説明

電流形電力変換回路

【課題】本発明に係る電流形電力変換回路は、使用する駆動電源を減らし、安価で単純な構成の電流形電力変換回路を提供することを目的とする。
【解決手段】本発明に係る電流形電力変換回路の一例は、相互に直列接続された第1自己消弧形素子3r,3s,3t及び第1ダイオード4r,4s,4tを有する第1スイッチ回路と、相互に直列接続された第2自己消弧形素子5r,5s,5t及び第2ダイオード6r,6s,6tを有する第2スイッチ回路との直列接続を含むハーフブリッジ整流回路2r,2s,2tの複数を並列接続して備える。一のハーフブリッジ整流回路3r,3s,3tの第1自己消弧形素子3r,3s,3tの第1電流電極と、他のハーフブリッジ整流回路3r,3s,3tの第1自己消弧形素子3r,3s,3tの第1電流電極とが短絡して接続する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電流形電力変換回路に関する発明である。
【背景技術】
【0002】
一般的に、電流形電力変換回路は、スイッチ回路に逆方向の導通を阻止する構造の素子を用いる必要がある。例えば、スイッチ回路には、IGBT(Insulated Gate Bipolar Transistor)とダイオードとを直列接続させる構成が考えられる。このような構成は、例えば、特許文献1に開示されている。さらに、このようなIGBTとダイオードとで構成されるスイッチ回路を採用した電流形電力変換回路では、IGBTの逆方向耐圧を確保する回路を多相に組み合わせたものが知られている。
【0003】
また、電流形電力変換回路は、電流形のPWM(Pulse Width Modulation)整流回路としても用いられる。具体的には、特許文献2に開示されている。
【0004】
【特許文献1】特開2003−164140号公報
【特許文献2】特開2007−295686号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
従来の電流形電力変換回路では、各相のスイッチ回路に印加される電位(例えば、整流回路として電流形電力変換回路が用いられるIGBTの場合、エミッタ電位)がそれぞれ異なる。そのため、従来の電流形電力変換回路では、各相のスイッチ回路を駆動するために、各相のスイッチ回路それぞれに独立した電源を用いる必要があった。スイッチ回路毎に駆動電源を設けると、3相の電流形電力変換回路であれば6つの駆動電源が必要となり、高価かつ複雑な構成の電流形電力変換回路となる課題があった。
【0006】
そこで、本発明に係る電流形電力変換回路は、使用する駆動電源を減らし、安価で単純な構成の電流形電力変換回路を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記課題を解決するため、この発明の電流形電力変換回路は、相互に直列接続された第1自己消弧形素子及び第1ダイオードを有する第1スイッチ回路と、相互に直列接続された第2自己消弧形素子及び第2ダイオードを有する第2スイッチ回路との直列接続を含むハーフブリッジ整流回路の複数を並列接続して備える電流形電力変換回路である。いずれのハーフブリッジ整流回路においても、第1自己消弧形素子、第1ダイオード、第2自己消弧形素子及び第2ダイオードの順方向は同方向に揃い、いずれの第1自己消弧形素子も、第1電流電極及び第2電流電極並びに制御電極を有し、第1電流電極を基準として制御電極に与えられる制御信号に基づいて点弧/消弧し、いずれのハーフブリッジ整流回路においても、第1自己消弧形素子の第2電流電極が第1ダイオードに接続され、一のハーフブリッジ整流回路の第1自己消弧形素子の第1電流電極と、他のハーフブリッジ整流回路の第1自己消弧形素子の第1電流電極とが短絡して接続する。
【0008】
また、第1自己消弧形素子に信号を与える第1ドライブ回路と、第1ドライブ回路を駆動する電源によって充電されるコンデンサと、コンデンサに充電された電荷によって駆動され、第2スイッチ回路を制御する第2ドライブ回路とを更に備え、電源とコンデンサとの間には、電源に対するコンデンサの放電を阻止する放電阻止ダイオードが存在しても良い。
【0009】
また、コンデンサに電荷を蓄積する回路が、ブートストラップ回路であっても良い。
【0010】
また、コンデンサに電荷を蓄積する回路が、チャージポンプ回路であっても良い。
【0011】
また、第1ダイオードを放電阻止ダイオードとして機能させても良い。
【0012】
また、第2ダイオードを放電阻止ダイオードとして機能させても良い。
【0013】
また、第2ダイオードは第2自己消弧形素子よりも第1スイッチ回路から離れて配置されても良い。
【0014】
また、複数のハーフブリッジ整流回路の第1スイッチ回路及び第2スイッチ回路のうち少なくとも一つのスイッチ回路は、逆方向耐電圧特性を持つ自己消弧形素子であっても良い。
【0015】
また、逆方向耐電圧特性を持つ自己消弧形素子は、放電阻止ダイオードとして機能させても良い。
【発明の効果】
【0016】
この電流形電力変換回路によると、各相の第1自己消弧形素子の第1電流電極を共通電位とするので、使用する駆動電源を減らし、安価で単純な構成とすることができる。
【0017】
また、電源によって電荷が蓄積されるコンデンサに基づき第2スイッチ回路を制御することで、さらに使用する駆動電源を減らし、安価で単純な構成とすることができる。
【0018】
また、コンデンサに電荷を蓄積する回路が、ブートストラップ回路であることで使用する駆動電源を減らし、安価で単純な構成とすることができる。
【0019】
また、コンデンサに電荷を蓄積する回路が、チャージポンプ回路であることで使用する駆動電源を減らし、安価で単純な構成とすることができる。
【0020】
また、放電阻止ダイオードを、第1スイッチ回路の第1ダイオードや第2ダイオードで代用して、さらに回路構成を簡略化できる。
【0021】
また、第2ダイオードを第2自己消弧形素子よりも第1スイッチ回路から離して配置することで、コンデンサの充電時に、第2ダイオードの電圧降下を排除でき、コンデンサの充電電圧をより高く確保して、第2スイッチ回路の動作の信頼性を向上させる。
【0022】
また、第1スイッチ回路及び第2スイッチ回路のうち少なくとも一つのスイッチ回路を、逆方向耐電圧特性を持つ自己消弧形素子にすることで、スイッチ回路を構成する素子数が減り、回路構成を単純化できる。さらに、スイッチ回路で生じる損失も小さくなるため、放熱用のヒートシンクを小さくでき、さらなる省スペース化が可能である。
【0023】
また、放電阻止ダイオードを、逆方向耐電圧特性を持つ自己消弧形素子で代用して、さらに回路構成を簡略化できる。
【発明を実施するための最良の形態】
【0024】
(実施の形態1)
図1に、本実施の形態に係る電流形電力変換回路の回路図の一部を示す。また、図2に、従来の電流形電力変換回路の回路図を示す。
【0025】
まず、図2に示す回路は、3相電流形整流回路である。図2では、3相電流形整流回路101と、三相交流電源120と、LCフィルタ回路130とを図示している。図2に示した3相電流形整流回路は相互に並列接続されたハーフブリッジ整流回路を3つ備えている。具体的にはr相に対応するハーフブリッジ整流回路はIGBT103r,105rと、ダイオード104r,106rとを有する。またs相に対応するハーフブリッジ整流回路はIGBT103s,105sと、ダイオード104s,106sとを有する。またt相に対応するハーフブリッジ整流回路はIGBT103t,105tと、ダイオード104t,106tとを有する。IGBT103r,103s,103t,105r,105s,105tは、スイッチング素子であり、自己消弧形素子である。ダイオード104r,104s,104tは逆阻止用のダイオードである。ダイオード104r,104s,104tは、それぞれIGBT103r,103s,103tに順方向電流が流れる場合において、ダイオード104r,104s,104tに順方向電流が流れる極性で、IGBT103r,103s,103tに直列接続されている。具体的には、ダイオード104r,104s,104tのアノードとIGBT103r,103s,103tのエミッタとが互いに接続されている。また、ダイオード106r,106s,106tは逆阻止用のダイオードである。ダイオード106r,106s,106tは、それぞれIGBT105r,105s,105tに順方向電流が流れる場合において、ダイオード106r,106s,106tに順方向電流が流れる極性で、IGBT105r,105s,105tに直列接続されている。具体的には、ダイオード106r,106s,106tのカソードとIGBT105r,105s,105tのコレクタとが互いに接続されている。IGBT103r,103s,103tのコレクタとIGBT105r,105s,105tのエミッタとは、接続点107r,107s,107tを介して互いに接続されている。逆阻止用ダイオードは、自己消弧形阻止において逆方向に電流が流れるのを阻止するとともに、自己自己消弧形阻止に逆方向電圧が引加されて素子が破壊するのを防止する。
【0026】
また、接続点107rには、三相交流電源120からのr相電圧VrがLCフィルタ回路130のコイルL11を介して入力されている。同様に、接続点107sには、三相交流電源120からのs相電圧VsがLCフィルタ回路130のコイルL12を介して入力されている。接続点107tには、三相交流電源120からのt相電圧VtがLCフィルタ回路130のコイルL13を介して入力されている。なお、LCフィルタ回路130は、コイルL11,L12,L13とコンデンサC11,C12,C13とでローパスフィルタとして構成されている。
【0027】
以上のように、図2に示した3相電流形整流回路では、IGBT103r,103s,103tのエミッタは、それぞれダイオード104r,104s,104tを介して相互に接続されている。そのため、IGBT103r,103s,103tのエミッタを制御回路のGND端子として共通化することができない。さらに、図2に示した3相電流形整流回路では、各IGBT103r,103s,103tのコレクタには異なる相電圧が印加されるため、コレクタ電位がそれぞれ異なる。従って、図2に示した3相電流形整流回路のIGBT103r,103s,103t,105r,105s,105tを駆動する場合は、それぞれのIGBT103r,103s,103t,105r,105s,105tに独立した駆動電源が必要であった。図2に示した3相電流形整流回路では、独立した6つの駆動電源が必要である。
【0028】
一方、図1には本実施の形態に係る電流形電力変換回路を示し、当該電流形電力変換回路も3相電流形整流回路である点で図2と類似している。図1に示す回路は、3相電流形整流回路である。図1に示した3相電流形整流回路は相互に並列接続されたハーフブリッジ整流回路を3つ備えている。具体的にはr相に対応するハーフブリッジ整流回路2rはIGBT3r,5rと、ダイオード4r,6rとを有する。またs相に対応するハーフブリッジ整流回路2sはIGBT3s,5sと、ダイオード4s,6sとを有する。またt相に対応するハーフブリッジ整流回路2tはIGBT3t,5tと、ダイオード4t,6tとを有する。IGBT3r,3s,3t,5r,5s,5tは、スイッチング素子であり、自己消弧形素子である。ダイオード4r,4s,4tは逆阻止用のダイオードである。ダイオード4r,4s,4tは、それぞれIGBT3r,3s,3tに順方向電流が流れる場合において、ダイオード4r,4s,4tに順方向電流が流れる極性で、IGBT3r,3s,3tに直列接続され、上アームのスイッチ回路を構成している。具体的には、ダイオード4r,4s,4tのカソードとIGBT3r,3s,3tのコレクタとが互いに接続されている。また、ダイオード6r,6s,6tは逆阻止用のダイオードである。ダイオード6r,6s,6tは、それぞれIGBT5r,5s,5tに順方向電流が流れる場合において、ダイオード6r,6s,6tに順方向電流が流れる極性で、IGBT5r,5s,5tに直列接続され、下アームのスイッチ回路を構成している。具体的には、ダイオード6r,6s,6tのアノードとIGBT5r,5s,5tのエミッタとが互いに接続されている。ダイオード4r,4s,4tのアノードとダイオード6r,6s,6tのカソードとは、接続点7r,7s,7tを介して互いに接続されている。また、接続点7r,7s,7tには、LCフィルタ回路30を介して三相交流電源8が接続される。LCフィルタ回路30は、コイルL1,L2,L3とコンデンサC1,C2,C3とでローパスフィルタとして構成されている。
【0029】
図1に示す3相電流形整流回路では、上述のように構成したIGBT3r,5rと、ダイオード4r,6rとの直列接続を1相のハーフブリッジ整流回路2rとしている。同様に、IGBT3s,5sと、ダイオード4s,6sとの直列接続を1相のハーフブリッジ整流回路2sとして、IGBT3t,5tと、ダイオード4t,6tとの直列接続をハーフブリッジ整流回路2tとしている。図1に示す3相電流形整流回路では、これら3つのハーフブリッジ整流回路2r,2s,2tを、3つ並列接続している。また、いずれのハーフブリッジ整流回路2r,2s,2tも、IGBT3r,3s,3t、ダイオード4r,4s,4t、IGBT5r,5s,5t及びダイオード6r,6s,6tの順方向は同方向に揃っている。さらに、図1に示す3相電流形整流回路では、各相のIGBT3r,3s,3tのエミッタを接続線9にそれぞれ接続し短絡することで、IGBT3r,3s,3tのエミッタを共通電位としている。つまり、本実施の形態に係る多相の電流形整流回路では、片側アームの各相の自己消弧形素子(3r,3s,3t)のエミッタ端子を互いに短絡して接続することで、共通電位とする。
【0030】
図1に示す3相電流形整流回路のように、各相のIGBT3r,3s,3tのエミッタを接続線9にそれぞれ接続して共通電位とすることで、各相のIGBT3r,3s,3tを駆動するドライブ回路の駆動電源の基準電位を同電位とすることができる。そのため、各相のIGBT3r,3s,3tを駆動するドライブ回路の駆動電源を共通化することができる。具体的には、図3に示すように各相のIGBT3r,3sを駆動するドライブ回路10r,10sに対して、駆動電源11が1つ並列接続された回路構成となる。なお、図3に示す回路図では、片側アーム(上アーム)の2相分(r,s)についてのみ記載されているが、ハーフブリッジ整流回路2tの上アームについても同様にドライブ回路を設け、当該ドライブ回路に対しても駆動電源11を共用できる。
【0031】
以上のように、本実施の形態に係る3相電流形整流回路では、図3のような回路構成とすることで、上アーム側のIGBTを駆動するそれぞれのドライブ回路を1つの駆動電源11で駆動できる。そのため、本実施の形態に係る3相電流形整流回路では、下アームの3つのIGBT5r,5s,5tを駆動するドライブ回路のそれぞれの駆動電源(3個)とあわせて、合計4個の駆動電源とすることができる。また、本実施の形態に係る3相電流形整流回路では、駆動電源を減らすことで、配線数を減らすことができるので、安価で単純な回路構成とすることができる。さらに、本実施の形態に係る3相電流形整流回路では、減らした駆動電源の分だけ省スペース化を図ることもできる。
【0032】
なお、本実施の形態では、自己消弧形素子としてIGBTを用いる例を説明したが、本発明はこれに限られず、同様の機能を有する他の素子でも良い。また、本実施の形態では、3相電流形整流回路として説明したが、本発明は3相には限定されない。
【0033】
(実施の形態2)
図4に、本実施の形態に係る電流形電力変換回路の回路図を示す。図4に示す電流形電力変換回路は3相電流形整流回路であるが、上アームに2相分(r,s)のIGBT3r,3s、下アームに1相分(r)のIGBT5rのみを図4に記載している。図4に示す電流形整流回路でも、各相のIGBT3r,3sのエミッタを接続線9にそれぞれ接続することで、IGBT3r,3sのエミッタを共通電位とし、各相のIGBT3r,3sを駆動するドライブ回路10r,10sの駆動電源11を共通化している。上述のように、IGBT3tを駆動するドライブ回路に対しても駆動電源11を共通化できる。
【0034】
図4に示す電流形整流回路の下アームでは、ブートストラップ回路を用いることで、ドライブ回路10r,10sを駆動する駆動電源11を利用して、IGBT5sのドライブ回路13を駆動する。具体的には、図4に示すブートストラップ回路は、駆動電源11の正極に直列接続されたダイオード12と、IGBT5rを駆動するドライブ回路13に接続されたコンデンサ14とを備えている。そして、図4に示すブートストラップ回路は、ダイオード12のカソードがコンデンサ14の一方の端子に、コンデンサ14の他方の端子がダイオード6rのアノードにそれぞれ接続されている。そして、図4に示すブートストラップ回路は、上アームのIGBT3rがオンすることで、駆動電源11によりコンデンサ14が充電される。なお、ダイオード12は、電源11に対するコンデンサ14の放電を阻止するための放電阻止ダイオードであり、電源11の電位と、充電されたコンデンサ14の電位(これはr相電圧Vrに依存して変化する)との間の電位差を維持し、電源11への逆流を阻止する機能を果たすと把握することもできる。また、ダイオード12は、駆動電源11の電位以上の耐電圧特性を有する素子であれば、他の素子でも良い。
【0035】
本実施の形態に係る電流形整流回路では、充電されたコンデンサ14をIGBT5rのエミッタ電位を基準電位とする駆動電源に利用し、ドライブ回路13を駆動している。なお、本実施形態では、上アームのIGBT3r、3s、3tのエミッタ電位を基準としたゲート信号を用いることを想定しているため、ドライブ回路13には、レベルシフト回路15が接続されており、ゲート信号の電位を適切にシフトさせてドライブ回路13に入力している。
【0036】
以上のように、本実施の形態に係る電流形整流回路では、ブートストラップ回路を利用して、下アームのIGBT5rのドライブ回路13を駆動する電源を作成して、実際に設けている駆動電源11に電源を共通化している。なお、図4に示す電流形整流回路では、1相分(r)のIGBT5rについて駆動電源を共通化する回路構成を開示しているが、同様に、他相(s、t)のIGBT5s,5tについてもブートストラップ回路を利用することで駆動電源の共通化を図ることができる。つまり、3相電流形整流回路を駆動する駆動電源を1個にすることができる。また、本実施の形態に係る電流形整流回路を駆動する場合、下アームのIGBT5r,5s,5tがスイッチング動作を開始する前に、駆動電源電圧を確保しておく必要から、上アームのIGBT3r,3s,3tを導通させて下アームのドライブ回路に接続されたコンデンサ14を充電する。
【0037】
なお、本実施形態で示しているレベルシフト回路は、フォトカプラ等を用いた絶縁回路に置き換えることが可能である。また、ゲート信号の基準電位が上アームのIGBT3r、3s、3tのエミッタ電位と異なる場合には、上アームにもレベルシフト回路や絶縁回路が必要となる。
【0038】
(変形例)
図4に示す電流形整流回路では、ブートストラップ回路を利用する構成について説明したが、駆動電源11によって充電されるコンデンサ14と、電源11に対するコンデンサ14の放電を阻止するダイオード12とをさらに備え、当該コンデンサ14に充電された電荷によって下アームのドライブ回路を駆動する構成であれば、他の回路構成を採用しても良い。
【0039】
具体的に、本変形例に係る電流形整流回路では、ブートストラップ回路に換えてチャージポンプ回路を用いる回路構成について説明する。図5に、本変形例に係る電流形電力変換回路の回路図を示す。図5に示す電流形電力変換回路は3相電流形整流回路であるが、上アームに2相分(r,s)のIGBT3r,3s、下アームに1相分(r)のIGBT5rのみを図5に記載している。なお、図5に示す電流形電力変換回路は、チャージポンプ回路以外、図4に示す電流形電力変換回路と同じであるため、同じ構成要素については同じ符号を付して詳細な説明は省略する。
【0040】
具体的に、図5に示すチャージポンプ回路は、駆動電源11の正極に直列接続されたダイオード12,16と、IGBT5を駆動するドライブ回路13に接続されたコンデンサ14とを備えている。さらに、図5に示すチャージポンプ回路は、駆動電源11の負極とコンデンサ14の一方の端子に直列接続されたスイッチ素子(例えば、MOS FET)17,18と、スイッチ素子を制御する発振回路19と、ダイオード12,16の間とスイッチ素子17,18の間とに接続されたコンデンサ20とを備えている。
【0041】
そして、図5に示すチャージポンプ回路は、コンデンサ14の一方の端子がダイオード6rのアノード及びスイッチ素子18に、コンデンサ14の他方の端子がダイオード12のカソードにそれぞれ接続されている。また、発振回路19は、スイッチ素子17,18を排他動作させている。そのため、図5に示すチャージポンプ回路では、スイッチ素子17がオンし、スイッチ素子18がオフすると、コンデンサ20が駆動電源11により充電される。次に、コンデンサ20に溜まっている電荷は、スイッチ素子17がオフし、スイッチ素子18がオンする際に、コンデンサ14に移される。
【0042】
本変形例に係る3相電流形整流回路でも、充電されたコンデンサ14をIGBT5rのエミッタ電位を基準電位とする駆動電源に利用し、ドライブ回路13を駆動している。なお、ドライブ回路13には、レベルシフト回路15が接続されており、ゲート信号の電位を適切にシフトさせてドライブ回路13に入力している。
【0043】
以上のように、本変形例に係る3相電流形整流回路では、チャージポンプ回路を利用して、下アームのIGBT5rのドライブ回路13を駆動する電源を作成して、実際に設けている駆動電源11に電源を共通化している。なお、図5に示す3相電流形整流回路でも、1相分(r)のIGBT5rについて駆動電源を共通化する回路構成を開示しているが、同様に、他相(s、t)のIGBT5s,5tについてもチャージポンプ回路を利用することで駆動電源の共通化を図ることができる。つまり、3相電流形整流回路を駆動する駆動電源を1個にすることができる。
【0044】
(実施の形態3)
図6に、本実施の形態に係る電流形電力変換回路の回路図を示す。図6に示す電流形電力変換回路は、3相電流形整流回路である。図5に示す3相電流形整流回路の構成は、図4に示す3相電流形整流回路とほぼ同じ構成であるが、ダイオード12を備えていない点で異なる。ダイオード12は、電源11に対するコンデンサ14の放電を阻止するための放電阻止ダイオードである。本実施の形態に係る3相電流形整流回路では、当該ダイオード12の機能をIGBT3rに直列接続されたダイオード4rで代用する。但し、ダイオード4rは、ダイオード12に要求される耐電圧特性を有している必要がある。電圧形のインバータや整流回路、電流形のインバータにおいては、通常、直流バス(もしくは高周波リンク等)の低電位側を基準電位として駆動電源を設けるため、ブートストラップ回路により充電されるコンデンサの電位が駆動電源よりも高くなる場合があり、ダイオード12には直流バス(もしくは高周波リンク等)の電位以上の耐電圧を持つことが要求されるが、本実施例においては、直流バス(もしくは高周波リンク等)の高電位側を基準電位として駆動電源を設けているおり、かつ、電流形電力変換器のダイオード4rで耐電圧を持たせているため、ダイオード4rでダイオード12を代用することが可能となっている。
【0045】
なお、図4に示す3相電流形整流回路と同じ構成については、同一の構成要素に同じ番号を付与して、図6に示す3相電流形整流回路の詳細な説明を省略する。
【0046】
以上のように、本実施の形態に係る3相電流形整流回路では、ダイオード12をダイオード4rで代用することで、放電阻止ダイオードを削減でき、回路の簡素化を図ることができる。なお、図6に示す3相電流形整流回路では、1相分(r)のコンデンサ14の放電阻止について説明したが、同様に、他相(s、t)についてもダイオード4s,4tを放電阻止ダイオードとして機能させることができる。また、本実施の形態に係る3相電流形整流回路を駆動する場合も、下アームのIGBT5r,5s,5tがスイッチング動作を開始する前に、駆動電源電圧を確保しておく必要から、上アームのIGBT3r,3s,3tを導通させておく。
【0047】
また、図6に示す3相電流形整流回路は、ブートストラップ回路を用いる回路構成であったが、同様にチャージポンプ回路を用いた3相電流形整流回路にも本実施の形態に係る構成を適用可能である。但し、チャージポンプ回路を用いた3相電流形整流回路(図5に相当)では、当該ダイオード12の機能をIGBT5rに直列接続されたダイオード6rで代用する。
【0048】
(実施の形態4)
図7に、本実施の形態に係る電流形電力変換回路の回路図を示す。図7に示す電流形電力変換回路は、3相電流形整流回路である。図7に示す3相電流形整流回路の構成は、図4に示す3相電流形整流回路とほぼ同じ構成であるが、ダイオード6rの接続位置が異なる。ダイオード6rは、図4ではIGBT5rのエミッタ側に接続されていたが、本実施の形態ではIGBT5rのコレクタ側に接続されている。つまり、図7では、ダイオード6rはIGBT5rよりも上アームのスイッチ回路(IGBT4r,ダイオード5r)から離れて配置される。
【0049】
なお、図4に示す3相電流形整流回路と同じ構成については、同一の構成要素に同じ番号を付与して、図7に示す3相電流形整流回路の詳細な説明を省略する。
【0050】
以上のように、本実施の形態に係る3相電流形整流回路では、逆阻止用のダイオード6rを上アームのスイッチ回路から離れてIGBT5rのコレクタ側に接続することで、コンデンサ14の充電時に、ダイオード6rの電圧降下を排除できる。そのため、本実施の形態に係る3相電流形整流回路では、IGBT5rのドライブ回路13を駆動するための駆動電源電圧(コンデンサ14の充電電圧)をより高く確保でき、動作の信頼性が向上する。なお、図7に示す3相電流形整流回路では、1相分(r)のコンデンサ14の電圧降下排除について説明したが、同様に、他相(s、t)についてもダイオード6s,6tを上アームのスイッチ回路から離れて配置することでコンデンサの電圧降下を排除できる。さらに、駆動電源11の電位は直流バス(もしくは高周波リンク)の高電位側よりも高いため、コンデンサ14の電位が高くなり、下アームのIGBT5rのエミッタ電位と直流バスの低電位側との電位差が大きくなる場合があるが、その場合もダイオード6rで耐電圧特性を持たせることができるので、下アームのIGBT5rが逆方向の耐電圧不足により破壊することがない。
【0051】
また、図7に示す3相電流形整流回路は、ブートストラップ回路を用いる回路構成であったが、同様にチャージポンプ回路を用いた電流形整流回路にも本実施の形態に係る構成を適用可能である。さらに、図7に示す3相電流形整流回路では、ダイオード12を設ける構成で説明したが、本発明はこれに限られず、図6に示す3相電流形整流回路と同様に、ダイオード12をダイオード4rで代用しても良い。
【0052】
(実施の形態5)
図8に、本実施の形態に係る電流形電力変換回路の回路図を示す。図8に示す電流形電力変換回路は、3相電流形整流回路である。実施の形態1乃至4に係る電流形電力変換回路では、ハーフブリッジ整流回路2r,2s,2tのスイッチ回路には自己消弧形素子であるIGBT3r,3s,3t,5r,5s.5tとダイオード4r,4s,4t,6r,6s,6tとにより構成していた。しかし、図8に示す電流形電力変換回路では、ハーフブリッジ整流回路2r,2sのスイッチ回路は、IGBT3r,3s,5r及びダイオード4r,4s6rに代えて、逆方向耐圧を持つ自己消弧形素子22r,22s,23rで構成している。なお、逆方向耐圧を持つ自己消弧形素子22r,22s,23rとしては、例えばRB−IGBT(Reverse Blocking Insulated Gate Bipolar Transistor)があげられる。また、図8に示す電流形電力変換回路は、自己消弧形素子22r,22s,23r以外は、図4に示す電流形電力変換回路と同じであるため、同じ構成要素には同じ構成番号を付与して詳細な説明は省略する。また、図8に示す電流形電力変換回路は3相電流形整流回路であるが、図4と同様に、上アームに2相分(r,s)の自己消弧形素子22r,22s、下アームに1相分(r)の自己消弧形素子23rのみを図8に記載している。
【0053】
図8に示す電流形電力変換回路では、スイッチ回路を構成する素子数が、図4に示す電流形電力変換回路減のスイッチ回路(IGBT3r,3s,3t,5r,5s.5tとダイオード4r,4s,4t,6r,6s,6t)に比べて減る。そのため、図8に示す電流形電力変換回路では、さらに回路構成を単純化できるとともに、安価な構成となる。また、図8に示す電流形電力変換回路では、スイッチ回路で生じる損失も小さくなるため、放熱用のヒートシンクを小さくでき、さらに省スペース化を図ることもできる。
【0054】
(変形例)
図9に、本実施の形態に係る変形例1の電流形電力変換回路の回路図を示す。図9に示す電流形電力変換回路は、3相電流形整流回路である。図9に示す電流形電力変換回路は、実施の形態3の構成を図8に示す電流形電力変換回路に適用したものである。つまり、図9に示す電流形電力変換回路は、逆方向耐電圧特性を持つ自己消弧形素子22r,22s,23rに、放電阻止ダイオードとしての機能も持たせて、ダイオード12を削除する回路構成である。なお、図9に示す電流形電力変換回路は、ダイオード12を削除した以外は、図8に示す電流形電力変換回路と同じであるため、同じ構成要素には同じ構成番号を付与して詳細な説明は省略する。また、図9に示す電流形電力変換回路は3相電流形整流回路であるが、図4と同様に、上アームに2相分(r,s)の自己消弧形素子22r,22s、下アームに1相分(r)の自己消弧形素子23rのみを図9に記載している。なお、図8及び図9では、逆方向耐電圧特性を持つ自己消弧形素子22r,22s,23rとして、図に示すような記号を用いてRB−IGBTを表している。
【0055】
以上のように、本変形例に係る電流形電力変換回路は、実施の形態3と同様に、スイッチ回路を構成する素子数が減り、スイッチ回路での電圧降下が小さくなるため、コンデンサ14の充電電圧をより高く確保できる。そのため、本変形例に係る電流形電力変換回路は、下アームのスイッチ回路の動作における信頼性をさらに向上することができる。
【0056】
(実施の形態6)
実施の形態1乃至5及びその変形例に係る電流形電力変換回路を用いれば、ドライブ回路を含めた電流形電力変換回路は簡単な回路で構成できる。そのため、当該電流形電力変換回路は、省スペースで構成できる。そこで、本実施の形態では、実施の形態1乃至5及びその変形例に係る電流形電力変換回路を1つのモジュール内に納め、電流形電力変換回路モジュールとすることが可能である。
【図面の簡単な説明】
【0057】
【図1】本発明の実施の形態1に係る電流形電力変換回路の回路図である。
【図2】従来の電流形電力変換回路の回路図である。
【図3】本発明の実施の形態1に係る電流形電力変換回路の回路図である。
【図4】本発明の実施の形態2に係る電流形電力変換回路の回路図である。
【図5】本発明の実施の形態2の変形例に係る電流形電力変換回路の回路図である。
【図6】本発明の実施の形態3に係る電流形電力変換回路の回路図である。
【図7】本発明の実施の形態4に係る電流形電力変換回路の回路図である。
【図8】本発明の実施の形態5に係る電流形電力変換回路の回路図である。
【図9】本発明の実施の形態5の変形例に係る電流形電力変換回路の回路図である。
【符号の説明】
【0058】
3,5,103,105 IGBT
4,6,12,16,104,106 ダイオード
7 接続点
8,120 三相交流電源
9 接続線
10,13 ドライブ回路
14,20 コンデンサ
15 レベルシフト回路
17,18 スイッチ素子
19 発振回路
22,23 自己消弧形素子
30,130 LCフィルタ回路
101 3相電流形整流回路

【特許請求の範囲】
【請求項1】
相互に直列接続された第1自己消弧形素子(3r,3s,3t)及び第1ダイオード(4r,4s,4t)を有する第1スイッチ回路と、相互に直列接続された第2自己消弧形素子(5r,5s,5t)及び第2ダイオード(6r,6s,6t)を有する第2スイッチ回路との直列接続を含むハーフブリッジ整流回路(2r,2s,2t)の複数を並列接続して備える電流形電力変換回路であって、
いずれの前記ハーフブリッジ整流回路においても、前記第1自己消弧形素子、前記第1ダイオード、前記第2自己消弧形素子及び第2ダイオードの順方向は同方向に揃い、
いずれの前記第1自己消弧形素子も、第1電流電極及び第2電流電極並びに制御電極を有し、前記第1電流電極を基準として前記制御電極に与えられる制御信号に基づいて点弧/消弧し、
いずれの前記ハーフブリッジ整流回路においても、前記第1自己消弧形素子の前記第2電流電極が前記第1ダイオードに接続され、
一の前記ハーフブリッジ整流回路(2r)の前記第1自己消弧形素子(3r)の第1電流電極と、他の前記ハーフブリッジ整流回路(2s)の前記第1自己消弧形素子(3s)の第1電流電極とが短絡して接続することを特徴とする電流形電力変換回路。
【請求項2】
請求項1に記載の電流形電力変換回路であって、
前記第1自己消弧形素子(3r,3s)に前記信号を与える第1ドライブ回路(10r,10s)と、
前記第1ドライブ回路を駆動する電源(11)によって充電されるコンデンサ(14)と、
前記コンデンサ(14)に充電された電荷によって駆動され、前記第2スイッチ回路を制御する第2ドライブ回路(13)と
を更に備え、
前記電源と前記コンデンサ(14)との間には、前記電源に対する前記コンデンサ(14)の放電を阻止する放電阻止ダイオード(4r,6r,12,16)が存在することを特徴とする電流形電力変換回路。
【請求項3】
請求項2に記載の電流形電力変換回路であって、
前記コンデンサ(14)に電荷を蓄積する回路が、ブートストラップ回路であることを特徴とする電流形電力変換回路。
【請求項4】
請求項2に記載の電流形電力変換回路であって、
前記コンデンサ(14)に電荷を蓄積する回路が、チャージポンプ回路であることを特徴とする電流形電力変換回路。
【請求項5】
請求項3記載の電流形電力変換回路であって、
前記第1ダイオード(4r)が前記放電阻止ダイオードとして機能することを特徴とする電流形電力変換回路。
【請求項6】
請求項3又は請求項4に記載の電流形電力変換回路であって、
前記第2ダイオード(6r)が前記放電阻止ダイオードとして機能することを特徴とする電流形電力変換回路。
【請求項7】
請求項5記載の電流形電力変換回路であって、
前記第2ダイオード(6r)は前記第2自己消弧形素子(5r)よりも前記第1スイッチ回路から離れて配置されることを特徴とする電流形電力変換回路。
【請求項8】
請求項1乃至請求項7のいずれか1つに記載の電流形電力変換回路であって、
複数の前記ハーフブリッジ整流回路(2r,2s,2t)の前記第1スイッチ回路及び前記第2スイッチ回路のうち少なくとも一つのスイッチ回路は、逆方向耐電圧特性を持つ自己消弧形素子(21r,21,s,21t)であることを特徴とする電流形電力変換回路。
【請求項9】
請求項8に記載の電流形電力変換回路であって、
逆方向耐電圧特性を持つ前記自己消弧形素子(21r,21,s,21t)は、前記放電阻止ダイオードとして機能することを特徴とする電流形電力変換回路。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2010−154581(P2010−154581A)
【公開日】平成22年7月8日(2010.7.8)
【国際特許分類】
【出願番号】特願2008−326655(P2008−326655)
【出願日】平成20年12月23日(2008.12.23)
【出願人】(000002853)ダイキン工業株式会社 (7,604)
【Fターム(参考)】