説明

電磁波方向制御素子

【課題】 フォトニック結晶を用いて構成されるアイソレータを提供する。
【解決手段】 特定の物質中に誘電率が異なる物質を周期的に配列したフォトニック結晶誘電体複合物質と、周期構造を持たない高誘電率誘電体物質と、周期構造を持たない低誘電率誘電体物質とを用いて構成されるものであり、電磁波の入力端4側から出力端5側に向かって、フォトニック結晶複合物質からなる入力側フォトニック結晶部分6と、高誘電率誘電体物質からなる入力側結晶欠陥部分7と、フォトニック結晶誘電体複合物質からなる中間フォトニック結晶部分8と、低誘電率誘電体物質からなる出力側結晶欠陥部分9と、フォトニック結晶誘電体複合物質からなる出力側フォトニック結晶部分10とが順次配置され、中間フォトニック結晶部分8の、入力端4側から出力端5側までの長さは、周期構造におけるほぼ1周期分の長さに相当するようにされる。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、たとえばアイソレータのような非可逆特性を有する電磁波方向制御素子に関するもので、特に、フォトニック結晶を用いた電磁波方向制御素子に関するものである。
【背景技術】
【0002】
アイソレータとは、入力端側から出力端側に向かう順方向の信号については、ほとんど損失なく伝達するが、出力端側からの逆方向の信号については、これを入力端側に実質的に伝達しないようにした、非可逆特性を有する電子部品である。アイソレータは、数10MHzからマイクロ波、ミリ波、光まで、多岐にわたる周波数帯の電磁波に適用される。アイソレータは、一般的に、磁性体の持つ電磁波に対する特異な性質を利用して、上述した非可逆特性すなわちアイソレーション特性を実現している。
【0003】
この発明にとって興味あるアイソレータとして、たとえば特開2000−180789号公報(特許文献1)に記載されたものがある。この特許文献1には、2個の偏光子と、これら偏光子間に設けられて磁場が印加される45度ファラデー回転子とを備える、光アイソレータが開示されている。この光アイソレータにおいて、偏光子がフォトニック結晶から構成され、フォトニック結晶から構成される偏光子の製造方法については、たとえば特開2000−56133号公報 (特許文献2)に記載されている。
【0004】
しかしながら、上述した特許文献1に記載された光アイソレータをも含めて、従来のアイソレータは、ほとんど例外なく、磁石を用いることが必要であり、また、逆方向の信号については、順方向の信号の経路とは異なる経路に向けることによって、アイソレーション特性を与えるようにしている。
【0005】
そのため、構造の簡素化、小型化およびコストの面で、さらなる改善の余地が残されている。
【特許文献1】特開2000−180789号公報
【特許文献2】特開2000−56133号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
そこで、この発明の目的は、たとえばアイソレータのような非可逆特性を有する電磁波方向制御素子において、構造の簡素化、小型化およびコストの面でさらなる改善を図ろうとすることである。
【課題を解決するための手段】
【0007】
この発明に係る電磁波方向制御素子は、基本的に、フォトニック結晶を用いて構成される。
【0008】
より詳細には、この発明に係る電磁波方向制御素子を構成するため、
(a)第1の誘電率を有する第1の誘電体物質中に、第1の誘電率とは異なる第2の誘電率を有する第2の誘電体物質が周期的に配列されている、そのような周期構造を有する、フォトニック結晶誘電体複合物質と、
(b)周期構造を持たずかつ第3の誘電率を有する、高誘電率誘電体物質と、
(c)周期構造を持たずかつ第3の誘電率より低い第4の誘電率を有する、低誘電率誘電体物質と
が用いられる。
【0009】
そして、この発明に係る電磁波方向制御素子は、電磁波の入力端側から出力端側に向かって順次配列される次のような要素を備えている。
(1)上記フォトニック結晶誘電体複合物質からなる入力側フォトニック結晶部分、
(2)上記高誘電率誘電体物質からなる入力側結晶欠陥部分、
(3)上記フォトニック結晶誘電体複合物質からなる中間フォトニック結晶部分、
(4)上記低誘電率誘電体物質からなる出力側結晶欠陥部分、および
(5)上記フォトニック結晶誘電体複合物質からなる出力側フォトニック結晶部分。
【0010】
この発明に係る電磁波方向制御素子がアイソレータとして用いられる場合には、次のような構成を備えることが好ましい。
【0011】
すなわち、入力側フォトニック結晶部分と中間フォトニック結晶部分と出力側フォトニック結晶部分とは、特定の周波数帯域の電磁波を反射するフォトニックバンドギャップを有し、入力側結晶欠陥部分と中間フォトニック結晶部分と出力側結晶欠陥部分とは、全体として、入力端側からの電磁波に対して、フォトニックバンドギャップのうちの特定の周波数の電磁波の通過を局在により許容する局在モードを生じさせるが、出力端側からの電磁波に対して、局在モードを生じさせないように構成され、それによって、アイソレーション特性が与えられていることが好ましい。
【0012】
上述した好ましい実施態様において、中間フォトニック結晶部分の、入力端側から出力端側までの長さは、前述した周期構造における1周期以上かつ2周期未満分の長さに相当していることが好ましく、さらに、ほぼ1周期分の長さに相当していることがより好ましい。
【0013】
また、この発明に係る電磁波方向制御素子がアイソレータとして用いられるのに適した上述の実施態様において、入力側結晶欠陥部分が入力端側からの電磁波に対して局在モードを生じさせる電磁波の周波数は、出力側結晶欠陥部分が入力端側からの電磁波に対して局在モードを生じさせる電磁波の周波数とほぼ等しくされていることが好ましい。
【0014】
上述の場合において、入力側結晶欠陥部分が入力端側からの電磁波に対して局在モードを生じさせる電磁波の周波数は、フォトニックバンドギャップにおけるほぼ中心周波数となるように選ばれることがより好ましい。
【0015】
この発明に係る電磁波方向制御素子において、第2の誘電率は第1の誘電率より高く、低誘電率誘電体物質としては、第1の物質と同じものが用いられ、高誘電率誘電体物質としては、第2の物質と同じものが用いられることが好ましい。
【発明の効果】
【0016】
この発明に係る電磁波方向制御素子は、外部磁界を必要とせず、実質的に誘電体のみをもって与えられた構造でありながら、電磁波の透過特性に対して異方性を与えることができる。したがって、この発明に係る電磁波方向制御素子によれば、従来のアイソレータのような磁石を必要としかつ逆方向からの信号を別の経路に向けるようにした非可逆特性を有する電磁波方向制御素子に比べて、構造を簡易化でき、小型化でき、またコストダウンを図ることができる。
【0017】
この発明において、入力側結晶欠陥部分と中間フォトニック結晶部分と出力側結晶欠陥部分とが、全体として、入力端側からの電磁波に対しては、フォトニックバンドギャップのうちの特定の周波数の電磁波の透過を局在により許容する局在モードを生じさせるが、出力端側からの電磁波に対しては、局在モードを生じさせないように構成されていると、アイソレーション特性を与えることができ、この発明に係る電磁波方向制御素子をアイソレータとして有利に用いることができる。
【0018】
上述の場合、中間フォトニック結晶部分の、入力端側から出力端側までの長さが、この中間フォトニック結晶部分を構成するフォトニック結晶誘電体複合物質の周期構造における1周期以上かつ2周期未満分の長さに相当していると、入力端側からの電磁波すなわち順方向の電磁波に対しては、局在モードがより生じやすく、出力端側からの電磁波すなわち逆方向の電磁波に対しては、局在モードがより確実に生じないようにすることができ、その結果、アイソレーション特性をより確実に与えることができるようになる。
【0019】
上述した中間フォトニック結晶部分の、入力端側から出力端側までの長さが、周期構造における1周期以上ではあるが、ほぼ1周期分の長さに相当していると、順方向の電磁波に対しては、入力側結晶欠陥部分で発生する局在モードと出力側結晶欠陥部分で発生する局在モードとが良好に結合し、より良好なアイソレーション特性を与えることができるようになる。
【0020】
また、入力側結晶欠陥部分が入力端側からの電磁波に対して局在モードを生じさせる電磁波の周波数と、出力側結晶欠陥部分が入力端側からの電磁波に対して局在モードを生じさせる電磁波の周波数とが、ほぼ等しくされていると、急峻なアイソレーション特性を与えることができる。
【0021】
上述の場合、入力側結晶欠陥部分が入力端側からの電磁波に対して局在モードを生じさせる電磁波の周波数が、フォトニックバンドギャップにおけるほぼ中心周波数となるように選ばれると、局在モードを生じさせる電磁波の周波数をフォトニックバンドギャップの端部から遠ざけて位置させることができるので、安定したアイソレーション特性を与えることができる。
【0022】
第2の誘電率が第1の誘電率より高く、低誘電率誘電体物質として、第1の物質と同じものが用いられ、高誘電率誘電体物質として、第2の物質と同じものが用いられると、この発明に係る電磁波方向制御素子を作製するために用いられる材料の共通化を図ることができ、それによるコストダウンを期待することができる。
【発明を実施するための最良の形態】
【0023】
図1は、この発明の一実施形態による電磁波方向制御素子としてのアイソレータ1を説明するためのもので、(a)は、アイソレータ1を図解的に示す正面図であり、(b)は、アイソレータ1が与える電磁波伝搬特性を示す図である。
【0024】
なお、この出願において、図1(b)のような電磁波伝搬特性を示す図面は、試料を導波管に入れ、この試料を透過する電磁波の減衰量の周波数特性を測定して得られたものであり、実際には、得られた特性を示す曲線に「ゆらぎ」が多数存在しているが、図面作成上の煩雑さを避けるため、各図面では、このような「ゆらぎ」の図示を省略し、より平滑な線を用いて示している。
【0025】
図1(a)を参照して、アイソレータ1は金属ケース3に収容され、アイソレータ1の長手方向の一方端および他方端に、それぞれ、入力端4および出力端5が設けられる。入力端4には電磁波が入力され、アイソレータ1を透過した電磁波は出力端5から出力される。入力端4および出力端5は、たとえば、同軸コネクタまたは光コネクタによって構成される。
【0026】
アイソレータ1には、入力端4側から出力端5側に向かって、入力側フォトニック結晶部分6と入力側結晶欠陥部分7と中間フォトニック結晶部分8と出力側結晶欠陥部分9と出力側フォトニック結晶部分10とが順次配置されている。
【0027】
入力側フォトニック結晶部分6、中間フォトニック結晶部分8および出力側フォトニック結晶部分10の各々は、第1の誘電率を有する第1の誘電体物質中に、第1の誘電率とは異なる第2の誘電率を有する第2の誘電体物質が周期的に配列されている、そのような周期構造を有する、フォトニック結晶誘電体複合物質から構成される。
【0028】
また、入力側結晶欠陥部分7は、周期構造を持たず、かつ第3の誘電率を有する、高誘電率誘電体物質から構成され、出力側結晶欠陥部分9は、同じく周期構造を持たないが、第3の誘電率より低い第4の誘電率を有する、低誘電率誘電体物質から構成される。
【0029】
上述したフォトニック結晶誘電体複合物質によれば、電磁波の相互干渉を利用して特定の周波数の電磁波を完全に反射することができる。このように完全に反射する電磁波の周波数は一定の帯域を示し、これをフォトニックバンドギャップと呼んでいる。
【0030】
フォトニック結晶誘電体複合物質のような誘電体の周期構造体に電磁波が入ってくると、電磁波のブラッグ回折が起こり、2種類の定在波が形成される。すなわち、低誘電率領域で振動する定在波と高誘電率領域で振動する定在波とである。そして、前者は、後者に比べてエネルギー値が高くなる。このように2つの異なるモードにスプリットした定在波間のエネルギーを有する波は、結晶中に存在することができないので、フォトニックバンドギャップが生まれるのである。
【0031】
フォトニックバンドギャップは、上述のように、ブラッグ回折で生じているため、周期構造の繰り返し周期である格子定数が波長相当であることが必要である。また、誘電率の差が大きいほど、各誘電率領域での振動エネルギーの差が大きく、フォトニックバンドギャップも広がる。そして、前述のように、誘電率が高いほど、振動エネルギーが低くなり、フォトニックバンドギャップの位置は低周波側にシフトする。
【0032】
種々のフォトニック結晶があるが、3次元的な電磁波を完全に反射するためには、あらゆる方向に対してフォトニックバンドギャップが形成される必要がある。このような要求を満たし得るフォトニック結晶として、たとえばダイヤモンド構造のものがある。ダイヤモンド構造によれば、電磁波の偏光依存性を避けることができる。図1(a)等において、フォトニック結晶部分6、8および10は、各々が有する結晶構造が省略的に図示されていて、その格子点を水玉模様で表すことにより、周期構造を有することを示している。
【0033】
図1(a)に示したアイソレータ1では、入力側フォトニック結晶部分6および出力側フォトニック結晶部分10の各々の、入力端4側から出力端5側までの長さは、周期構造における2周期分の長さに相当している。中間フォトニック結晶部分8の入力端4側から出力端5側までの長さは、周期構造における1周期分の長さに相当している。
【0034】
図1(b)において、実線は、入力端4から出力端5への、すなわち順方向の電磁波の透過特性を示し、破線は、出力端5から入力端4への、すなわち逆方向の電磁波の透過特性を示している。なお、図1(b)等の電磁波伝搬特性を示す図において、実線と破線とが互いに近接して図示されているのは、実線と破線とを区別するためのもので、実際には、実線と破線とが実質的に重なり合っていると理解すべきである。
【0035】
アイソレータ1に導入される電磁波については、図1(b)に示すように、順方向の電磁波に対しても、逆方向の電磁波に対しても、特定の周波数帯域の電磁波は反射され、それによって、フォトニックバンドギャップを形成している。
【0036】
しかしながら、フォトニック結晶部分6、8および10において、その周期構造を一部壊すと、より具体的には、周期構造を持たない結晶欠陥部分7および9をフォトニック結晶部分6、8および10の間に存在させると、順方向の電磁波については、図1(b)において実線で示すように、フォトニックバンドギャップのうちの特定の周波数の電磁波についてのみ、その透過が許容される。これを局在モードと呼んでいる。
【0037】
他方、逆方向の電磁波については、局在モードが生じず、図1(b)において破線で示すように、フォトニックバンドギャップ内にある周波数の電磁波は透過されない。
【0038】
このようにして、アイソレータ1は、アイソレーション特性を与えることができる。以下に、上述のような局在モードによるアイソレーション特性が得られるための条件の詳細およびこのような条件を見出すに至った実験例について説明する。
【0039】
図2は、実験例1において作製した素子11を説明するためのもので、(a)は、素子11を図解的に示す正面図であり、(b)は、素子11が与える電磁波伝搬特性を示す図である。
【0040】
図2(a)に示すように、素子11は、全体として、フォトニック結晶部分12から構成される。より詳細には、フォトニック結晶部分12は、各々の格子定数が15mmである6セルのフォトニック結晶から構成されている。このフォトニック結晶は、前述したフォトニック結晶部分6、8および10を構成する、周期構造を持つフォトニック結晶誘電体複合物質と同様のものである。
【0041】
上述のような素子11に電磁波を導入すると、フォトニック結晶部分12の周期構造に対応する周波数の電磁波については反射が起こるため、順方向の電磁波についても、逆方向の電磁波についても、図2(b)に示すように、フォトニックバンドギャップが生じ、約7.5GHz〜約12.5GHzの周波数帯域の電磁波が遮断される。
【0042】
なお、図2(b)等の電磁波伝搬特性を示す図において、実線のみが示されているのは、電磁波の伝搬特性が順方向にも逆方向にも同じであることを意味している。
【0043】
次に、図3および図4は、それぞれ、実験例2および3において作製した素子15および16を説明するための図2に対応する図である。
【0044】
図3および図4に示した素子15および16は、図2に示した素子11と比較して、周期構造を有するフォトニック結晶部分12の一部に、周期構造を持たない結晶欠陥部分17および18がそれぞれ導入されていることを特徴としている。これら欠陥部分17および18の各々の入力端側から出力端側までの長さは、格子定数程度の長さすなわち15mmとされている。
【0045】
上述のように、結晶欠陥部分17および18が導入されると、電磁波は、これら結晶欠陥部分17および18において共振により増幅され、共振する特定の周波数の電磁波のみが結晶欠陥部分17および18を透過し、電磁波が入力端側から出力端側へと伝搬することが可能となる。
【0046】
図3(a)に示した結晶欠陥部分17は、誘電率εが5.7と比較的高く、図3(b)に示すように、比較的低周波側の8.7GHz付近に局在モードが発生している。他方、図4(a)に示した結晶欠陥部分18は、誘電率εが3.3と比較的低く、図4(b)に示すように、比較的高周波側の11.1GHz付近に局在モードが発生している。
【0047】
なお、このことから、図3および図4にそれぞれ示した結晶欠陥部分17および18のように、その入力端側から出力端側までの長さが互いに同じとすれば、誘電率がより高いほど、局在モードがより低周波側に現れ、それゆえ、局在モードのピーク位置は、誘電率を変更することによって調整可能であることがわかる。
【0048】
図3(a)および図4(a)等の図面において、素子15および16等に重ねて、電磁波の強度分布が太い破線によって示されている。
【0049】
図3(a)に示した電磁波の強度分布は、ピークが比較的高く、裾がフォトニック結晶部分12に向かって比較的深く広がっている。他方、図4(a)に示した電磁波の強度分布は、ピークが比較的低く、フォトニック結晶部分12に対する裾の広がりが比較的浅い。
【0050】
図3および図4に示した素子15および16は、共に左右対称であるので、順方向の電磁波についても、逆方向の電磁波についても、同様の現象が起こる。したがって、図3(b)および図4(b)に示すように、素子15および16は、波長の選択効果を有するのみで、アイソレータ効果を有していない。
【0051】
次に、図5は、実験例4において作製した素子21を説明するための図2に対応する図である。図5において、図3および図4の各々に示した要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。
【0052】
図5(a)に示した素子21は、図3(a)に示した素子15と図4(a)に示した素子16とを結合したものに相当している。したがって、素子15で起きた現象と素子16で起きた現象との双方が起きる。すなわち、図5(b)に示すように、高誘電率の結晶欠陥部分17による8.7GHz付近の局在モードと低誘電率の結晶欠陥部分18による11.1GHz付近の局在モードとが発生する。しかしながら、順方向と逆方向とでは、透過特性に差は見られない。
【0053】
次に、図6は、実験例5において作製した素子24を説明するための図2に対応する図である。図6において、図5に示した要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。
【0054】
図6に示した素子24は、図5に示した素子21と比較して、2種類の結晶欠陥部分17および18の間隔がより近付けられている。すなわち、結晶欠陥部分17および18の間に位置するフォトニック結晶部分12は、図5に示した素子21では、2周期分の長さ(30mm)を有していたが、図6に示した素子24では、1周期分の長さ(15mm)しか有していない。その結果、結晶欠陥部分17および18とその中間のフォトニック結晶部分12とが、全体として、1つの欠陥領域(増幅領域)を構成し、図6(a)において太い破線で示すような左右非対称の電磁波の強度分布が現れる。
【0055】
ここで、順方向の電磁波については、局在モードにある電磁波の強度分布の裾がフォトニック結晶部分12中に広がるので、局在モードが発生しやすいが、逆方向については、フォトニック結晶部分12に対する裾の広がりが浅いため、局在モードが発生しにくい。その結果、図6(b)に示すように、順方向の電磁波については、フォトニックバンドギャップのうち特定の周波数の電磁波の透過を許容するが、逆方向の電磁波については、電磁波の透過が生じにくくし、順方向と逆方向との間で差が生じ、ある程度のアイソレーション特性が得られている。
【0056】
図5と図6とを比較すればわかるように、2種類の結晶欠陥部分17および18間の間隔の大きさに応じて、結晶欠陥部分17によって得られる局在モードと結晶欠陥部分18によって得られる局在モードとが2つの独立したモードに分かれるか(図5)、1つのモードに結合するか(図6)が決まる。そして、図6(a)の破線で示すように、上記2つの局在モードが1つのモードに結合し、電磁波の強度分布が左右非対称になった場合は、裾の広がり方に違いが出るため、非可逆特性すなわちアイソレーション特性が得られる。
【0057】
次に、図7および図8は、それぞれ、実験例6および7において作製した素子27および28を説明するための図2に対応する図である。図7および図8において、前述の図3および図4に示した要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。
【0058】
前述したように、図3に示した高誘電率の結晶欠陥部分17を有する素子15では、比較的低周波側の8.7GHz付近に局在モードが発生し、他方、図4に示した低誘電率の結晶欠陥部分18を有する素子16では、比較的高周波側の11.1GHz付近に局在モードが発生している。これに対して、図7および図8にそれぞれ示した素子27および28では、互いにほぼ等しい周波数において局在モードが生じるように設計されている。
【0059】
すなわち、図7に示した素子27では、誘電率εが5.7と比較的高い結晶欠陥部分17の、入力端側から出力端側までの長さ(L)を、図7(a)に示すように、13mmにして、局在モードの波長(λ)を、λ=L×ε1/2 =31.1[mm]となるように設計している。
【0060】
他方、図8に示した素子28では、誘電率εが3.3と比較的低い結晶欠陥部分18の、入力端側から出力端側までの長さ(L)を、図8(a)に示すように、17mmにして、局在モードの波長(λ)を、λ=L×ε1/2 =30.8[mm]となるように設計している。
【0061】
その結果、素子27では、図7(b)に示すように、9.7GHz付近に局在モードが形成され、他方、素子28では、図8(b)に示すように、同じく9.7GHz付近に局在モードが形成されている。また、これら局在モードを生じさせている9.7GHz付近の周波数は、フォトニックバンドギャップにおけるほぼ中心周波数となるようにも選ばれている。
【0062】
次に、図9は、実験例8において作製した素子31を図解的に示す正面図である。図9において、前述した図6に示す要素に相当する要素には同様の参照符号を付し、重複する説明は省略する。
【0063】
図9に示した素子31では、図6に示した素子24の場合と同様、2種類の結晶欠陥部分17および18の間に位置するフォトニック結晶部分12が、1周期分の長さすなわち15mmの長さを有している。その結果、図6に示した素子24の場合と同様、結晶欠陥部分17および18とその中間のフォトニック結晶部分12とが、全体として、1つの欠陥領域(増幅領域)を構成し、図9において太い破線で示すような左右非対称の電磁波の強度分布が現れる。
【0064】
図9に示した素子31は、前述の図1(a)に示したアイソレータ1と実質的に同様のものである。したがって、図1(b)に示した電磁波の伝搬特性は、図9の素子31が与える電磁波の伝搬特性を示していることになる。
【0065】
図9に示した素子31の構成要素となる、図7に示した素子27および図8に示した素子28に関して、図7の結晶欠陥部分17が順方向の電磁波に対して局在モードを生じさせる電磁波の周波数と図8の結晶欠陥部分18が順方向の電磁波に対して局在モードを生じさせる電磁波の周波数とは、双方とも、9.7GHz付近というように、互いにほぼ等しくされているので、これら素子27および28が組み合わされた素子31においては、急峻なアイソレーション特性を与えることができる。また、上述の9.7GHz付近の周波数は、フォトニックバンドギャップにおけるほぼ中心周波数であるので、アイソレーション特性を安定したものとすることができる。
【0066】
次に、図1に示したアイソレータ1の好ましい製造方法について説明する。
【0067】
図10は、フォトニック結晶部分6、8および10を構成するフォトニック結晶誘電体複合物質のうち、第1の誘電率(たとえば、ε=3.3)を有する第1の誘電体物質を造形するために用いられる光造形装置41を図解的に示す正面図である。なお、光造形装置41によって造形される第1の誘電体物質中には、第1の誘電率とは異なる第2の誘電率(たとえば、ε=5.7)を有する第2の誘電体物質を周期的に配列した状態とするための空洞が形成される。
【0068】
図10を参照して、光造形装置41は、未硬化の光硬化性樹脂材料42を収容する樹脂材料槽43を備えている。樹脂材料槽43内には、その上で上述の第1の誘電体物質44を造形するためのテーブル45が配置される。テーブル45は、矢印45で示すように、所定高さ分毎に徐々に低くされるように駆動される。
【0069】
テーブル45の上方には、レーザ光源47からのレーザ光48を反射させて、これを光硬化性樹脂材料42の液面49に向けるための走査ミラー50が設けられる。走査ミラー50は、所定のデータに従って角度が変更可能なように構成され、それによって、レーザ光48は、両方向矢印51で示すように、液面49に沿って走査される。光硬化性樹脂材料42は、レーザ光48が走査された部分において硬化する。
【0070】
テーブル45と液面49との間に、たとえば100μmといった所定の厚み分の液状の光硬化性樹脂材料42が供給されるように、テーブル45が位置される。次いで、スキージ(図示せず。)によって、その液面49が調整される。このとき、光硬化性樹脂材料42の余剰分が樹脂材料槽43に回収される。
【0071】
上述の状態で、得ようとする第1の誘電体物質44の形状に応じたデータに従ってレーザ光48が走査される。これによって、光硬化性樹脂材料42は、レーザ光48が照射された部分において硬化し、硬化樹脂層52が形成される。
【0072】
次に、硬化された硬化樹脂層52と液面49との間に所定の厚み分の光硬化性樹脂材料42が再び供給されるように、テーブル45が矢印46方向へ移動され、再び、レーザ光48が所定のデータに従って走査される。これによって、硬化された光硬化性樹脂材料42からなる次の硬化樹脂層52が形成される。
【0073】
上述のようなレーザ光48の照射による硬化樹脂層52の形成と、テーブル45の下方への移動とは繰り返される。これによって、硬化された光硬化性樹脂材料42からなる複数の硬化樹脂層52を積層した構造を有する、3次元造形体としての第1の誘電体物質44が得られる。
【0074】
上述の第1の誘電体物質44は、たとえば3.3の誘電率を有し、第2の誘電体物質で充填されるべき空洞を、格子定数15mmをもって周期的に配列させている。
【0075】
他方、たとえば、平均粒径5μmの酸化チタン粉末を30体積%の割合で混合した2液性ポリエステル樹脂からなる、誘電率がたとえば5.7の第2の誘電体物質となるべき無機粉末含有樹脂材料が用意される。
【0076】
次に、前述した3次元造形体としての第1の誘電体物質44が真空脱泡され、次いで、その空洞が上述の無機粉末含有樹脂材料によって充填され、その後、たとえば120℃の温度で30分間熱処理される。
【0077】
これによって、格子定数が15mmであり、誘電率が3.3の第1の誘電体物質44中に、誘電率が5.7の第2の誘電体物質が周期的に配列されている、そのような周期構造を有する、1セル(15mm×35mm×16mm)のフォトニック結晶誘電体複合物質ブロックが得られる。
【0078】
他方、上述した無機粉末含有樹脂材料を型に入れて加熱硬化させることにより、誘電率が5.7であって、13mm×35mm×16mmの入力側結晶欠陥部分7となる高誘電率誘電体物質ブロックが作製される。
【0079】
また、前述した光硬化性樹脂材料42に光造形法を適用して、誘電率が3.3であって、17mm×35mm×16mmの出力側結晶欠陥部分9となる低誘電率誘電体物質ブロックが作製される。
【0080】
次に、図1(a)に示した入力側フォトニック結晶部分6、中間フォトニック結晶部分8および出力側フォトニック結晶部分10が、上述したフォトニック結晶誘電体複合物質ブロックによって構成され、入力側結晶欠陥部分7が高誘電率誘電体物質ブロックから構成され、出力側結晶欠陥部分9が低誘電率誘電体物質から構成されるように、所定のブロックを所定の順序で接着剤にて接合すれば、アイソレータ1が得られる。
【0081】
なお、上述のように、接着剤により接合される場合などのように、各ブロック間に間隙が形成される場合、このような間隙が電磁波に実質的な影響を及ぼさないようにするには、アイソレータ1が適用される周波数帯域の電磁波の波長の10分の1以下の間隙とすることが好ましい。
【0082】
また、上述の製造方法では、予め形成された各ブロックを後で接合するようにしたが、入力側フォトニック結晶部分6、入力側結晶欠陥部分7、中間フォトニック結晶部分8、出力側結晶欠陥部分9および出力側フォトニック結晶部分10を、連続的な成形方法によって形成するようにしてもよい。
【0083】
また、周期的な空洞を有する第1の誘電体物質44を、光造形装置41によって製造する途中において、空洞となる凹部内に、高誘電率誘電体物質を埋め込むようにしてもよい。
【0084】
さらに、フォトニック結晶部分を備えるアイソレータの製造方法には、上に例示した方法に限らず、その他、種々の方法を適用することができる。
【0085】
図11は、図1に示したアイソレータ1の用途の一例としての携帯電話端末機のフロントエンドの構成を示すブロック図である。
【0086】
携帯電話等の通信機器において、アンテナの送受信共用が行なわれている。送信波をアンテナから放出し、受信波を受信し受信回路に導くために、図11のような回路が用いられている。
【0087】
図11を参照して、アンテナ53によって受信された受信波54は、アンテナ共用器55を経て、受信用パワーアンプ56に導かれ、ここで増幅される。
【0088】
他方、送信波57は、自動利得調整器(APC)58で調整されながら送信用パワーアンプ59で増幅され、カプラ60を経て、アンテナ共用器55に導かれ、アンテナ53から放出される。
【0089】
上述のような回路において、アイソレータ1は、送信側パワーアンプ59とアンテナ共用器55との間に挿入され、送信用パワーアンプ59からアンテナ共用器55に向く方向にしか電磁波を通過させないようにされる。このアイソレータ1は、図11に示した回路において、次のように作用する。
【0090】
アンテナ共用器55に、直接、送信回路を結合すると、アンテナ53の部分で反射した送信波57の一部の信号が逆流して、送信用パワーアンプ59を破壊する可能性があるが、アイソレータ1は、このような破壊から保護するように作用する。また、インピーダンス変化の大きいアンテナ53と送信用パワーアンプ59とを分離し、特にCDMA(符号分割多重アクセス)方式などの広い電力レベル範囲で安定した線形動作が確保できるように、アイソレータ1は作用する。
【図面の簡単な説明】
【0091】
【図1】この発明の一実施形態による電磁波方向制御素子としてのアイソレータ1を説明するためのもので、(a)は、アイソレータ1を図解的に示す正面図であり、(b)は、アイソレータ1が与える電磁波伝搬特性を示す図である。
【図2】図1に示したアイソレータ1が有するアイソレーション特性が得られるための条件を見出すに至った実験例1において作製した素子11を説明するためのもので、(a)は、素子11を図解的に示す正面図であり、(b)は、素子11が与える電磁波伝搬特性を示す図である。
【図3】同じく実験例2において作製した素子15を説明するための図2に対応する図である。
【図4】同じく実験例3において作製した素子16を説明するための図2に対応する図である。
【図5】同じく実験例4において作製した素子21を説明するための図2に対応する図である。
【図6】同じく実験例5において作製した素子24を説明するための図2に対応する図である。
【図7】同じく実験例6において作製した素子27を説明するための図2に対応する図である。
【図8】同じく実験例7において作製した素子28を説明するための図2に対応する図である。
【図9】同じく実験例8において作製した素子31を図解的に示す正面図である。
【図10】図1に示したアイソレータ1を製造するために用いられる光造形装置41を図解的に示す正面図である。
【図11】図1に示したアイソレータ1の用途の一例となる携帯電話端末機のフロントエンドの構成を示すブロック図である。
【符号の説明】
【0092】
1 アイソレータ
4 入力端
5 出力端
6 入力側フォトニック結晶部分
7 入力側結晶欠陥部分
8 中間フォトニック結晶部分
9 出力側結晶欠陥部分
10 出力側フォトニック結晶部分

【特許請求の範囲】
【請求項1】
第1の誘電率を有する第1の誘電体物質中に、前記第1の誘電率とは異なる第2の誘電率を有する第2の誘電体物質が周期的に配列されている、そのような周期構造を有する、フォトニック結晶誘電体複合物質と、周期構造を持たずかつ第3の誘電率を有する、高誘電率誘電体物質と、周期構造を持たずかつ前記第3の誘電率より低い第4の誘電率を有する、低誘電率誘電体物質とを用いて構成されるものであって、
電磁波の入力端側から出力端側に向かって、前記フォトニック結晶誘電体複合物質からなる入力側フォトニック結晶部分と、前記高誘電率誘電体物質からなる入力側結晶欠陥部分と、前記フォトニック結晶誘電体複合物質からなる中間フォトニック結晶部分と、前記低誘電率誘電体物質からなる出力側結晶欠陥部分と、前記フォトニック結晶誘電体複合物質からなる出力側フォトニック結晶部分とが順次配置されている、
電磁波方向制御素子。
【請求項2】
前記入力側フォトニック結晶部分と前記中間フォトニック結晶部分と前記出力側フォトニック結晶部分とは、特定の周波数帯域の電磁波を反射するフォトニックバンドギャップを有し、前記入力側結晶欠陥部分と前記中間フォトニック結晶部分と前記出力側結晶欠陥部分とは、全体として、入力端側からの電磁波に対しては、前記フォトニックバンドギャップのうちの特定の周波数の電磁波の透過を局在により許容する局在モードを生じさせるが、出力端側からの電磁波に対しては、前記局在モードを生じさせないように構成されていて、それによって、アイソレーション特性が与えられている、請求項1に記載の電磁波方向制御素子。
【請求項3】
前記中間フォトニック結晶部分の、入力端側から出力端側までの長さは、前記周期構造における1周期以上かつ2周期未満分の長さに相当する、請求項2に記載の電磁波方向制御素子。
【請求項4】
前記中間フォトニック結晶部分の、入力端側から出力端側までの長さは、前記周期構造におけるほぼ1周期分の長さに相当する、請求項3に記載の電磁波方向制御素子。
【請求項5】
前記入力側結晶欠陥部分が入力端側からの電磁波に対して局在モードを生じさせる電磁波の周波数は、前記出力側結晶欠陥部分が入力端側からの電磁波に対して局在モードを生じさせる電磁波の周波数とほぼ等しくされている、請求項2ないし4のいずれかに記載の電磁波方向制御素子。
【請求項6】
前記入力側結晶欠陥部分が入力端側からの電磁波に対して局在モードを生じさせる電磁波の周波数は、前記フォトニックバンドギャップにおけるほぼ中心周波数となるように選ばれる、請求項5に記載の電磁波方向制御素子。
【請求項7】
前記第2の誘電率は前記第1の誘電率より高く、前記低誘電率誘電体物質としては、前記第1の物質と同じものが用いられ、前記高誘電率誘電体物質としては、前記第2の物質と同じものが用いられる、請求項1ないし6のいずれかに記載の電磁波方向制御素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2006−145726(P2006−145726A)
【公開日】平成18年6月8日(2006.6.8)
【国際特許分類】
【出願番号】特願2004−334237(P2004−334237)
【出願日】平成16年11月18日(2004.11.18)
【出願人】(000006231)株式会社村田製作所 (3,635)
【出願人】(504176911)国立大学法人大阪大学 (1,536)
【Fターム(参考)】