが、上述したように界面活性剤は特に非水系での分散性能が十分でないことが多く、均一な電極塗膜が得られない。これらの例では、いずれも電極材料の分散性を含めたトータルでの性能としては不十分であった。
【特許文献1】特開2000−123823号公報
【特許文献2】特開2002−298853号公報
【特許文献3】特開昭63−236258号公報
【特許文献4】特開平8−190912号公報
【特許文献5】特開2003−157846号公報
【特許文献6】特表2006−516795号公報
【特許文献7】特開2005−063955号公報
【特許文献8】特開平6−60877号公報 また、電気二重層キャパシタは、2つの分極性電極間にセパレータを配置し、電解液を含浸して構成される、対称電極キャパシタが一般的である。これらは、従来の2次電池と比較して急速な充放電が可能であり、出力密度が大きく、化学変化を伴わないため充放電の繰り返しによる劣化が少ないといった特徴がある。
【0015】
一般に電気二重層キャパシタ用電極は集電体に活性炭等の炭素質材料を含有する電極層を積層させた構造を有している。又、電極層は炭素質材料とバインダーからなり、電極材料の製造方法としては押し出し圧延方式やコーティング方式がある。
電気二重層キャパシタ用電極として、例えば文献1には、活性炭粉末とカルボキシメチルセルロース等のバインダー水溶液からなるスラリーを調製し、アルミニウム箔等の集電体に、ロールコーティング、及びドクターブレードコーティング等の手法で付着させて作製した電極が開示されている。
【0016】
文献10には、カルボキシメチルセルロース樹脂のアンモニウム塩、ポリビニルアルコール、メチルセルロース、ヒドロキシプロピルセルロース樹脂からなる群から選ばれる一種類以上セルロース系化合物と、四フッ化エチレン樹脂エマルション若しくはラテックスとを含む分散液の中に、活性炭及び導電性付与剤が分散された塗料を導電箔上に塗布したものが開示されている。
【0017】
又、従来のキャパシタ以外にハイブリッドキャパシタと呼ばれる蓄電装置が注目されている。ハイブリッドキャパシタでは通常、正極に分極性電極、負極に非分極性電極を使用する、いわゆる非対称電極キャパシタであり、さらに負極にリチウム金属と接触させ、予め化学的方法又は電気化学的方法でリチウムイオンを吸蔵、担持(ドーピング)させてエネルギー密度を大幅に大きくすることを意図した提案もなされている。(文献11〜12)
【特許文献9】特開平3−280518号公報
【特許文献10】国際公開WO1998/058397号
【特許文献11】特開平8−107048号公報
【特許文献12】特開平9−55342号公報 しかしながら、上記特許文献1〜12の開示された技術においては種々の問題点がある。すなわち、導電材料が分散不十分であるために直流抵抗やインピーダンスが十分低くならず、電極合材インキで塗工して電極層を形成した場合に、電極活物資と集電体を繋ぐ導電経路が好適に形成されないために充放電を繰り返すと電気容量が低下するなど二次電池およびキャパシタとして必ずしも満足いくものではなかった。
【0018】
又、高い導電性を有する導電材料は一般に強固な鎖状構造「ストラクチャー」を有しているがビーズミル等での分散工程において衝撃力が強すぎるために「ストラクチャー」が壊れ素材の導電性が大きく低下したり、かさ密度が低いと分散が不十分となり塗液としての固形分濃度が高くならず、乾燥時に溶媒を蒸発させるエネルギーが大きくなり生産効率等が悪化し、地球環境保護の観点からも好ましくない。
【0019】
更に、電極活物質とバインダーと導電材料から成る電極合材インキにおいて、分散が不十分なために電極への塗工安定に欠き、好適な電極膜が形成されないため繰り返し充放電を行うと、電極塗膜が集電体と剥がれる等、製品不良が生じる等の問題があった。
【発明の開示】
【発明が解決しようとする課題】
【0020】
本発明は、上記の従来の問題を解決するためになされたものであり、特定のかさ密度と体積抵抗率の導電材料を用いた顆粒状の電極用導電性組成物を使用することで、電極合材層中の導電経路を効率的に形成して電気抵抗の低い電極を作製すること、導電材料の導電性を阻害せずに電極合材インキの保存安定化を図り塗工性を向上させること、並びに、本発明の電極用導電性組成物を用いて作製される二次電池、キャパシタの性能を向上させることを目的とする。
【課題を解決するための手段】
【0021】
すなわち本発明は、
導電材料と、溶剤と、濡れ向上剤からなる導電性組成物であって、
前記導電材料は、かさ密度0.01〜0.20g/cm、体積抵抗率0.001〜0.1Ω・cm(圧縮密度0.9g/cmの時)であり、
前記導電性組成物が顆粒状であり、かつ、固形分が20〜60重量%であることを特徴とする電極用導電性組成物に関する。
【0022】
また本発明は濡れ向上剤が、1分子単位当りの極性官能基を2個以上有する化合物であり、前記導電性組成物が顆粒状であり、かつ、固形分が25〜55重量%であることを特徴とする前記の電極用導電性組成物に関する。
また本発明は前記濡れ向上剤が、1分子単位当りの極性官能基を2個以上有する化合物であり、かつ、濡れ向上剤が重量平均分子量1千以下の濡れ向上剤A及び又は重量平均分子量3千以上200万以下の濡れ向上剤Bからなることを特徴とする前記の電極用導電性組成物に関する。
【0023】
また前記導電材料が、アセチレンブラック、ファーネスブラック、ケッチェンブラック、グラファイト、黒鉛化カーボン、繊維状炭素材料よりなる群から選択される少なくとも1種からなる前記電極用導電性組成物に関する。
また前記顆粒状の導電性組成物が、かさ密度0.30〜0.80g/cmであることを特徴とする前記電極用導電性組成物に関する。
また前記導電性組成物が、メディアレス分散したことを特徴とする前記電極用導電性組成物に関する。
また前記導電性組成物が、攪拌翼及び又は攪拌羽根で高速せん断分散したことを特徴とする前記電極用導電性組成物に関する。
【0024】
さらに導電材料を濡れ向上剤により溶剤に濡らす第一の工程と、濡らされた導電材料を造粒する第二の工程を用いて製造される、上記電極用導電性組成物の製造方法に関する。
さらに導電材料を濡れ向上剤により溶剤に濡らす第一の工程と、濡らされた導電材料を造粒する第二の工程よりなり、前記導電材料は、かさ密度0.01〜0.20g/cm、体積抵抗率0.001〜0.1Ω・cm(圧縮密度0.9g/cmの時)であり、顆粒状かつ固形分が20〜60重量%であることを特徴とする電極用導電性組成物の製造方法に関する。
【0025】
さらに前記電極用導電性組成物を使用して形成されてなる正極または負極用電極に関する。
さらに前記の正極または負極用電極を使用して形成されてなる二次電池に関する。
さらに前記の正極または負極用電極を使用して形成されてなるキャパシタに関する。
【発明の効果】
【0026】
本発明の好ましい実施態様によれば、電極層中の導電性炭素材料が偏りなく分配され、導電性炭素材料が分散安定性に優れるために、電極活物質と集電体を好適に導電経路を形成する電極用導電性組成物が得られる。更に、本発明の好ましい実施態様に係る電極用導電性組成物を、2次電池、キャパシタ、燃料電池の電極に使用することにより、集電体と電極組成物との密着性、電極活物質と導電性炭素材料との密着性、並びに電極組成物の電解液に対する濡れ性が、改善されて、電極の内部抵抗の低減を促すと共に、充放電の効率を向上することができ、電池およびキャパシタの性能を総合的に向上させることができる。
【発明を実施するための最良の形態】
【0027】
本発明の電極用導電性組成物は、顆粒状であることが好ましい。顆粒状とは導電性炭素材料が球状、楕円球状、団子状、ないしは不定形であっても丸まった状態になったものを示す。導電性炭素材料を顆粒状にすると合材インキ化の際に、組成物を添加した初期分散段階では合材インキ中に偏りなく導電成分が分配され、その後に分散が進む段階では顆粒状の組成物が解されて電極活物質の表面に吸着されたり、バインダ中に導電材料のストラクチャーを広げられるため、電極を作製した時に導電性材料が塗膜中で導電成分の分布に偏りのない導電性経路が形成される。その結果、電極の抵抗が低下することで充放電特性や負荷特性(レート特性)が格段に向上し、優れた電池が得られる。更に分散混練時間が大幅に短縮化でき、粉体状の導電性炭素材料と比べて飛散などがなくハンドリングなど格段に優れるため効率的な生産が可能となり、トータルでのコストダウンに極めて有効である。一方、ゲル状であると長期保存した時、ゲル化が進んでケーキ状になりハンドリング性に劣る。また、ペースト状では長期保存により炭素材料の沈降が生じるなど塗液の安定性に劣り、溶剤を多く含むため合材インキ化する際の粘度が低くなって設計の自由度が極めて低くなる。
【0028】
本発明の電極用導電性組成物は固形分が20〜60重量%であることが好ましく、更に好ましくは25〜55重量%である。上記の範囲内にあれば合材ペースト化した際の粘度の安定性が高く、塗工安定性にすぐれた塗液が得られ、更に電極塗膜中の導電性成分の分配が好適となり偏りのない導電性経路が形成され、電池性能が向上する。また、固形分が20重量%以下であると形状が保てなくなりハンドリングが悪化し、60重量%より多いと合材ペースト化する際に解れ不良の原因となり問題となる。
【0029】
<導電助剤としての導電性炭素材料>
本発明に使用される導電性材料のかさ密度は、0.01〜0.20g/cmが好ましい。0.20g/cmより大きくなると電極塗膜中に好適な導電経路が形成しずらくなり、電極の抵抗が上がってしまうため充放電時の電気容量を低下させるなど問題がある。0.01g/cmより小さくなるとかさ高くなりすぎて電極密度が極端に低下するなど実用に適さなくなる。
本発明における導電材料としては、炭素材料が最も好ましい。炭素材料としては、導電性を有する炭素材料であれば特に限定されるものではないが、グラファイト、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー、及びフラーレン等を単独で、若しくは2種類以上併せて使用することができる。
本発明に使用される導電性材料の体積抵抗率は0.001〜0.1Ω・cm(圧縮密度0.9g/cmの時)が好適である。この範囲にあれば本発明の効果である電極の抵抗率が低下するため、充放電による効率が良好となる。
【0030】
カーボンブラックとしては、気体若しくは液体の原料を反応炉中で連続的に熱分解し製造するファーネスブラック、特にエチレン重油を原料としたケッチェンブラック、原料ガスを燃焼させて、その炎をチャンネル鋼底面にあて急冷し析出させたチャンネルブラック、ガスを原料とし燃焼と熱分解を周期的に繰り返すことにより得られるサーマルブラック、及び、特にアセチレンガスを原料とするアセチレンブラック等の各種のものを単独で、若しくは2種類以上併せて使用することができる。又、通常行われている酸化処理されたカーボンブラックや、中空カーボン等も使用できる。
【0031】
カーボンの酸化処理は、カーボンを空気中で高温処理したり、硝酸や二酸化窒素、オゾン等で二次的に処理したりすることより、例えばフェノール基、キノン基、カルボキシル基、カルボニル基の様な酸素含有極性官能基をカーボン表面に直接導入(共有結合)する処理であり、カーボンの分散性を向上させるために一般的に行われている。しかしながら、官能基の導入量が多くなる程カーボンの導電性が低下することが一般的であるため、酸化処理をしていないカーボンの使用が好ましい。
【0032】
用いるカーボンブラックの比表面積は、値が大きいほど、カーボンブラック粒子どうしの接触点が増えるため、電極の内部抵抗を下げるのに有利となる。具体的には、窒素の吸着量から求められる比表面積(BET)で、20m2/g以上、1500m2/g以下、好ましくは50m2/g以上、1500m2/g以下、更に好ましくは100m2/g以上、
1500m2/g以下のものを使用することが望ましい。比表面積が20m2/gを下回るカーボンブラックを用いると、十分な導電性を得ることが難しくなる場合があり、1500m2/gを超えるカーボンブラックは、市販材料での入手が困難となる場合がある。
【0033】
又、用いるカーボンブラックの粒径は、一次粒子径で0.005〜1μmが好ましく、特に、0.01〜0.2μmが好ましい。ただし、ここでいう一次粒子径とは、電子顕微鏡等で測定された粒子径を平均したものである。
【0034】
市販のカーボンブラックとしては、例えば、
トーカブラック#4300、#4400、#4500、及び#5500等の東海カーボン社製ファーネスブラック;
プリンテックスL等のデグサ社製ファーネスブラック;
Raven7000、5750、5250、5000ULTRAIII、5000ULTRA、Conductex SC ULTRA、975 ULTRA、PUER BLACK100、115、及び205等のコロンビヤン社製ファーネスブラック;
#2350、#2400B、#2600B、#30050B、#3030B、#3230B、#3350B、#3400B、及び#5400B等の三菱化学社製ファーネスブラック;
MONARCH1400、1300、900、VulcanXC−72R、及びBlackPearls2000等のキャボット社製ファーネスブラック;
Ensaco250G、Ensaco260G、Ensaco350G、及びSuperP−Li等のTIMCAL社製ファーネスブラック;
ケッチェンブラックEC−300J、及びEC−600JD等のアクゾ社製ケッチェンブラック、並びに、
デンカブラック、デンカブラックHS−100、FX−35等の電気化学工業社製アセチレンブラック等が挙げられるが、これらに限定されるものではない。
【0035】
グラファイトとしては例えば人造黒鉛や燐片状黒鉛、塊状黒鉛、土状黒鉛などの天然黒鉛が挙げられるが、組み合わせて用いても良い。
【0036】
導電性炭素繊維としては石油由来の原料から焼成して得られるものが良いが、植物由来の原料からも焼成して得られるものも用いることができる。例えば石油由来の原料で製造される昭和電工社製のVGCFなどを挙げることができる。
【0037】
<濡れ向上剤>
濡れ向上剤は導電性炭素材料と溶剤との濡れ性を高め、顆粒状に形成すると同時に、合材ペースト化の際には導電性炭素材料の速やかに解し、最終的に導電性成分を分配し電極塗膜中に好適な導電性経路を形成する役割を果たす。
【0038】
濡れ向上剤としては1分子単位当り極性官能基を2個以上と親油性基を有する化合物であれば特に制限がない。親油性基は炭素材料表面との相互作用に効果があり、2個以上の極性官能基は電荷反発や溶剤の取り込みに効果を奏し、合材ペーストに用いた時に導電性組成物を好適に分配する役割を果たすと考えられる。この中で濡れ向上剤Aは分子量が50〜1000であるため比較的短時間で導電性炭素材料を馴染ませることができ、濡れ向上剤Bは重量平均分子量が3000〜200万であるため顆粒状となった導電性組成物の保存安定性、更に合材ペーストとしたときの保存安定性に寄与する。これら濡れ向上剤はA、Bそれぞれ単独で用いても良く、併用すると更に好ましい。
【0039】
分子量が50〜1000以下の濡れ向上剤Aとしては例えば、塩基性官能基を有する脂肪族化合物、塩基性官能基を有する芳香族化合物、塩基性官能基を有する有機色素誘導体、塩基性官能基を有するアントラキノン誘導体、塩基性官能基を有するアクリドン誘導体、及び塩基性官能基を有するトリアジン誘導体からなる群から選ばれる1種以上の誘導体、又は、酸性官能基を有する脂肪族化合物、酸性官能基を有する芳香族化合物、酸性官能基を有する有機色素誘導体、及び酸性官能基を有するトリアジン誘導体からなる群から選ばれる1種以上の誘導体が挙げられる。
更に、重量平均分子量が3000〜200万の濡れ向上剤Bとしては例えば、塩基性官能基を有する樹脂、酸性官能基を有する樹脂及びビニルアミド系樹脂などが挙げられる。
【0040】
塩基性官能基を有する樹脂は、重合体(G1)を構成する片末端領域に2個のヒドロキシル基を有するビニル重合体(C1)が、分子内に2つのヒドロキシル基と1つのチオール基とを有する化合物(c11)の存在下に、エチレン性不飽和単量体(c2)をラジカル重合してなるアミン価が1〜100mgKOH/gである重合体、重合体(G2)を構成する片末端領域に1個又は2個の(メタ)アクリロイル基を有する重合体(C2)が、ビニル重合体、又はポリエステルを含むアミン価が1〜100mgKOH/gである重合体およびポリビニル系、ポリウレタン系、ポリエステル系、ポリエーテル系、ホルマリン縮合物、シリコーン系、及びこれらの複合系ポリマー等が挙げられる。更に、これらの塩基性官能基を有する樹脂は2種類以上を併用することもできる。
【0041】
<その他の市販の塩基性官能基を有する樹脂>
市販の塩基性官能基を有する樹脂としては、特に限定されないが、例えば、以下のものが挙げられる。
【0042】
ビックケミー社製の塩基性官能基を有する樹脂としては、Disperbyk−108、109、112、116、130、161、162、163、164、166、167、168、180、182、183、184、185、2000、2001、2050、2070、2150、又はBYK−9077が挙げられる。
【0043】
日本ルーブリゾール社製の塩基性官能基を有する樹脂としては、SOLSPERSE9000、13240、13650、13940、17000、18000、19000、20000、24000SC、24000GR、28000、31845、32000、32500、32600、33500、34750、35100、35200、37500、38500、又は39000が挙げられる。
【0044】
エフカアディティブズ社製の塩基性官能基を有する樹脂としては、EFKA4008、4009、4010、4015、4020、4046、4047、4050、4055、4060、4080、4300、4330、4400、4401、4402、4403、4406、4500、4550、4560、4570、4580、又は4800が挙げられる。
【0045】
味の素ファインテクノ社製の塩基性官能基を有する樹脂としては、アジスパーPB711、アジスパーPB821、又はアジスパーPB822が挙げられる。
日本油脂社製の塩基性官能基を有する樹脂としては、HKM−150A、HFB−150Aが挙げられる。
楠本化成社製の塩基性官能基を有する樹脂としては、ディスパロン1850、1860、又はDA−1401が挙げられる。
【0046】
共栄社化学製の塩基性官能基を有する樹脂としては、フローレンDOPA−15B、フローレンDOPA−17等が挙げられる。
酸性樹脂としては分子内に2つの水酸基と1つのチオール基とを有する化合物(s)の存在下、エチレン性不飽和単量体(m)をラジカル重合してなる、片末端に2つの水酸基を有するビニル重合体(c)中の水酸基と、テトラカルボン酸二無水物(d)中の酸無水物基とを反応させてなるポリビニル系樹脂(C2)、並びに、
下記一般式(1):
(HOOC−)m−R21−(−COO−[−R23−COO−]n−R22t (1)
〔一般式(1)中、R21は、4価のテトラカルボン酸化合物残基であり、R22は、モノアルコール残基であり、R23は、ラクトン残基であり、mは、2又は3であり、nは、1〜50の整数であり、tは、(4−m)である。〕
で表されるポリエステル系樹脂(C3)などがある。
【0047】
酸性官能基を有する樹脂は、上記記載の三つのタイプのみに限定されるものでなく、三つのタイプ以外のポリビニル系、ポリウレタン系、ポリエステル系、ポリエーテル系、ホルマリン縮合物、シリコーン系、及びこれらの複合系ポリマー等が挙げられる。更に、これらの酸性官能基を有する樹脂は2種類以上を併用することもできる。
【0048】
<その他の市販の酸性官能基を有する樹脂>
市販の酸性官能基を有する樹脂としては、特に限定されないが、例えば、以下のものが挙げられる。
【0049】
ビックケミー社製の酸性官能基を有する樹脂としては、 Anti−Terra−U、U100、203、204、205、Disperbyk−101、102、106、107、110、111、140、142、170、171、174、180、2001、BYK−P104、P104S、P105、9076、又は220Sが挙げられる。
【0050】
日本ルーブリゾール社製の酸性官能基を有する樹脂としては、SOLSPERSE3000、21000、26000、36000、36600、41000、41090、43000、44000、又は53095が挙げられる。
エフカアディティブズ社製の酸性官能基を有する樹脂としては、EFKA4510、4530、5010、5044、5244、5054、5055、5063、5064、5065、5066、5070、又は5071が挙げられる。
【0051】
味の素ファインテクノ社製の酸性官能基を有する樹脂としては、アジスパーPN411、又はアジスパーPA111が挙げられる。
ELEMENTIS社製の酸性官能基を有する樹脂としては、NuosperseFX−504、600、605、FA620、2008、FA−196、又はFA−601が挙げられる。
ライオン社製の酸性官能基を有する樹脂としては、ポリティA−550、又はポリティPS−1900が挙げられる。
【0052】
楠本化成社製の酸性官能基を有する樹脂としては、ディスパロン2150、KS−860、KS−873SN、1831、1860、PW−36、DA−1200、DA−703−50、DA−7301、DA−325、DA−375、又はDA−234が挙げられる。
BASFジャパン製の酸性官能基を有する樹脂としては、JONCRYL67、678、586、611、680、682、683、690、52J、57J、60J、61J、62J、63J、70J、HPD−96J、501J、354J、6610、PDX−6102B、7100、390、711、511、7001、741、450、840、74J、HRC−1645J、734、852、7600、775、537J、1535、PDX−7630、352J、252D、538J7640、7641、631、790、780、又は7610等が挙げられる。
【0053】
三菱レイヨン製の酸性官能基を有する樹脂としては、ダイヤナールBR−60、64、73、77、79、83、87、88、90、93、102、106、113、又は116等が挙げられる。
日本油脂社製の酸性官能基を有する樹脂としては、AKM−0531、AFB−1521、AAB−0851、AWS−0851が挙げられる。
【0054】
カルボキシメチルセルロースおよびそのナトリウム塩、アンモニウム塩や変性物などがあり、例えばダイセルファインケム製の樹脂としてはCMCダイセル1220、1230、1240、1250,1260、1330、1350、1360,1380,1390、2200、2260、2280、2450等が挙げられる。
ビニルアミド系樹脂としては特に限定はされないが、例えばポリビニルアセトアミド、ポリアクリルアミド、ポリビニルピロリドン、アルキル化ポリビニルピロリドン、ポリビニルピロリドンのグラフト共重合体、及びビニルピロリドンとコモノマーとの共重合体等が挙げられる。
【0055】
ビニルピロリドンと共重合できるコモノマーとしては、α−オレフィン、酢酸ビニル、アクリル酸エチル、アクリル酸メチル、メタクリル酸メチル、メタクリル酸ジメチルアミノエチル、アクリルアミド、メタクリルアミド、アクリロニトリル、エチレン、スチレン、無水マレイン酸、アクリル酸、硫酸ビニルナトリウム、塩化ビニル、ビニルピロリジン、トリメチルシロキシビニルシラン、プロピオン酸ビニル、ビニルカプロラクタム、メチルビニルケトン等が挙げられる。
【0056】
又、前記ビニルアミド系樹脂を有機酸又は無機酸処理による酸変性物等も用いられる。
【0057】
前記ビニルアミド系樹脂の中でも、特に、ポリビニルピロリドン、ビニルピロリドン−1-ブテン共重合体、若しくはビニルピロリドン−スチレン共重合体等のほぼ中性のビニ
ルアミド系樹脂、又は、有機酸、若しくは無機酸で処理したポリビニルピロリドンの酸変性物が好適に用いられる。
【0058】
濡れ向上剤の添加量は、用いる導電助剤としての炭素材料の比表面積等により決定される。一般には、濡れ向上剤を、炭素材料100重量部に対して、0.5重量部以上、40重量部以下、好ましくは1重量部以上、35重量部以下、更に好ましくは、2重量部以上、30重量部以下で添加する。添加量が少ないと十分な濡れ向上効果が得られず、過剰に添加しても電池性能の低下を引き起こし好ましくない。
【0059】
<正極活物質>
本発明の導電性組成物を用いて合材ペーストを作製する正極活物質としては特に限定はされないが、リチウムイオンをドーピング又はインターカレーション可能な、金属酸化物、及び金属硫化物等の金属化合物を使用することができる。例えば、Ti、Fe、Co、Ni、及びMn等の遷移金属の酸化物、前記遷移金属とリチウムとの複合酸化物、並びに、前記遷移金属の硫化物等の無機化合物等が挙げられる。
具体的には、
MnO、V、V13、及びTiO等の遷移金属酸化物粉末;
層状構造のニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、及びスピネル構造のマンガン酸リチウム等のリチウムと遷移金属との複合酸化物粉末;
オリビン構造のリン酸化合物であるリン酸鉄リチウム、リン酸マンガンリチウム、ナシコン構造を有するもの、ポリアニオン系材料;並びに、
TiS、及びFeS等の遷移金属硫化物粉末等;
が挙げられる。
又、上記の無機化合物は2種類以上混合して用いてもよい。
【0060】
用いる正極活物質の比表面積は、値が大きいほど、正極活物質粒子どうしの接触点が増えるため、正極電極の内部抵抗を下げるのに有利となる。具体的には、窒素の吸着量から求められる比表面積(BET)で、0.1m/g以上、150m/g以下、好ましくは1m/g以上、120m/g以下、更に好ましくは1.5m/g以上、100m/g以下のものを使用することが望ましい。比表面積が0.1m/gを下回る正極活物質を用いると、十分な導電性を得ることが難しくなる場合があり、150m/gを超える正極活物質は、製造が容易でない場合がある。
【0061】
又、用いる正極活物質の粒径は、一次粒子径で0.01〜500μmが好ましく、特に、0.05〜100μmが好ましい。但し、ここでいう一次粒子径とは、電子顕微鏡等で測定された粒子径を平均したものである。
【0062】
正極活物質のなかでも、オリビン構造のリン酸鉄リチウムは、コスト面や安全面の観点で好ましい材料である。
単なるオリビン構造のリン酸鉄リチウムでは、コバルト酸リチウム等と比較して電子伝導性が非常に低いため優れた電池特性が得られにくい。そこで、電子伝導性を向上させるために、炭素材料などの導電性物質を粒子に担持させたり、一次粒子径を小さくする方法が取られている。
炭素材料担持リン酸鉄リチウムは、特に限定されるものではないが、特開2003−292308号公報、及び特開2003−292309号公報等を参考に製造することができる。
【0063】
例えば、リン酸第一鉄八水和物(Fe(PO・8HO)とリン酸リチウム(LiPO)とを、リチウムと鉄の元素比率が1:1となるように混合し、これに導電性物質である炭素材料(例えば、アセチレンブラック、ケッチェンブラック等)、又は焼成することで分解し炭素材料となる有機化合物を、最終品で炭素材料成分が、0.1〜50重量%となるように更に加え、乾式粉砕機等で粉砕混合処理を行ったあと不活性ガス雰囲気下、600℃で数時間焼成を行い、得られた焼成物を粉砕することにより得られる。
【0064】
<負極活物質>
本発明で使用する負極活物質としては、リチウムイオンをドーピングまたはインターカレーション可能なものであれば特に限定されない。例えば、金属Li、その合金であるスズ合金、シリコン合金、鉛合金等の合金系、LiFe、LiFe、LiWO、チタン酸リチウム、バナジウム酸リチウム、ケイ素酸リチウム等の金属酸化物系、ポリアセチレン、ポリ−p−フェニレン等の導電性高分子系、ソフトカーボンやハードカーボンといった、アモルファス系炭素質材料や、高黒鉛化炭素材料等の人造黒鉛、あるいは天然黒鉛等の炭素質粉末、カーボンブラック、メソフェーズカーボンブラック、樹脂焼成炭素材料、気層成長炭素繊維、炭素繊維などの炭素系材料が挙げられる。
【0065】
これら負極活物質は、1種または複数を組み合わせて使用することも出来る。
【0066】
本発明で使用する負極活物質としては、導電性物質で複合化されたものも好適に用いられる。導電性物質としては、炭素材料、導電性高分子材料、金属等が挙げられるが、本発明の分散剤との相互作用を考慮すると、炭素材料もしくは導電性高分子材料が好ましい。
【0067】
導電性高分子材料としては、例えばポリアニリン、ポリピロール、ポリチオフェン、ポリフェニレン誘導体等が挙げられる。炭素質材料としては、黒鉛質炭素として天然黒鉛(鱗片状黒鉛など)、人造黒鉛、膨張黒鉛などのグラファイト類、非晶質炭素としてアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、繊維状炭素材料としてカーボンナノチューブ、カーボンナノファイバー等が挙げられる。金属としては、Al,Ti,Fe,Ni,Cu,Zn,Ag,Sn等が挙げられる。
【0068】
これらの複合化処理は、必要に応じ複数を組み合わせて行っても良い。
【0069】
負極活物質を導電性物質で複合化する方法としては、例えば炭素材料、金属を複合化する場合であれば、特開2003−308845号、特許第3985263号に記載のメカノフュージョン、ハイブリダイゼーション処理等の機械的処理、導電性高分子材料を複合化する場合であれば、特開2001−68096号に記載の、導電性高分子が溶解している有機溶剤溶液に浸漬させ、乾燥、熱処理する方法等が挙げられる。更には、CVD法による有機物の熱分解物被覆法やプラズマ法を用いた活物質表面への被覆層の形成法なども挙げられる。また、その他の活物質粒子表面に導電性材料を被覆する方法として、結着剤を用いる方法、気相中に分散された粉体が互いに接触するときに生じる摩擦帯電を利用して表面吸着を行う方法等を用いることも出来る。
【0070】
また、金属系、金属酸化物系の負極活物質、もしくは金属で複合化した負極活物質については、本発明で使用する濡れ向上剤との相互作用を考慮し、シランカップリング剤等のカップリング剤で表面を処理することも可能である。
【0071】
<溶剤>
本発明に使用する溶剤としては、例えば、アルコール類、グリコール類、セロソルブ類、アミノアルコール類、アミン類、ケトン類、カルボン酸アミド類、リン酸アミド類、スルホキシド類、カルボン酸エステル類、リン酸エステル類、エーテル類、ニトリル類、及び水等が挙げられる。
バインダー樹脂成分の溶解性や、導電助剤である導電材料の分散安定性を得るためには、極性の高い溶剤を使用するのが好ましい。
例えば、水、アルコール、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、及びN,N−ジエチルアセトアミド等の様な窒素をジアルキル化したアミド系溶剤、N−メチルピロリドン、ヘキサメチル燐酸トリアミド、並びに、ジメチルスルホキシド等が挙げられるが、これらに限定されない。二種類以上を併用することもできる。
【0072】
<バインダー>
本発明の導電性組成物を用いて合材インキを作製するバインダーとしては、例えば、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、アクリル樹脂、ホルムアルデヒド樹脂、シリコン樹脂、フッ素樹脂、カルボキシルメチルセルロース等のセルロース樹脂、スチレン−ブタジエンゴムやフッ素ゴム等の合成ゴム、ポリアニリンやポリアセチレン等の導電性樹脂等が挙げられる。又、これらの樹脂の変性体、混合物、水性エマルジョン、又は共重合体でも良い。
具体的には、エチレン、プロピレン、塩化ビニル、酢酸ビニル、ビニルアルコール、マレイン酸、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、アクリロニトリル、スチレン、ビニルブチラール、ビニルアセタール、及びビニルピロリドン等を構成単位として含む共重合体が挙げられる。
また、耐性面から分子内にフッ素原子を有する高分子化合物、例えば、ポリフッ化ビニリデン、ポリフッ化ビニル、及びポリテトラフルオロエチレン等の使用が好ましい。
【0073】
また、バインダーとしてのこれらの樹脂類の重量平均分子量は、10,000〜1,000,000が好ましい。分子量が小さいとバインダーの耐性が低下することがある。分子量が大きくなるとバインダーの耐性は向上するものの、バインダー自体の粘度が高くなり作業性が低下するとともに、凝集剤として働き、合剤成分が著しく凝集してしまうことがある。
【0074】
<リチウム二次電池用正極合材インキ>
本発明の電極用導電性組成物は、リチウム二次電池用正極合材インキに添加して用いることができる。正極合材インキとして用いる場合は、上記の濡れ向上剤で処理された導電性組成物と、正極活物質と、溶剤とを含んでなるペースト、及びバインダー成分を含有させ正極合材インキとして使用することが好ましい。
正極合材インキ中の総固形分に占める正極活物質の割合は、80重量%以上、98.5重量%以下、好ましくは83重量%以上、95重量%以下で使用することが望ましい。正極活物質の割合が80重量%を下回ると、十分な導電性、放電容量を得ることが難しくなる場合があり、98.5重量%を超えると、バインダー成分の割合が低下するため、集電体への密着性が低下し、正極活物質が脱離しやすくなる場合がある。
又、正極合材インキ中の総固形分に占める、導電助剤としての炭素材料固形分の割合は、0.5重量%以上、19重量%以下、好ましくは1.0重量%以上、15重量%以下で使用することが望ましい。導電助剤としての炭素材料の割合が、0.5重量%を下回ると、十分な導電性を得ることが難しくなる場合があり、19重量%を超えると、電池性能に大きく関与する正極活物質の割合が低下するため、放電容量が低下するなどの問題が発生する場合がある。
【0075】
又、正極合材インキ中の総固形分に占める、バインダー成分の割合は、1重量%以上、10重量%以下が好ましい、好ましくは2重量%以上、8重量%以下で使用することが望ましい。バインダー成分の割合が1重量%を下回ると、結着性が低下するため、集電体から正極活物質や導電助剤としての炭素材料などが脱離しやすくなる場合があり、10重量%を超えると、正極活物質及び導電助剤としての炭素材料の割合が低下するため、電池性能の低下に繋がる場合がある。
又、正極合材インキの適正粘度は、正極合材インキの塗工方法によるが、一般には、100mPa・s以上、30,000mPa・s以下とするのが好ましい。
【0076】
本発明の導電性組成物はかさ密度0.30〜0.80g/cmであることが好ましい。その理由は、本発明の組成物は顆粒状かつ固形分濃度20〜60%であるため、上記のかさ密度の範囲にあれば、合材インキ化の際に、組成物を添加した初期分散段階では合材インキ中に偏りなく導電成分が分配され、その後に分散が進む段階では顆粒状の組成物が解されて電極活物質の表面に吸着されたり、バインダ中に導電材料のストラクチャーを広げられる好適な状態であることが確認できる。電極を作製した時に導電性材料が塗膜中で導電成分の分布に偏りのない導電性経路が形成される。その結果、電極の抵抗が低下することで充放電特性や負荷特性(レート特性)が格段に向上し、優れた電極としてリチウムイオン電池だけでなく、リチウムイオンキャパシタ、電気二重層キャパシタ、燃料電池などに使用できる。更に分散混練時間が大幅に短縮化でき、粉体状の導電性炭素材料と比べて飛散などがなくハンドリングなど格段に優れるため効率的な生産が可能となり、トータルでのコストダウンに極めて有効である。
【0077】
本発明の導電性組成物を得るにはメディアレス分散が好適である。通常、スラリーの調製工程では、ビーズミル等が用いられるが、ビーズやボールのようなメディアを用いた分散方法では、固形分濃度が20%以上にするのが難しく、更にスラリー中の導電材料の構造が破壊されやすい。導電材料のストラクチャーが破壊および切断されると、導電性が大幅に低下するばかりでなく導電材料のかさ密度が上昇し、電極層の導電経路が切断または経路が細ることにより電極の抵抗が上昇し、電池としての機能が低下する。
【0078】
高い電池性能を得るためには、上述のような導電材料のストラクチャーを保持したままで、導電材料の分配し、好適な導電経路を形成することが求められる。その際、電極活物質と集電体を繋げる導電経路を好適に形成するためには導電材料の凝集を解し、活物質表面に吸着させ、更に活物質の間にあるバインダを通り抜けて導電材料のストラクチャーを広げてネットワーク創る必要がある。そのため、導電材料と濡れ向上剤とを液状成分に分散させて顆粒を得る工程では、メディアレス分散を行うことが重要である。メディアレス分散では、導電材料とメディアとの衝突が生じないため、導電材料のストラクチャーを保持し導電性を発現することが可能となる。但し、エクストルーダーなど2軸押出機やKCKなど導電性炭素材料のストラクチャーを破壊する装置は本発明のメディアレス分散機からは除外される。メディアレス分散の中でもジェット流または攪拌翼と攪拌羽根による高速せん断などによる分散が特に好ましい。この高速せん断分散により、導電材料のストラクチャーはほとんど破壊されず、導電性の高い電極を得やすくなる。
【0079】
メディアレス分散を行う分散装置としては、例えば高速回転剪断型装置、遠心場利用高速回転型装置等が知られている。例えば、
ディスパー、ホモミキサー、若しくはプラネタリーミキサー等のミキサー類;
三井鉱山社製「ヘンシェルミキサー」、カワタ社製「スーパーミキサー」、井上製作所製「トリミックス」、「ディゾルバー」、「BDM2軸ミキサー」、「PDミキサー」、「CDM同芯ミキサー」、エム・テクニック社製「クレアミックス」、アイリッヒ社製「インテシブミキサー」、若しくはPRIMIX社「フィルミックス」等のホモジナイザー類;
湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS−5」、若しくは奈良機械社製「MICROS」等のメディアレス分散機;又は、
その他ニーダー、2本ロール、3本ロールなどのロールミル等が挙げられるが、これらに限定されるものではない。又、分散機としては、分散機からの金属混入防止処理を施したものを用いることが好ましい。
【0080】
本発明では高速回転剪断による分散が顆粒状かつ固形分濃度を大幅に向上させるのに好適である。用いられる高速回転剪断型分散機としては、攪拌翼及び又は攪拌羽根を具備するものが好ましい。攪拌翼及び又は攪拌羽根を具備する高速せん断分散機は、高速回転する攪拌翼及び又は攪拌羽根が連続して機械的剪断力を加え、凝集した導電材料を好適に解し、最後に強力な攪拌作用によって組成物を顆粒状に形成することができる。係る高速せん断分散機を用いると電池性能に優れた電池およびキャパシタを好適に得ることができる。
【0081】
本発明に用いられる攪拌翼及び又は攪拌羽根を具備する高速分散機は、好ましくは多段攪拌翼及び又は多段攪拌羽根であると好適である。さらに攪拌翼及び又は攪拌羽根は、活物質、導電材料、バインダなどの種類によって様々な形状を取ることができ、攪拌効率を上げるためにブレードまたは羽根を折り曲げたり、楕円状、円盤状、円柱状にしたりすることができ特に形状に制限はない。また高速分散機には横軸型と縦軸型のものがあり、例えば横軸型のものとしては、タービュライザ、サンドターボ、パドルスミキサ、コンプレックス、ペーストミキサなどが挙げられ、縦軸型のものとしては、スピードミキサ、パワーニーダ、堅型ミキサ、ハイブリッドミキサ、ジスパーシブアジテータ、ツインシャフトミキサ、コンビミックス、フロージェットミキサなどが挙げられるが、縦軸型の好ましくはスーパーミキサー(カワタ)、ヘンシェルミキサー(三井鉱山/ドイツヘンシェル社)、アイリッヒ社製「インテシブミキサー」などが代表的な例として挙げられる。
【0082】
本発明の高速分散機は、攪拌翼及び又は攪拌羽根の回転数は500〜6000rpmが好ましく、特に好ましくは1000〜5000rpmである。500rpm未満であると濡れ向上剤や溶剤が導電材料に偏りなく表面を濡らすことが困難になり、6000rpmを越えると発熱などを引き起こして濡れ向上剤の分解や導電材料の凝集を引き起こす虞れがあり好ましくない。
【0083】
また、ロールミルを使用する場合についても、セラミック製ロールを用いることが好ましい。分散装置は、1種のみを使用しても良いし、複数種の装置を組み合わせて使用しても良い。
【0084】
更に、上記の分散混練機に加えて必要があれば造粒装置により本発明の導電性組成物を顆粒にすることができる。例えば転動流動コーティング装置(マルチプレックス)、流動層造粒乾燥機、撹拌造粒機(バーチカル・グラニュレータ)、破砕造粒機などが挙げられる。
【0085】
本発明の導電性組成物の製造方法は、前記導電性炭素材料を濡れ向上剤により溶剤に濡らす第一の工程と、濡らされた導電性炭素材料を造粒する第二の工程よりなり、顆粒状かつ、固形分が25〜60重量%の好適な導電性組成物が得られる。第一の工程を経ることで導電性炭素材料を溶剤との濡れ性を高めながら凝集した炭素材料を解すことが可能となる。更に第二の工程で解された炭素材料を濡れ向上剤を介して溶剤を取り込み、ハンドリングが良好で電極塗膜中の導電性経路を形成しやすい顆粒状の組成物が得られる。
【0086】
以下、実施例に基づき本発明を更に詳しく説明するが、本発明は、実施例に限定されるものではない。実施例中、部は重量部を、%は重量%をそれぞれ表す。電極活物質分散体、及び電極合剤ペーストの分散粒度については、マイクロトラックUPA−EX150(日機装製)又はグラインドゲージによる判定(JIS K5600−2−5に準ず)より求めた。又、電極活物質分散体及び導電助剤分散体の粘度は、E型粘度計(東機産業社製「RE80型粘度計」)で、50rpmの回転速度における25℃の粘度を測定した。
また、顆粒状の導電組成物のかさ密度はJIS−R1628に記載の方法に準拠して測定できる。100cmの容器に入れたときの重量から求めることができる。
【0087】
<電極用導電性組成物の調製>
[電極用導電性組成物(1)〜(21)]
導電助剤となるアセチレンブラック(デンカブラック粉状品、かさ密度0.04g/cm、体積抵抗率0.05Ω・cm;圧縮密度0.9g/cm、電気化学工業社製)35部、塩基性官能基を有する誘導体(A)0.7部、及びN−メチル−2−ピロリドン(NMP)を64.7部仕込み、スーパーミキサーにて2000rpm高速せん断処理することで顆粒状かつ固形分35.7%(内カーボン35%重量)の電極用導電性組成物(1)を得た。
【0088】
以下同様にして表1〜表4に示す濡れ向上剤と導電材料を加え、メディアレス分散機で分散し、顆粒状の導電性組成物(固形分20〜60%)を得た。表5にその組成表を示す。尚、電極用導電性組成物(14)はディスパー分散後に撹拌造粒機(バーチカル・グラニュレータ)を用いて顆粒状(丸薬形状)にしている。得られた導電性組成物の保存安定性、ハンドリング性、合材インキ加工性、電極抵抗評価結果を、表6に示した。
【0089】
[比較(1)〜(5)]
比較1〜5では本発明に必要とされる特定のかさ密度、体積抵抗率を有する導電材料、および濡れ向上剤など使用しないために、得られる導電性組成物が顆粒状かつ高濃度の固形分のものが得られないことがわかる。表5にその組成表を示す。得られた導電性組成物の保存安定性、ハンドリング性、合材インキ加工性、電極特性評価結果を表6に示した。
【0090】
比較2ではエクストルーダー(2軸押出機PCM30;池貝鉄工社製)で組成物を作製しているが、導電材料を充分に分散するにはバインダ成分を多くする必要があり、電極伝導度を低下させる原因となる。一方、バインダ成分を減量して分散するとスクリューの圧縮せん断により導電材料のストラクチャーを破壊し、やはり電極伝導度を低下させる。
比較3ではビーズミルによるメディア分散を10時間実施しているが、分散時間を増加させても固形分濃度は20%が限界であり、組成物の形状もペーストとゲル状の境目となり、導電性組成物の加工性、ハンドリング性が著しく低下する。更にビーズ分散時間が増加するに伴い、導電材料のストラクチャーが促進され電極伝導度の低下を引き起こす。
比較4は濡れ向上剤のかわりに界面活性剤(シントレッキスEH−R;2−エチルヘキシル−硫酸エステルナトリウム塩、日油社製)を用いてビーズミル分散を実施しているが、本発明の濡れ向上剤を用いるのに比べて塗液の保存安定性などに劣っていることがわかる。
比較5はビーズミルによるメディア分散を5時間実施し固形分濃度15%の組成物が得られた。ペースト液状のためハンドリング性が良好であるが、6ケ月という長期保存は導電材料の沈降を引き起こし、攪拌を適宜行わなければいけないという問題がある。また、ビーズ分散時間が増加するに伴い、導電材料のストラクチャーが促進され電極伝導度の低下を引き起こし問題となる。
【0091】
<導電材料>
<カーボンブラック>
・デンカブラックHS−100(電気化学工業社製):
アセチレンブラック、かさ密度0.15g/ml、体積抵抗率0.05Ωcm。
・デンカブラック粉状品(電気化学工業社製):
アセチレンブラック、かさ密度0.04g/ml、体積抵抗率0.05Ωcm。
・デンカブラックFX−35(電気化学工業社製):
アセチレンブラック、かさ密度0.05g/ml、体積抵抗率0.03Ωcm。
【0092】
・トーカブラック#5500(東海カーボン社製):
ファーネスブラック、かさ密度0.05g/ml、体積抵抗率0.05Ωcm。
・Super−P Li(TIMCAL社製):
導電性カーボン、かさ密度0.16g/ml、体積抵抗率0.03Ωcm。
・KS−6(TIMCAL社製):
グラファイト、かさ密度0.07g/ml、体積抵抗率0.02Ωcm。
【0093】
・PURE BLACK 205(コロンビア社製):
黒鉛化カーボン、かさ密度0.30g/ml、体積抵抗率0.07Ωcm。
・EC−300J(アクゾ社製):
ケッチェンブラック、かさ密度0.10g/ml、体積抵抗率0.01Ωcm。
【0094】
・VGCF(昭和電工社製):
カーボンナノファイバー(CNF)、かさ密度0.15g/ml、体積抵抗率0.004Ωcm、繊維長10〜20μm、繊維径150nm、比表面積13m/g。
【0095】
・ CNT:
カーボンナノチューブ、かさ密度0.01g/ml、体積抵抗率0.004Ωcm、繊維長5〜40μm、繊維径40〜80nm、比表面積25m/g
【0096】
<濡れ向上剤>
下記に濡れ向上剤Aを示す。分子量は50〜1000であることが好ましい。
【0097】
<塩基性官能基を有する誘導体(A)〜(H)>
・塩基性官能基を有する色素誘導体:(A)、(B)、(C)、(H)
・塩基性官能基を有するアントラキノン誘導体:(F)
・塩基性官能基を有するアクリドン誘導体:(G)
・塩基性官能基を有するトリアジン誘導体:(D)、(E)
<酸性官能基を有する誘導体(I)〜(P)>
・酸性官能基を有する色素誘導体:(J)、(M)、(N)、(O)
・酸性官能基を有するトリアジン誘導体:(I)、(J)(K)、(L)、(P)
【0098】
【表1】

【0099】
【表2】

【0100】
【表3】

【0101】
【表4】

【0102】
次に濡れ向上剤Bを下記に示す。重量平均分子量が3000以上で200万以下のものが好ましい。
【0103】
<酸性官能基を有する樹脂>
・ AKM−0531(日本油脂社製):重量平均分子量約3千〜10万
<塩基性官能基を有する樹脂>
・アジスパーPB821(味の素ファインテクノ社製):重量平均分子量約3千〜10万
<その他の極性官能基を2個以上有する樹脂>
・ CMC2200(ダイセル化学社製):重量平均分子量約100〜200万
【0104】
<ビニルアミド系樹脂>
・ポリビニルピロリドン(A1−1)
ISPジャパン社製 PVP K−30;重量平均分子量約30万
・アルキル化ポリビニルピロリドン(A1−2)
ISPジャパン社製 アグリマー AL−10LC
・N−ビニル−2−ピロリドンとメタクリル酸メチルとのコポリマー(A1−3)
・N−ビニル−2−ピロリドンとN−ビニルアセトアミドとのコポリマー(A1−5)
・ポリN−ビニルアセトアミド(A2−1)
昭和電工製 PNVA GE191
・N−ビニルアセトアミドとアクリロニトリルとのコポリマー(A2−2)
・N−ビニルアセトアミドとアクリルアミドとのコポリマー(A2−3)
【0105】
[N−ビニル−2−ピロリドンとメタクリル酸メチルとのコポリマー(A1−3)の調整]
ガス導入管、温度計、コンデンサ、攪拌機を備えた反応容器に、N−ビニル−2−ピロリドン80部とメタクリル酸メチル20部を仕込み、窒素ガスで置換した。反応容器内を80℃に加熱して、2,2’−アゾビスイソブチロニトリル0.1部をN−メチルピロリドン100部に溶解した溶液を、滴下槽から2時間かけて滴下して、その後3時間、同じ温度で攪拌を続けた。固形分測定により95%以上が反応したことを確認し反応を終了し、固形分50%のN−ビニル−2−ピロリドンとメタクリル酸メチルとのコポリマー(A1−3)溶液を得た。得られたビニルアミド系樹脂(A1−3)の重量平均分子量(Mw)は30000であった。
【0106】
[N−ビニル−2−ピロリドンとマレイン酸とのコポリマー(A1−4)の調整]
ガス導入管、温度計、コンデンサ、攪拌機を備えた反応容器に、N−ビニル−2−ピロリドン80部とマレイン酸20部を仕込み、窒素ガスで置換した。反応容器内を80℃に加熱して、2,2’−アゾビスイソブチロニトリル0.1部をN−メチルピロリドン100部に溶解した溶液を、滴下槽から2時間かけて滴下して、その後3時間、同じ温度で攪拌を続けた。固形分測定により95%以上が反応したことを確認し反応を終了し、固形分50%のN−ビニル−2−ピロリドンとマレイン酸とのコポリマー(A1−4)溶液を得た。得られたビニルアミド系樹脂(A1−4)の重量平均分子量(Mw)は30000であった。
【0107】
[N−ビニル−2−ピロリドンとN−ビニルアセトアミドとのコポリマー(A1−5)の調整]
ガス導入管、温度計、コンデンサ、攪拌機を備えた反応容器に、N−ビニル−2−ピロリドン50部とN−ビニルアセトアミド50部を仕込み、窒素ガスで置換した。反応容器内を80℃に加熱して、2,2’−アゾビスイソブチロニトリル0.1部をN−メチルピロリドン100部に溶解した溶液を、滴下槽から2時間かけて滴下して、その後3時間、同じ温度で攪拌を続けた。固形分測定により95%以上が反応したことを確認し反応を終了し、固形分50%のN−ビニル−2−ピロリドンとN−ビニルアセトアミドとのコポリマー(A1−5)溶液を得た。得られたビニルアミド系樹脂(A1−5)の重量平均分子量(Mw)は30000であった。
【0108】
[N−ビニルアセトアミドとアクリロニトリルとのコポリマー(A2−2)の調整]
ガス導入管、温度計、コンデンサ、攪拌機を備えた反応容器に、N−ビニル−2−ピロリドン80部とアクリロニトリル20部を仕込み、窒素ガスで置換した。反応容器内を80℃に加熱して、2,2’−アゾビスイソブチロニトリル0.1部をN−メチルピロリドン100部に溶解した溶液を、滴下槽から2時間かけて滴下して、その後3時間、同じ温度で攪拌を続けた。固形分測定により95%以上が反応したことを確認し反応を終了し、固形分50%のN−ビニルアセトアミドとアクリロニトリルとのコポリマー(A2−2)溶液を得た。得られたビニルアミド系樹脂(A2−2)の重量平均分子量(Mw)は30000であった。
【0109】
[N−ビニルアセトアミドとアクリルアミドとのコポリマー(A2−3)の調整]
ガス導入管、温度計、コンデンサ、攪拌機を備えた反応容器に、N−ビニル−2−ピロリドン80部とアクリルアミド20部を仕込み、窒素ガスで置換した。反応容器内を80℃に加熱して、2,2’−アゾビスイソブチロニトリル0.1部をN−メチルピロリドン100部に溶解した溶液を、滴下槽から2時間かけて滴下して、その後3時間、同じ温度で攪拌を続けた。固形分測定により95%以上が反応したことを確認し反応を終了し、固形分50%のN−ビニルアセトアミドとアクリルアミドとのコポリマー(A2−3)溶液を得た。得られたビニルアミド系樹脂(A2−3)の重量平均分子量(Mw)は30000であった。
【0110】
<電極活物質>
・活性炭粉末(「ファイン活性炭RP20」クラレケミカル製):平均粒径5.0μm、比表面積2000m2/g。
・メソフェーズカーボン(MCMB 6−28、大阪ガスケミカル社製):平均粒径5〜
7μm、比表面積4m2/g
<バインダー>
・ KFポリマーW#1100(クレハ社製):
ポリフッ化ビニリデン(PVDF)、重量平均分子量約28万。
・ PTFE 30−J(三井・デュポンフロロケミカル社製):
60%ポリテトラフルオロエチレン(PTFE)水系分散体
・ BM−400B(日本ゼオン社製):
40%スチレンブタジエンゴム(SBR)水系分散体
【0111】
<電極用導電性組成物の分散評価>
各電極用導電性組成物は溶媒により固形分濃度が10%となるように希釈し、分散粒径をマイクロトラックUPA−EX150(日機装製)で測定し、分散粒径が1μm以下のものを「○」、1μm以上、5μm未満であったものを「△」、5μm以上であったものを「×」とした。更に必要に応じてグラインドゲージにより粗い凝集粒子を測定した。
粘度は電極用合材インキ及び導電性組成物の粘度は、E型粘度計(東機産業社製「RE80型粘度計」)で、50rpmの回転速度における25℃での粘度を測定した。
電極導電性組成物の分散評価の結果を表7に示した。
【0112】
<電極用導電性組成物の保存安定性評価>
各電極用導電性組成物を常温6ヶ月で保存し、保存前の形状を保持してケーキ状になって固化していないか、固形分の変化が5%以内に収まっているかを確認した。溶媒により固形分濃度が10%となるように希釈して、E型粘度計(東機産業社製「RE80型粘度計」)で、50rpmの回転速度における25℃での粘度を測定し、作製初期と比較して粘度増加が10%以内であるかを確認した。上記の形状保持、固形分濃度変化、粘度増加がない場合を「○」、3項目すべて満たさない場合は「×」として評価した。表6に結果を示す。
【0113】
<電極用導電性組成物のハンドリング性および合材インキ加工性評価>
各電極用導電性組成物を合材インキ化する工程において、仕込み時に周囲を粉体が飛散するか、仕込み作業性が容易かなど2項目全てを満たす場合「○」、満たさない場合は「×」としてハンドリング性を評価した。更に各電極用導電性組成物を活物質、バインダ及び溶剤を用いて合材インキとする際に混練および溶剤希釈の時間が1時間未満の場合を「○」、1時間以上「×」として合材インキ加工性評価した。夫々表6に結果を示す。
【0114】
<電極用導電性組成物の電極特性評価>
表5に示す導電性組成物(導電材料量として6部)に対して、バインダーとしてポリフッ化ビニリデンPVDF(KFポリマーW#1100、クレハ社製)、N−メチル−2−ピロリドンを高速ディスパーで混合した後に、正極活物質としてコバルト酸リチウムLiCoO2(HLC−17、平均粒径9.28μm、比表面積0.54m2/g、本荘ケミカル社製)89部を加えプラネタリーミキサーにより混練し、正極合材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=89/6/5)とした。更に集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥し、ロールプレス等による圧延処理を行い、厚さ80μmの正極を作製した。作製した正極を電気抵抗測定器A(井元製作所製製)にて2kgf/cm2で荷重をかけ、電極の厚さ方向の電気伝導度を測定した。この測定を各サンプルとも5回行い、それらの平均電気伝導度(10−3S/cm)が100以上であったものを「◎」、10(10−3S/cm)以上、100(10−3S/cm)未満であったものを「○」、1(10−3S/cm)以上、10(10−3S/cm)未満であったものを「△」、1(10−3S/cm)未満であったものを「×」とした。通常、リチウムイオン電池及びキャパシタの電気伝導度は10−3S/cm以上であることが必要であり、この数値より低くなると、容量、出力特性に大きな影響を及ぼし電極として欠陥があると推察される。
【0115】
電極用導電性組成物の電極特性評価の結果を表6に示した。
<リチウム二次電池用正極合材インキの調製>
[実施例1〜21、比較例1〜4]
本発明の導電性組成物(1)〜(21)及び比較(1)〜(5)(導電材料量として5部)に対して、バインダーとしてポリフッ化ビニリデンPVDF(KFポリマーW#1100、クレハ社製)、N−メチル−2−ピロリドンを高速ディスパーで混合した後に、正極活物質としてコバルト酸リチウムLiCoO2(HLC−17、平均粒径9.28μm、比表面積0.54m2/g、本荘ケミカル社製)90部を加えプラネタリーミキサーにより混練し、正極合材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=90/5/5)とした。(表8を参照)
【0116】
[実施例15、比較例6]
本発明の導電性組成物(カーボンブラック量として9部)に対して、バインダーとしてポリフッ化ビニリデンPVDF(KFポリマーW#1100、クレハ社製)、N−メチル−2−ピロリドンを高速ディスパーで混合した後に、正極活物質としてマンガン酸リチウムLiMn24(CELLSEED S−LM、平均粒径12μm、比表面積0.48m2/g、日本化学工業社製)85部を加えプラネタリーミキサーにより混練し、正極合材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=85/9/6)とした。(表9を参照)
【0117】
[実施例18、比較例8、9]
リン酸鉄リチウムLiFePO(平均粒径3.6μm、比表面積15m2/g、 TIAN JIN STL ENERGY TECHNOLOGY社製)91部に対して、バインダーとしてポリフッ化ビニリデンPVDF(KFポリマーW#1100、クレハ社製)、N−メチル−2−ピロリドンをプラネタリーミキサーで混合した後に、導電助剤として本発明の導電性組成物(カーボンブラック量として4部)を加え、更にプラネタリーミキサーにより混練し、正極合材インキ(固形分比率;50%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=91/4/5)とした。(表9を参照)
【0118】
[実施例6,7、比較例4]
本発明の導電性組成物(カーボンブラック量として5部)に対して、バインダーとしてポリテトラフルオロエタンPTFE(PTFE 30−J、三井・デュポンフロロケミカル社製)、水を高速ディスパーで混合した後に、正極活物質としてコバルト酸リチウムLiCoO2(HLC−17、平均粒径9.28μm、比表面積0.54m2/g、本荘ケミカル社製)90部を加えプラネタリーミキサーにより混練し、正極合材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=90/5/5)とした。(表8を参照)
【0119】
[実施例16,17、比較例7]
先に調製した本発明の導電性組成物(カーボンブラック量として9部)に対して、バインダーとしてポリテトラフルオロエタンPTFE(PTFE 30−J、三井・デュポンフロロケミカル社製)、水を高速ディスパーで混合した後に、正極活物質としてマンガン酸リチウムLiMn24(CELLSEED S−LM、平均粒径12μm、比表面積0.48m2/g、日本化学工業社製)85部を加えプラネタリーミキサーにより混練し、正極材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=85/9/6)とした。(表9を参照)
【0120】
[実施例19,20、比較例9]
先に調製した本発明の導電性組成物(カーボンブラック量として4部)に対して、バインダーとしてポリフッ化ビニリデンPVDF(KFポリマーW#1100、クレハ社製)5部、N−メチル−2−ピロリドンを高速ディスパーで混合した後に、正極活物質としてリン酸鉄リチウムLiFePO4(平均粒径3.6μm、比表面積15m2/g、 TIAN JIN STL ENERGY TECHNOLOGY社製)91部を加えプラネタリーミキサーにより混練し、正極合材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=91/4/5)とした。(表9を参照)
【0121】
<リチウム二次電池用負極材インキの調製>
[実施例21、30、比較例10、13]
本発明の導電性組成物(カーボンブラック量として2部)に対して、バインダーとしてスチレンブタジエンゴムSBR(BM−400B、日本ゼオン社製)、水を高速ディスパーで混合した後に、負極活物質としてメソフェーズカーボン(MCMB 6−28、平均粒径5〜7μm、比表面積4m2/g大阪ガスケミカル社製)93部を加えプラネタリーミキサーにより混練し、負極合材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=93/2/5)とした。(表10を参照)
【0122】
[実施例21〜29、31、比較例11、12、14]
本発明の導電性組成物(カーボンブラック量として2部)に対して、バインダーとしてポリフッ化ビニリデンPVDF(KFポリマーW#1100、クレハ社製)、N−メチル−2−ピロリドンを高速ディスパーで混合した後に、負極活物質としてメソフェーズカーボン(MCMB 6−28、平均粒径5〜7μm、比表面積4m2/g大阪ガスケミカル社製)93部を加えプラネタリーミキサーにより混練し、負極合材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=3/2/5)とした。(表10を参照)
【0123】
<リチウム二次電池用正極の作製>
[実施例1〜20、比較例1〜9]
先に調製した各種正極合材インキを、集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥し、ロールプレス等による圧延処理を行い、厚さ60μmの正極合剤層を作製した。(表8、9を参照)
【0124】
<リチウム二次電池正極評価用セルの組み立て>
先に作製した正極を、直径9mmに打ち抜き作用極とし、金属リチウム箔(厚さ0.15mm)を対極として、作用極及び対極の間に多孔質ポリプロピレンフィルムからなるセパレーター(セルガード社製 #2400)を挿入積層し、電解液(エチレンカーボネートとジエチルカーボネートを1:1に混合した混合溶媒にLiPFを1Mの濃度で溶解させた非水電解液)を満たして二極密閉式金属セル(宝泉社製 HSフラットセル)を組み立てた。セルの組み立てはアルゴンガス置換したグロ−ボックス内で行い、セル組み立て後、所定の電池特性評価を行った。
【0125】
<リチウム二次電池正極特性評価>
[充放電サイクル特性 実施例18〜20、比較例8、9]
作製した電池評価用セルを室温(25℃)で、充電レート0.2C、1.0Cの定電流定電圧充電(上限電圧4.2V)で満充電とし、充電時と同じレートの定電流で放電下限電圧3.0Vまで放電を行う充放電を1サイクル(充放電間隔休止時間30分)とし、このサイクルを合計20サイクル行い、充放電サイクル特性評価(評価装置:北斗電工社製SM−8)を行った。又、評価後のセルを分解し、電極塗膜の外観を目視にて確認した。評価結果を表11、12に示した。
【0126】
[充放電サイクル特性 実施例1〜17、比較例1〜7]
作製した電池評価用セルを室温(25℃)で、充電レート0.2C、1.0Cの定電流定電圧充電(上限電圧4.5V)で満充電とし、充電時と同じレートの定電流で放電下限電圧2.0Vまで放電を行う充放電を1サイクル(充放電間隔休止時間30分)とし、このサイクルを合計20サイクル行い、充放電サイクル特性評価(評価装置:北斗電工社製SM−8)を行った。又、評価後のセルを分解し、電極塗膜の外観を目視にて確認した。評価結果を表11、12に示した。
【0127】
[直流内部抵抗測定 実施例1〜26、比較例1〜5]
作製した電池評価用セルを室温(25℃)、充電レート0.2Cの定電流定電圧充電(上限電圧4.2V)で満充電とし、0.2C、1.0Cのレートの定電流で5秒放電後、電池電圧を測定した。電流値に対し電圧値をプロットし、得られた直線関係の傾きを内部抵抗とした。評価結果を表11,12に示す。正極活物質としてコバルト酸リチウムを用いた場合については、実施例5の内部抵抗測定値を100としたときの相対値として示した。正極活物質としてマンガン酸リチウム、リン酸鉄リチウムを夫々用いた場合については、実施例15,19の内部抵抗測定値を100としたときの相対値として示した。
【0128】
<リチウム二次電池用負極の作製>
[実施例21〜31、比較例10〜14]
先に調製した各種負極合材インキを、集電体となる厚さ20μmの銅箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥し、ロールプレス等による圧延処理を行い、厚さ60μmの負極合剤層を作製した。
【0129】
<リチウム二次電池負極評価用セルの組み立て>
先に作製した負極を、直径9mmに打ち抜き作用極とし、金属リチウム箔(厚さ0.15mm)を対極として、作用極および対極の間に多孔質ポリプロピレンフィルムからなるセパレーター(セルガード社製 #2400)を挿入積層し、電解液(エチレンカーボネートとジエチルカーボネートを1:1に混合した混合溶媒にLiPFを1Mの濃度で溶解させた非水電解液)を満たして二極密閉式金属セル(宝仙社製 HSフラットセル)を組み立てた。セルの組み立てはアルゴンガス置換したグローブボックス内で行い、セル組み立て後、以下に示す電池特性評価を行った。
【0130】
<リチウム二次電池負極特性評価>
[充放電サイクル特性 実施例21−31、比較例10−14]
作製した電池評価用セルを室温(25℃)、充電レート0.2C、1.0Cの定電流定電圧充電にて、0.05Vで満充電とし、充電時と同じレートの定電流で電圧が1.5Vになるまで放電を行う充放電を1サイクル(充放電間隔休止時間30分)とした。
まず5回この充放電操作を行い、6回目の放電容量を初期値とした。その後、このサイクルを合計20サイクル行い、充放電サイクル特性評価(評価装置:北斗電工製SM−8)を行った。また、評価後のセルを分解し、電極塗膜不良の有無を目視にて確認し、問題の無いものは「○」とした。評価結果を表10および表13に示す。
【0131】
<電極用導電性組成物のキャパシタ電極特性評価>
表5に示す導電性組成物(導電材料量として5部)に対して、バインダーとしてポリフッ化ビニリデンPVDF(KFポリマーW#1100、クレハ社製)、N−メチル−2−ピロリドンを高速ディスパーで混合した後に、正極活物質として活性炭粉末(「ファイン活性炭RP20」クラレケミカル製):平均粒径5.0μm、比表面積2000m2/g)79部を加えプラネタリーミキサーにより混練し、キャパシタ用合材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=79/5/16)とした。更に集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥し、ロールプレス等による圧延処理を行い、厚さ90μmのキャパシタ電極を作製した。作製した電極を電気抵抗測定器A(井元製作所製製)にて2kgf/cm2で荷重をかけ、電極の厚さ方向の電気伝導度を測定した。この測定を各サンプルとも5回行い、それらの平均電気伝導度(10−3S/cm)が100以上であったものを「◎」、10(10−3S/cm)以上、100(10−3S/cm)未満であったものを「○」、1(10−3S/cm)以上、10(10−3S/cm)未満であったものを「△」、1(10−3S/cm)未満であったものを「×」とした。通常、リチウムイオン電池及びキャパシタの電気伝導度は10−3S/cm以上であることが必要であり、この数値より低くなると、容量、出力特性に大きな影響を及ぼし電極として欠陥があると推察される。
【0132】
上記の結果、電極用導電性組成物(1)〜(21)はいずれもキャパシタ電極の電気伝導度は10−1S/cm以上で評価は「◎」であった。また、ハンドリング性、合材インキ加工性についても評価は「○」であった。一方、比較組成物(1)〜(5)は電気伝導度は評価「△」であったが、ハンドリング性、合材インキ加工性についても評価は「×」であった。従って、本発明の電極用導電性組成物はキャパシタにも好適に用いることができる。
【0133】
【表5】

【0134】
【表6】

【0135】
【表7】

【0136】
【表8】

【0137】
【表9】

【0138】
【表10】

【0139】
【表11】

【0140】
【表12】

【0141】
【表13】


【特許請求の範囲】
【請求項1】
導電材料と、溶剤と、濡れ向上剤からなる導電性組成物であって、
前記導電材料は、かさ密度0.01〜0.20g/cm、体積抵抗率0.001〜0.1Ω・cm(圧縮密度0.9g/cmの時)であり、
前記導電性組成物が、顆粒状かつ、固形分が20〜60重量%であることを特徴とする電極用導電性組成物。
【請求項2】
前記濡れ向上剤が、1分子単位当りの極性官能基を2個以上有する化合物であり、前記導電性組成物が、顆粒状かつ、固形分が25〜55重量%であることを特徴とする請求項1記載の電極用導電性組成物。
【請求項3】
前記濡れ向上剤が、1分子単位当りの極性官能基を2個以上有する化合物であり、かつ、濡れ向上剤が分子量50〜1000以下の濡れ向上剤A及び又は重量平均分子量3000〜200万以下の濡れ向上剤Bからなることを特徴とする請求項1または2記載の電極用導電性組成物。
【請求項4】
前記導電材料が、アセチレンブラック、ファーネスブラック、ケッチェンブラック、グラファイト、黒鉛化カーボン、繊維状炭素材料よりなる群から選択される少なくとも1種からなる請求項1〜3いずれか記載の電極用導電性組成物。
【請求項5】
前記顆粒状の導電性組成物が、かさ密度0.30〜0.80g/cmであることを特徴とする請求項1〜4いずれか記載の電極用導電性組成物。
【請求項6】
前記導電性組成物が、メディアレス分散したことを特徴とする請求項1〜5いずれか記載の電極用導電性組成物。
【請求項7】
前記導電性組成物が、攪拌翼及び又は攪拌羽根で高速せん断分散したことを特徴とする請求項1〜6いずれか記載の電極用導電性組成物。
【請求項8】
導電材料を濡れ向上剤により溶剤に濡らす第一の工程と、濡らされた導電材料を造粒する第二の工程とを経ることを特徴とする、請求項1〜7いずれか記載の電極用導電性組成物の製造方法。
【請求項9】
請求項8記載の製造方法を用いてなる電極用導電性組成物。
【請求項10】
請求項1〜7、9いずれか記載の電極用導電性組成物を使用して形成されてなる正極または負極用電極。
【請求項11】
請求項10記載の正極または負極用電極を使用して形成されてなる二次電池。
【請求項12】
請求項10記載の正極または負極用電極を使用して形成されてなるキャパシタ。


【公開番号】特開2011−181229(P2011−181229A)
【公開日】平成23年9月15日(2011.9.15)
【国際特許分類】
【出願番号】特願2010−42070(P2010−42070)
【出願日】平成22年2月26日(2010.2.26)
【出願人】(000222118)東洋インキSCホールディングス株式会社 (2,229)
【Fターム(参考)】