説明

高分子材料製のバラバラの固体粒子を製造する方法

炭素質材料を炭化・活性化する方法であって、その方法は、炭化温度および活性化温度に維持された外部燃焼回転キルンに前記材料を供給する工程を含み、前記キルンは回転時に前記材料を前進させるための下方傾斜を有し、前記キルンは水蒸気または二酸化炭素の向流による実質的に酸素を含まない雰囲気を有し、複数の環状堰が前記キルンに沿って間隔をおいて備えられていて前記材料の進行を制御する。排出端に向けて下方に傾斜する中空の回転本体を有する炭素質材料の炭化・活性化のための外部燃焼回転キルンであって、そのキルンは炭素質材料の進行制御のための複数の環状堰をその全長に沿って間隔をあけて備える。またメソ孔構造を有する例えばフェノール樹脂などの高分子材料製のバラバラの固体ビーズの生産方法であって、この固体ビーズは、上記炭化・活性化方法の原料として有用であり、またイオン交換樹脂など、他の用途にも利用できる。この方法は樹脂の凝集体が速く形成されて生産を妨害してしまうことがないように樹脂ビーズを工業的規模で生産できる。またこの方法は(a)例えばノボラックなどの重合性液体前駆体とエチレングリコールなどの第一の極性有機液体中に溶解した架橋剤との流れと、例えば乾性油を含む変圧器油などの前記液体前駆体と実質的または完全に不混和な第二の非極性有機液体である液体分散媒の流れから合流を生成する工程、(b)例えばインライン静的ミキサーを使用して前記重合性液体前駆体を前記懸濁媒体中に液滴として分散させるように前記合流を混合する工程、(c)凝集できないバラバラの固体ビーズを形成するように前記液滴を前記分散媒の層流中で重合させる工程、および(d)前記分散媒からビーズを回収する工程を含む。また高分子材料製のバラバラの固体ビーズを形成する装置が提供され、その装置は重合性液体前駆体の流れを輸送する第一のライン、前記重合性液体前駆体と実質的または完全に不混和な分散媒の流れを輸送する第二のライン、
前記第一および第二のラインの合流を受入れ、前記重合性液体前駆体を前記分散媒中に液滴として分散させるように構成されたインラインミキサー、前記液滴を分散させた前記分散媒を受入れ、前記重合性液体前駆体が重合媒体の下降流中でカラムを下降する間に重合可能になるように構成された垂直重合カラム、および分散媒の前記下降流を受入れ重合した個体ビーズを回収するための前記カラム底部にある容器、を含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、所望の条件下、液状前駆体からの高速重合反応によってビーズ形態の有機樹脂を工業的規模で生産することができる方法に関する。本発明は、より詳細には、炭素ビーズを形成するため炭化できる樹脂ビーズの生産に関するが、それに限定されるわけではなく、形成される樹脂ビーズはイオン交換樹脂など、他の用途にも利用できる。本発明はまた、上記方法が実施できるいくつかの実施形態において高分子材料のバラバラの固体粒子を形成するための装置を提供する。本発明は、より詳細には、それに限定されるものではないが、上記樹脂ビーズの炭化と活性化に好適な、炭素質材料の炭化と活性化のための方法と装置を提供する。本発明はまた、活性炭を製造するための方法と装置を提供する。
【背景技術】
【0002】
高分子ビーズの生産
液層流中の制御された液滴合一の後に、下降カラム液中での分散重合によって硬化ビーズを形成し、そのビーズをさらに6〜8時間加熱して重合を完了させる高分子ビーズの生産については、米国特許第4424318号(Vairettiら)に開示されている。ビーズはスチレンとジビニルベンゼンとの共重合体であり、分散媒はベントナイトとリグノスルホン酸ナトリウムを含む塩化カルシウム水溶液である。この方法は合一段階が長いので混合物の高速重合には不適であり、層流カラム中で重合を完了できるとの開示や示唆はなく、分散媒が水溶液以外でもよいとの示唆もない。本発明者らの知識と信念によれば、Vairettiの方法は実用化されておらず、スチレン/ジビニルベンゼンビーズの生産は依然として撹拌バッチ式のままである。
【0003】
とりわけスチレン/ジビニルベンゼン共重合体のビーズの調製については米国特許第6492471号(Eisenbeissら、メルク)にも開示されており、大規模な工業的ビーズ高分子の生産に関する課題は未解決のままであるとの説明がある。その理由として、混合の問題、所望のビーズ粒度分布を得るための問題、およびデッドスペースにおける凝集塊の生成が挙げられる。開示された解決策は高性能マイクロミキサーを使用することである。連続相は水、水/アルコール、または水/有機溶媒であり、分散相は炭化水素すなわち水と混和しない炭化水素であって、重合される単一または複数のモノマーを含む。IMM社(Institut fur Mikrotechnik Mainz GmbH)製のいわゆるLIGAマイクロ混合装置(マイクロミキサー)は特に好適であり、そこでは二つの液流が混合部にある特殊形状のマイクロチャンネル中を互いに逆方向に輸送された後、流れ方向に垂直なスロットから排出される。粒径が0.1〜300μm、より典型的には1〜20μmまたは10〜50μmの粒子の生成が想定されるが、より大きな液滴の形成は開示されていない。マイクロミキサーを使用するのは所望の混合温度で比較的高い重合速度を有する重合性液体前駆体には不適である、というのはそのようなミキサーではチャンネルの大きさが形成されるビーズ径と同じであるため、高分子の堆積物が蓄積してミキサーが詰まる可能性が高いからである。さらに、分散液滴の重合のための層流条件の使用については開示も示唆もされていない。
【0004】
本発明が取り組む課題は、樹脂の凝集体が速く形成されて生産を妨害してしまうことがないように樹脂ビーズを工業的規模で生産できる方法を提供することである。
【0005】
メソ孔質ビーズの生産
本課題はメソ孔質/ミクロ孔質構造を有する炭素ビーズ生産の中間体としてフェノール樹脂のメソ孔質ビーズを工業的規模で生産することを追求している本出願人にとって関連性のあるものとなった。
【0006】
国際公開第WO02/12380号(Tennisonら、開示事項は本明細書に参照により援用されている)には、ジオール(例えばエチレングリコール)、ジオールエーテル、環状エステル、置換環状エステル、置換直鎖アミド、置換環状アミド、アミノアルコール、および上記のいずれかと水の混合物からなる群から選択された一つの孔形成剤の存在下で、ホルムアルデヒド、パラホルムアルデヒド、フルフラール、およびヘキサメチレンテトラミンから選択された少なくとも一つの求電子性架橋剤を用いてフェノール化合物またはフェノール縮合プレポリマーを含む求核成分を縮合して樹脂を形成することによるメソ孔質樹脂の製造方法が開示されている。孔形成剤は、樹脂にメソ孔質(mesoporosity)を付与するのに有効な量存在し(例えば、求核成分100重量部の溶解に使用される孔形成剤は少なくとも120重量部であり、これは求核成分に求電子成分を加えた全樹脂形成成分の100重量部に相応する)、縮合後に多孔質樹脂から洗浄または真空乾燥により除去される。得られた樹脂は不活性雰囲気中600℃以上の温度で加熱炭化されて二峰性分布する孔を持つ材料になり、窒素吸着ポロシメータによる推定では孔構造は直径20Åまでのミクロ孔と直径20〜500Åのメソ孔を含み、材料はマクロ孔も含んでいる。メソ孔について孔体積を孔半径の対数で微分した値(dV/dlogR)は少なくとも孔径が20〜500Åの範囲では0.2よりも大きい。メソ孔質炭素は活性化しなくても250〜800m/gのBET比表面積を持っている場合もある。活性化は二酸化炭素、水蒸気またはその混合物の存在下で高温で加熱して、例えば800℃より高温で二酸化炭素中で加熱して行われてもよく、または400℃より高温の空気中で加熱して活性化してもよい。この場合には表面積は最大2000m/gになる可能性がある。ここで使用される「BET比表面積」はASTM D1993-91によるBrunauer, EmmettおよびTeller(BET)法で測定さ
れる。ASTM D6556-04も参照されたい。
【0007】
国際公開第WO02/12380号には、粉末およびビーズ両方の形態の樹脂の生産が開示されている。ビーズ形態の生産は部分架橋したプレポリマーを分散剤を含有する鉱油などの熱液体中に注入し、混合物を撹拌することによって行うことができる。プレポリマー溶液は、最初に液体であり、硬化が進行するにつれて固体になるビーズを形成する。平均的なビーズ粒径はスターラーの型式と速度、油の温度と粘度、プレポリマー溶液の粘度、および溶液の油に対する体積比を含むいくつかの工程パラメーターによって制御され、平均値は5〜2000μmの範囲で調整できるが、撹拌分散容器中のビーズに関する問題のために実際にはこれより大きなビーズの実現は困難である。ビーズはその後濾過して油から分離することができる。調製例を挙げると、工業用ノボラック樹脂をエチレングリコールと高温で混合、ヘキサミンと混合、加熱して粘性溶液を生成し、その溶液を、乾性油を含有する鉱油中に注入後、混合物をさらに加熱して硬化させる。硬化完了後、反応混合物を冷却し、生成したメソ孔質樹脂を濾過し、水洗して孔形成剤と少量の低分子量ポリマーを除去する。硬化ビーズは上述の孔構造を有するメソ孔質炭素ビーズになるよう炭化され、上述のように活性化されてもよい。ビーズは狭い範囲の粒度分布、例えばD90/D10比が10未満、好ましくは5未満であるように生産することができるといわれている。しかしながら、撹拌タンク反応器中で実際に実現できるビーズの粒度分布はあまり芳しくなく、工程の規模が大きくなるほど混合の均質性が悪化する結果、粒度分布も悪くなる。
【0008】
国際公開第WO2006/103404号(Cashmoreら、ブリティッシュ・アメリカン・タバコ社、開示事項は本明細書に参照により援用されている)には、上述のメソ孔質炭素ビーズがタバコの煙フィルターへの組み込みに好適であり、例えばヘキサメチレンテトラミンまたはメラミンなどの窒素含有の架橋剤によって架橋されたフェノール樹脂から得られ、またはアミノフェノールのような求核前駆体から生成される炭化樹脂はタバコの煙の気相からシアン化水素を除去するのに特に効果的であり、またホルムアルデヒド、アセトアルデヒド、および1,3−ブタジエンを十分に除去すると開示されている。例えば粒径が50〜1000μmの微小ビーズ形態における多孔質炭素は喫煙用品の製造時での取扱いに好適であるといわれている、というのは微小ビーズが互いに付着し合ってタバコのフィルターに形成するための吸収材料短繊維の不均一な装填を生じる怖れが少ないからであり、摩耗率が低いため例えばココナッツ炭などの既知の形態の炭素と比較して粉塵の発生が少ないからである。
【0009】
したがって、本発明で取り組むより具体的な課題は、重合物の凝集体の急速な形成によって生産妨害を引き起こさずにフェノール樹脂のメソ孔質ビーズを工業的規模で生産することである。
【0010】
ビーズの炭化と活性化
回転キルンにおける炭素質材料の炭化と活性化は知られているが、実際の生産工程は遅く、生産される材料は特性にばらつきがある。
【0011】
米国特許第1505517号(Woodruffら)には、2分間毎に約1回転し、水平に対し
て少しの角度だけ傾き、キルン中で材料を撹拌し、キルン雰囲気を通して材料を上昇かつ落下させる役目を担う階段(flight)を備えた回転キルン中で炭素を活性化することが開示されており、その好適な活性化材料は水蒸気であるが二酸化炭素の使用についても述べられている。ビーズ形態における高流動性材料の処理については開示されておらず、炉を通過する材料の流れを遅らせて滞留時間を制御する手段は提示されていない。
【0012】
米国特許第4344821号(Angelo)には、回転キルン中で動物または植物由来の炭素質材料を同時に乾燥、炭化、活性化する方法が開示されている。一旦炭化反応が始まるとそれは自然に維持されるが、発生した熱では流入材料の乾燥に不十分であると説明されている。空気がキルンに導入され、炭化中に発生したガスの部分的な燃焼を行い乾燥段階に必要な熱を供給する。本発明者らはキルンに空気を導入することは、特にメソ孔質材料の場合には避けるべきであると考えている。活性化には、過熱された水蒸気がキルンの下端域において炭化物の活性化のために直接炭化物床に吹き込まれ、水蒸気が床上域で循環することはない。この場合もやはり、ビーズ形態の高流動性材料の処理については開示されておらず、炉を通過する材料の流れを遅らせて滞留時間を制御する手段は提供されていない。
【0013】
米国特許第6316378号(Gibelhausenら、CarboTex GmbH)は、例えばイオン交換ビーズなどの樹脂状原料から回転トンネル乾燥機を使って炭素ビーズを生産することに関する。例えば、樹脂は20%の充填レベルを実現するために長さの直径に対する比が5.5である回転乾燥キルンに供給され、キルンは生成物を反転させるためのすくいさじを有し、生成物の輸送速度は11.1cm/分であり、乾燥は熱ガスの向流中で行われた。次いで炭化と活性化は、水蒸気を流しながら、11%の充填比で充填された回転トンネルキルン中で850〜900℃の温度で行われた。キルンの長さと直径の比は12、生産物の輸送速度は28cm/分、滞留時間は514分であり、水蒸気はキルンに沿った距離の約20%で導入された。開示された乾燥条件では樹脂ビーズのメソ孔質は破壊される場合がある。本発明者らの計算によれば乾燥機の長さは5mであり、熱分解域の長さは36mであり、活性化域の長さは約144mであった。キルンは下方に傾斜したが、その長さのために非常に浅い角度であったに違いなく、炉に沿ったビーズの流れ、したがって滞留時間を制御するための環状ダムの開示または示唆はない。
【発明の概要】
【0014】
この問題は、本発明に従えば、高分子材料製のバラバラの固体ビーズの生産方法によって解決することができ、その方法は(a)重合性液体前駆体の流れと、前記液体前駆体と実質的または完全に不混和な液体分散媒の流れから合流を生成する工程、(b)前記重合性液体前駆体を分散媒中に液滴として分散させるように前記合流を処理する工程、(c)凝集できないバラバラの固体ビーズを形成するように前記液滴を前記分散媒の層流中で重合させる工程、および(d)前記分散媒からビーズを回収する工程を含み、分散処理中の前記液体前駆体の凝集を実質的に回避するために層流重合時間に比較して分散処理時間が短い。
【0015】
分散処理時間と層流重合時間の間の関係には単純な数値的定義はない、というのは、その関係はある反応性成分系と別の系の間で変化し、かつ重合性液体前駆体中の溶媒の性質と量および使用温度に依存するからである。しかしながら、いくつかの実施形態では分散処理時間は層流重合時間の5%未満、より好ましくはいくつかの実施形態では2%未満、さらに好ましくはいくつかの実施形態では1%未満である。本発明の実施形態で採用される下降層流重合では、層流重合時間は分散液滴がカラムを下降する平均時間であると考えられる。
【0016】
高分子材料製のバラバラの固体ビーズ形成のための装置も提供され、前記装置は、重合性液体前駆体の流れを輸送する第一のライン、前記重合性液体前駆体と実質的または完全に不混和な分散媒の流れを輸送する第二のライン、前記第一および第二のラインの合流を受入れ前記重合性液体前駆体を前記分散媒中に液滴として分散させるように構成されたインラインミキサー、前記液滴を分散させた前記分散媒を受入れ、かつ前記重合性液体前駆体が前記重合媒体の下降流中でカラムを下降する間に重合可能になるように構成された垂直重合カラム、および分散媒の下降流を受入れかつ重合した個体ビーズを回収するためのカラム底部にある容器を含む。
【0017】
前記装置の実施形態はさらに、前記重合性液体前駆体の第一および第二の液体成分を貯蔵するための第一および第二の容器、前記第一及び第二の液体成分輸送のための第一および第二の成分のライン、前記第一及び第二のラインを通して成分流を輸送するための前記ライン中の第一および第二の非脈動ポンプ、および第一および第二の成分の2つの流れを受入れ混合して重合性液体前駆体の流れを形成するように構成された第二のインラインミキサーを含む。
【0018】
前記第二のインラインミキサーへの前記2つの流れの一方または両方を加熱するために前記第一および第二の成分のラインの一方または両方にヒーターを備えてもよい。前記装置はさらに分散媒用貯蔵容器、前記貯蔵容器から前記インラインミキサーへ通じるライン、および分散媒の流れを輸送する前記ライン中の第三の非脈動ポンプを含んでもよい。前記分散媒のラインは前記貯蔵容器からの前記分散媒の流れを加熱する熱交換器を含んでもよく、前記装置はさらに前記熱交換器からの加熱された分散媒を受入れかつそこを通過した分散媒を前記第一のインラインミキサーへ供給するように構成された第三のインラインミキサーを含んでもよく、カラム底部の前記容器は撹拌タンクでもよく、または前記タンク中に堆積物を形成するビーズの排出口を有する沈降タンクでもよい。
【0019】
本発明はさらに炭素質材料の炭化・活性化方法を提供し、この方法は炭化温度および活性化温度に維持された外部燃焼回転キルンに材料を供給する工程を含み、キルンは回転時に材料を前進させるための下方傾斜を有し、前記キルンは水蒸気または二酸化炭素の向流による実質的に酸素を含まない雰囲気を有し、複数の環状堰がキルンに沿って間隔をおいて備えられ材料の進行を制御する。
【0020】
本発明のさらなる態様ではその排出端に向けて下方に傾斜する中空の回転本体を有する炭素質材料の炭化・活性化のための外部燃焼回転キルンを提供し、前記キルンは炭素質材料の進行制御のための複数の環状堰をその全長に沿って間隔をあけて備える。
【0021】
別の態様では、本発明は回転炉内の炭化物を高温で活性化ガス雰囲気に曝して活性化炭素を調製する方法を提供し、前記方法では炉内の複数の環状邪魔板が前記炉に沿って順に処理帯域を画定し、前記炉に入る新しい炭化物が活性化される材料を一つの処理帯域から次へと邪魔板をオーバーフローさせる。
【0022】
さらに別の態様では、本発明は回転炉内の炭化物を高温で活性化ガス雰囲気に曝して活性化炭素を調製する方法を提供し、前記方法では炉内の複数の環状邪魔板が炉に沿って順に処理帯域を画定し、前記炉に入る新しい炭化物が活性化される材料を一つの処理帯域から次へと前記邪魔板をオーバーフローさせ、前記複数の処理帯域に位置する複数の持上げバーが、前記炉の回転にともない炭化物の床の一部を持上げ炭化物が活性化ガス雰囲気を通って滝のように落下して床に戻ることを可能にする。
【図面の簡単な説明】
【0023】
本発明の実施方法について、単に一例として添付図面を参照することにより、以下に説明する。ここで、
図1は高分子ビーズの生産に好適な装置の第一の実施形態に関する簡略工程図である。
【0024】
図2は図1の装置の一部を形成する重合カラムアセンブリの概略図である。
【0025】
図3は本発明の方法によって調製された樹脂の4つの試料の孔径分布データを示す(DV/DLogR対平均孔径(A))。
【0026】
図4は図1および図2の装置の一部を形成するインラインミキサーの混合部材の斜視図であって、ミキサーのケーシングの一部が付加的に示されている。
【0027】
図5は高分子ビーズの生産に好適な装置の第二の実施形態に関する簡略工程図であり、図5aは図5の装置の一部を形成するオーバーフロータンクの詳細である(図5の部品で図1の部品と同じ機能を有するものは、できるかぎり図1と同じ参照番号に100を足した番号を付すため、図1におけるタンク10は図5においてはタンク110で表わされる)。
【0028】
図6は本発明の実施形態に従った溶媒除去、炭化、および活性化のための処理キルンの略図である。
【0029】
図7は図6のキルンの内部をのぞき見た図である。
【発明を実施するための形態】
【0030】
本明細書では、「ミクロ孔質(microporous)」とは窒素吸着および水銀ポロシメータに
よる測定とIUPACの定義により直径が2nm未満の孔を有する炭素または他の材料をいう。
【0031】
本明細書では、「メソ孔質(mesoporous)」とは窒素吸着および水銀ポロシメータによる測定とIUPACの定義により直径が約2nm〜約50nmの孔をミクロ孔と共に有する炭素または他の材料をいう。
【0032】
本明細書では、「マクロ孔質(macroporous)」とは窒素吸着および水銀ポロシメータに
よる測定とIUPACの定義により直径が50nmより大きな孔をミクロ孔と共に有する炭素または他の材料をいう。
【0033】
本発明の実施形態は、第一と第二の成分の流れを合流混合し、得られた合流を所望の重合温度またはその近傍にて液体懸濁媒体中に分散後、例えば0.2〜5分、特に0.5〜4分といった短時間で重合が実質的に完了することにより重合可能となる液体前駆体から硬化樹脂ビーズを形成することに関する。そのような反応装置の操作における課題としては下記のものが挙げられる。
・第一および第二成分の流れの効果的な混合
・分散媒中の液体前駆体の効果的な分散により所望の範囲の液滴径を有する所望の大きさの液滴を形成し、重合時間よりも短い時間内に分散工程を完了し、意図しない粘度の増加および/または凝集物の堆積を実質的に防ぐこと
・形成されるビーズが重合中に分裂も凝集もせず、回収時に十分に硬化していて相互に接触しても凝集しないという条件下で重合すること。
【0034】
本方法は、メソ孔質活性化炭素の製造に用いられる場合、下記の連続する工程を含んでよい。
【0035】
1.成分の合流と混合による重合性液体前駆体の形成
2.液滴として重合性液体前駆体の分散媒への分散
3.分散媒の層流中での液体前駆体液滴の重合
4.分散媒からの形成ビーズの回収
5.ビーズの洗浄
6.ビーズの真空乾燥
7.残存溶媒除去のためのビーズの熱処理
8.ビーズの炭化
9.炭化ビーズの活性化
メソ孔質活性化炭素以外の、例えばイオン交換材などの材料の生産には、上記工程順はビーズの洗浄で完了すればよい。樹脂ビーズ以外の、例えばココナッツ由来または他の植物質などの材料の処理には、熱処理、炭化、および活性化工程が行われる。
【0036】
混合と分散
当然だが、重合性液体前駆体は二つの混合操作を受ける。すなわち、最初に第一のミキサー中でその成分の流れ114、122(図5)が混合され、次に第二のミキサー418中で生成した混合流126が分散媒中に分散される。同様に分散媒もまた二つの混合操作を受け、最初に第三のミキサー146中で第三の分散剤の流れ134が第四の分散剤の流れ140と混合され、次に第二のミキサー148中で重合性液体前駆体の流れがその内部で分散される。第一および第三のミキサーの役割は別々に入ってくる流れに由来する成分を均質に混合することであり、一方第二のミキサーの役割は連続相としての分散媒中に分散相として重合性液体前駆体の分散物を生成することである。
【0037】
液体懸濁媒体を用いた合流の形成前後のいずれかにおいて重合性液体前駆体を徐々に加熱するのは、粘度の増加と重合される材料の凝集が避けがたいため望ましくない。ミキサー148に入る合流はカラム152の設計重合温度にできるだけ近い温度にあることが望ましいが、この温度は合流が重合する速度によって制限される。いくつかの実施形態では合流の重合速度によって決められる120℃以下が好ましい。カラム152の高さは実用的実施形態では例えば約6mなど相当な高さとなり、熟練設計者は必要以上に高くせずに下降するビーズの重合を完了させることができ、または少なくともビーズがカラムを離れる時までに凝集しない程度に硬化することを望むであろう。カラム152は加熱されるが、それはカラムに入ってくる分散物を設計重合温度まで加熱するためではなく、主にカラム内の重合温度を維持するためである。実施形態ではカラム152の設計温度は150℃であり、熱交換器144から出て行く分散媒はその温度になるように設計されており、合流してミキサー128に入る流れ114及び122の温度は混合された供給流の反応性によって決まるような約120℃になるように設計されている。設計者はミキサー128を比較的冷たく維持して内部に生じる重合の問題を最小にしたいと思うかもしれない。しかしながら、ミキサー148および重合カラム152に入る流れを過度に冷却しないことが必要なため、いくつかの実施形態ではこれが可能な程度が限られている。流れ126は合流することになる流れ142中の材料を冷却するが、流れ142の流速は流れ126の流速の何倍もあるため冷却は限定的である。ミキサー148に入る合流は、すでに設計重合温度またはそれに近いため急速に重合し始めた前駆体をすでに含んでおり、このことにより流れがミキサー148中に滞留しその間に分散が完了できる時間に対して厳しい時間的制約が課されるのは当然である。
【0038】
混合と分散の両方が複数のインライン静的ミキサーを用いて行うことができるのがわかった。これらのミキサーは可動部品がなく、圧力差によって運転し、通過する液流の径方向輸送と、後に再合流される複数の部分流への液流分割とによって機能する。これらのミキサーはケーシングの長手方向軸に対しかつ交差するように互いに角度をなして配置された2つ以上の格子部材を有する管状ケーシングに基づいていてもよく、格子はそれぞれが混合段階を規定し、例えば混合部材の回転位置および/または混合部材の配置において隣接部分とは異なる比較的短い軸部に必要に応じて構成されている(英国特許第2061746号(Streiff, Sulzer)および米国特許出願公開第2004/0125691(Streiffら)を参照のこと)。なおこれらの開示事項は本明細書に参照により援用されている。インライン静的ミキサーについてのさらなる詳細はSulzer Technical Review, 3/1977, 108-113およびStreiffらのRecent Progres en Genie de Prodedes, 11, 307-314(1997)に
記載されており、その開示事項もまた本明細書に参照により援用されている。これらは分散物を生成するのによく知られている混合バルブ、オリフィスまたは多孔板に比較して非常に優れている、というのは、後者には過度に広い液滴径分布と低効率という不都合があるからである。インライン静的ミキサーは一般に50%を超える、例えば70%を超える空きスペースを有するため、内部での材料の凝集およびこれに伴う詰まりの可能性が非常に小さくなる。4つの部材からなるKosch-Glitsch XMX静的ミキサーについてのさらなる
情報はJ.M.ZalcらのPolymer Engineering and Science, 43, No.4, 875-889に詳しい記載があり、この開示事項は本明細書に参照により援用されている。
【0039】
当然だが、これらのミキサーは複雑な内部構造と流れのパターンを持つものであり、内部の流れの様式を記述するのに層流または乱流のような単純な記述が常に適しているとは限らず、特に流れの様式はミキサーが運転されるときの流速によって影響を受ける。一部のメーカーはインライン静的ミキサーを通る流れについて、レイノルズ数が200未満を層流、200〜500を遷移層流、500〜2100を遷移乱流、2100を超えると乱流とみなしている。ある液体を他の液体に分散させるとき、レイノルズ数は液滴の大きさを示唆している、というのは、レイノルズ数は粘性力が慣性力と同程度になる場所で一つまたは複数の液体流内部の尺度を表しており、流れ中に存在できる最小渦の大きさ、したがって流れ中に形成される可能性がある液滴の大きさの指標を提供するからである。
【0040】
図4はこの型のミキサーの動作部材を示す。混合部材80は本例では4本の平行バーが格子状にグループ化された混合バー82、84を含み、各格子はミキサーの長手方向軸に対して角度がつけられ、図示のように相互にはまり合って(interfitting)交差している。複数対の交差バーが、比較的短い長手方向のグループ86、88、90の中にあり、各グループは隣接するグループに対して例えば90°回転している。混合部材80はケーシングの中に納められ、ケーシングの一部が92で表わされているが、その他の部分は混合部材を示すために切り取られている。流体は各混合部材の開口した交差チャンネル中の個々の流れに分割され、各交点において流れの一部は交差するチャンネルの中にそぎ取られる。このようにして不均質性は第一の部材中では2次元的に、第二の部材中では3次元的に解消される。ミキサーが分散機として機能する場合には混合部材の薄板が最初に流れを細分する。液滴が交差するチャンネルの界面域を通過するとき、90°移動させられた速度成分により動的圧力変動を受け、結果として変形する。その直径が臨界値を超えると液滴は分裂する。
【0041】
重合性液体前駆体を分散媒中に分散させる静的ミキサー148に関しては、所定の組の流体物理特性に対して、静的ミキサーによって生じる液滴の大きさに及ぼす主な影響は比エネルギー消散率であり、その消散率も同様にミキサーの形状と流体の速度によって支配される。
【0042】
【数1】

【0043】
【数2】

ただし、
D 管径 m
ダーシー摩擦係数 −
L ミキサーの長さ m
M 質量 kg
P 圧力 Pa
Q 体積流量 m−1
u 速度 ms−1
ε エネルギー消散率 W・kg−1
である。
【0044】
消散率計算値はミキサー全体にわたる平均であるが、ミキサー内部には部分的な変動があってピーク消散率は最小値のおそらく10倍になるだろう。これはピーク消散率が最小値の何百倍にもなり得る撹拌タンクに比べると大幅に均質である。しかしながら、このエネルギー消散率の不均質性が意味することは、分散相流体がすべて所望の液滴の大きさに達するために確実に高消散域を通過するに十分なだけの長さがミキサーに必要であるということである。
【0045】
1997年のStreiffら(上記)によるさらに進んだ理論では、乱流分散方法は粒子外
部応力の液滴内の表面力に対する比によって支配される。この比はウエーバー数Weによって支配される。液滴の分裂が生じるにはこの比が臨界値をこえなければならない。直径dmaxを有する最大安定液滴については、We=Weである。応力は大きさがl=0.1Dの乱流渦によって生み出される。ここでDはミキサーの水力直径であり、第二の実施形態の場合には約1.5mmの微小規模乱流である。lの大きさを有する液滴はその後これらの渦と共に単純に輸送され、さらに分裂することはない。
ここで、
【0046】
【数3】

ここでνは連続相の動粘度である。そのようなlは生み出され得る最小の液滴径である。ある実施形態では、これは40〜60ミクロンの範囲である。
【0047】
したがって、このモデルによれば次式が成立するならば液滴が分裂する。
【0048】
【数4】

比エネルギー消散率εはミキサー構造と流速の関数であり、次式で表わされる。
【0049】
【数5】

ここでfは摩擦係数、Vは見かけの液体速度(m/s)、θはミキサー空隙率、Neはニュートン数、およびDはミキサー管径である。ある実施形態での運転条件ではこれにより20〜40ミクロンの範囲の最小ビーズ径が得られる。
【0050】
ミキサー内部のエネルギー消散の分布は乱流によって創成される局所的な速度変動の関数である。これは均質ではなく、そのため液滴の大きさは変動する。しかしながら、静的ミキサー内ではエネルギー消散の低い地点と高い地点が規則的に分配され、すべての流れがこれらの領域を通過する。したがって、エネルギー分布と得られるビーズ径分布はミキサーの長さが十分ならば撹拌タンクまたは動的インラインミキサーよりもはるかに均質である。インラインミキサーの性質は、空の管または撹拌タンク中に比べてはるかに低いレイノルズ数で、典型には、SMVミキサーではReDh>200(レイノルズ数は水力直径に基づき計算)の場合に、完全に発達した乱流および混合が生じるといったことである。研究によるとSMVミキサー内では、約30000のReDhの場合には、ミキサー体積の大部分で均質なエネルギー分布が達成され、これは、現在のL2試行での達成値よりも相当に高い。このような環境下でHinzeは等方乱流における最大安定液滴径を次式で示
した。
【0051】
【数6】

ここでσは界面張力、ρは連続相密度である。この理論を適用する上での主な問題はWeが直接計算の不可能なdmaxの関数であることである。
【0052】
【数7】

さらにミキサー長さと流速を変えた。理論がソルター平均直径dsvよりも最大安定液滴径により密接に関係したということに評価の基礎をおいた。後にこの方程式は連続相と分散相の間の密度の変動が可能となるように修正された(具体的には変動が顕著な気液系用であったが、今日では液液系にも使用されている)。
【0053】
【数8】

Calabreseは後に、Weが低粘性分散相にのみ直接適用できるため、液滴の粘度も分
散工程に影響しうることを示した。液滴内の液体は液滴を安定化し分裂を減らす内部せん断力を生じさせる外部圧力分布によって循環している。ここから、臨界ウエーバー数を修正する粘性数Viが導かれる。
【0054】
【数9】

ここで、
【0055】
【数10】

ここからdmaxについての次式が導かれる。
【0056】
【数11】

ただし、これらの液滴径に関する式は合一が起らない希薄分散相にのみ有効である。分散相の割合が高いと連続相中の乱流を弱め、より大きな液滴径になる。これは次式で表わされる。
【0057】
【数12】

ここでφは分散相の割合である。理論的評価に基づきDoulahはk=3であることを見出したが、実際の研究では幅広いばらつきが見出されている。得られる液滴径は分散と合一の間の平衡でもある。低乱流域では液滴径は増大するが、より小さな液滴径は分散剤によって安定化することができる。式(9)は合一と分散相の割合の関係式であるが、合一と分散相の割合の全体効果は正確には予見できない。そこで式(11)にその全体の関係を示す。
【0058】
【数13】

式(11)中の定数Cは最大粒径を液滴径分布に関連付ける手段を提供する。これらはd10、d50、dsv、d90、およびdmaxによって特徴づけられ、dmaxはd99で近似できる。これは液滴群の10%、50%などが仲間の液滴径よりも小さいことを意味する。Cはミキサー構造と運転条件に依存する。
【0059】
この方法も、平均ビーズ粒径は主に油相と樹脂相との間の界面張力とインラインミキサーを通過する線速度の関数であることを予見していたが、今日では分散相の特性も取り入れていることが初期の方法からの主要変更点である。しかし、その根本原理によって、現在ではビーズの分裂工程中に、より小さなビーズの生産が可能になった。
【0060】
液体前駆体の第一の成分流と第二の成分流の混合のためのミキサー128はSulzer SMXSミキサーであり、その内部の混合部材はバーであった。流入するオイルを均質にするた
めのミキサー146はSulzer SMVミキサーであり、その内部の交差する部材は波板であったがそれ以外は図4に示したものとほぼ同様であった。反応混合物を油中に分散するためのミキサー148は5つの部材からなるSulzer SMLXミキサーであり、その内部の交差す
る部材もまた図4とほぼ同様に配置されたバーであった。
【0061】
図4の実施形態では流れ114は小分子量極性有機溶媒中の小分子量架橋剤の流れで、その粘度は約3cP(比較的低く、水のような流動性液体と同程度)であったが、一方流れ122は同じ極性溶媒中の架橋可能なオリゴマーの流れで、その粘度は約350cP(高粘性潤滑油SAE40と同程度)であり、合流の粘度は約75cP(低粘性潤滑油SAE10と同程度)になった。Sulzer SMXSミキサーがミキサー128として比較的粘性の
ある材料の処理に使用され、一般に層流条件で運転するように構成されていた。その直径は6mm、長さは8cmであり、線通過速度約35cm/秒およびレイノルズ数12において最大流量約10ml/秒の処理が求められた。これらの最大流量条件はミキサー128中の約1バールの圧力降下よび約0.2秒の通過材料の滞留時間に対応していた。実際の運転では、線速度約9cm/秒、レイノルズ数4、滞留時間約0.8秒で流速は2.5ml/秒(10kg/時)であった。材料は所望の重合温度よりも低くその差は30℃を超えていたため(温度はミキサー148に入る混合供給物の温度低下を制限しつつミキサー128中の反応度合いを最小にするよう選択された)重合速度は比較的低く、これらの条件下のその滞留時間ではミキサー148内では顕著な重合は起こらなかった。そのような重合はミキサーを通る流れの粘度の増加によって最初に明らかになる。
【0062】
ミキサー146は第一に分散媒の主流134と分散媒中の分散剤の副流140を混合する役割があり、第二に分散媒が重合温度またはその近傍まで加熱される場所である熱交換器144の通過後の熱的ゆらぎを平坦化する役割がある。ミキサー146を通過する加熱分散媒の最大設計流量は約40cm/秒の線通過流速において約32ml/秒(118リットル/時)であった。すなわち、これは液体前駆体の最大設計体積流量の3倍よりも大きい。ミキサー146は直径が6mm、長さが8cmで、高い質量輸送速度を有する乱流混合向けに構成されたSulzer SMV型であった。加熱された分散媒は0.5cPの粘度しかなく、ミキサー146は乱流遷移域内とみなされる最大設計流量で約1700のレイノルズ数にて最大流速での圧力降下がわずかに約0.01バールで運転するように設計された。その流速でのミキサー内での滞留時間は約0.2秒であった。実際の実験では、分散媒は、ミキサー通過速度約20cm/秒、滞留時間約0.4秒、レイノルズ数850に対応する約16ml/秒(50kg/時)の速度でミキサー146を通過したが、なお遷移乱流域内にあった。前駆体と分散媒流の供給重量比は約5:1であった。すなわち分散媒は大幅に過剰である(例えばある実施形態では3:1より大きく、別の実施形態では3:1から10:1の範囲)。
【0063】
ミキサー148は重合可能な液体前駆体を液体分散媒に分散する役割があった。それは直径10mm、長さ33mmのSulzer SMXLミキサーであった。合流は最大設計速度42
ml/秒および対応する速度約57cm/秒で通過し、約0.6秒の対応する最少設計滞留時間と約4600のレイノルズ数が得られ、十分に乱流の範疇に入る。実際の実施形態では、合流はミキサー148を18.5ml/秒で通過する。これは、約25cm/秒の線速度、約2000のレイノルズ数(完全な乱流への遷移に近い)、および約1.8秒の滞留時間に対応している。重合が実質的にミキサー148内で進行するには、それを通過する流れが重合カラム152内の設計重合温度またはその近傍にあるにもかかわらず、これでは不十分である。この場合もやはり、ミキサー148内の過度な重合はそれを通過する材料の粘度の増加、および液滴径がその所望の値から対応して増加することによって最初に観察される。重合可能な液体前駆体を懸濁媒体中に液滴として分散させる合流の処理はある実施形態では0.5〜5秒、例えば1〜3秒、より好ましくはある実施形態では1.5〜2秒で完了する。
【0064】
分散媒中に重合可能な樹脂前駆体を分散させて1500μmまでの平均粒径を有する固体粒子を形成することができるミキサー148の使用が好ましく、これにより大きなビーズの生産が可能になる。ある種の目的には運転条件は平均ビーズ径がこれよりも大きくてよい。例えば、運転条件は液滴、したがってビーズの平均径が2000μmまで大きくなってもよい。好ましい実施形態では、ミキサーは平均粒径100μm〜1500μm、好ましくは300μm〜1000μmを有する固体粒子を生じさせるのに使用してもよい。
【0065】
重合可能な前駆体は、分散媒中に比較的狭い粒径分布を有する液滴を生じるように分散して、同様に比較的狭い粒径分布を有する樹脂ビーズを生産するのが好ましい。どんな粒子状物質の試料も粒径は平均値のまわりに統計的分布を有する。90パーセンタイル値(D90)の10パーセンタイル値(D10)に対する比は試料中の粒径分布の広がりの尺度(D90/D10)になる。本方法によって生産できる液滴および硬化樹脂ビーズのD90/D10粒径分布は好ましくは10以下、より好ましくは5以下、有利には約2である。比較として、ココナッツ炭については、平均粒径は通常100〜1000μmの範囲にあり、D90/D10比は20以上であって、粒子のかなりの部分が径20μm未満である。
【0066】
上述の実施形態において、ミキサー148は重合可能な液体前駆体の粘性流、例えば分散媒(粘度が2cP未満、ある実施形態では1cP未満)の自由流中に液滴としてそこにオリゴマーが存在する結果としての流れ(例えば粘度が20cPより大きい、ある実施形態では50cPより大きい)を分散する役割を有する。この役割は重合があまり進行しないうちにインライン静的ミキサー内で限られた時間内で完了させなければならず、所望のビーズ径と所望の粒度分布が生じなければならない。明らかに、本発明者らはこれらの役割がインライン静的ミキサーによってなされ必要な結果を得ることができることを見出した。
【0067】
重合段階
下記の条件はノボラック/ヘキサミン系に特有である。懸濁媒体に混合・分散された液体前駆体はミキサー148から領域150、152へ直接通過しそこで分散媒は層流になり、重合は例えば30秒〜5分、特に1〜4分での時間内に急速に進行し、硬化ビーズが生じ、そのビーズは凝集することなく、また重合工程中の凝集材料の顕著な堆積なしに分散媒から回収できる。ある実施形態では反応混合物の液滴は液滴が凝集も分裂もすることない条件下で分散媒の下降カラム152中で重合され、反応混合物はカラムの底に到達する時間までに完全に樹脂に硬化して生じた樹脂ビーズは凝集することなく回収することができる。
【0068】
例えば、ノボラック/ヘキサミン/エチレングリコール系では、溶媒および孔形成剤として好適に使用されるエチレングリコールは、室温で密度1.1を有し、大気圧沸点は197.3℃であり、例えば分散媒として使用される変圧器油や他の鉱油などの脂肪族炭化水素とは混ざり合わない。反応物に関しては、フェノールは40.5℃で溶融し、大気圧沸点は181.7℃であり、密度は1.07である。パラホルムアルデヒドは120℃で溶融し、密度は1.45である。工業用ノボラック樹脂は分子量に依存するが通常は密度が1.1以上である。ヘキサミン(ヘキサメチレンテトラミン)は密度が1.3であり、238〜244℃で溶融し、大気圧沸点は270℃であるとされているが、反応物/分散剤の混合流温度よりも低い約120℃で分解して反応性架橋成分を生じる。フェノールおよびホルムアルデヒド系硬化樹脂は約1.1の密度を有する。出発原料および形成される硬化樹脂ビーズの密度はその中に分散される鉱油の密度よりも硬化反応の始めから終わりまで大きい。
【0069】
鉱油は、160℃までの、例えば約150℃の重合を行うのに必要な温度での扱いが容易で、反応物の物理特性は所要の重合温度で分散物中に概ね維持され得るようなものであるということになる。乱流ではない流れを有する緩やかな下降カラム152として鉱油が採用されると、反応混合物の分散した液滴は重力により油の中を落下し、油の下降速度より大きな速度で降下する。分散した液滴の下降速度は液滴径と油の粘度に依存するが、その下降平均速度は油の下降速度の少なくとも2倍、例えば5〜20倍であればよい。例えばカラム152の高さは5〜10メートル、例えば約6メートルであればよく、油の速度は平均でカラムの長さを約30〜60分で下降するようなものでよい。当然のことだが、分散した反応混合物は異なる液滴径を有する液滴の母集団を形成し、最大の液滴はより急速に下降する。例えば油の粘度およびカラムの高さなどの条件は、望ましくは最大液滴がカラム下降中に硬化せず、未硬化の液滴がカラム底にある収納容器には到達しないことである、というのはカラム底では液滴の硬化が不完全であると互いに付着して好ましくない凝集体を形成するからである。液滴の下降速度は、例えば液滴が重合反応が完了するのに十分な時間である2分より長い時間、例えば約4〜5分でカラムの全長を下降する、ような速度がよい。
【0070】
反応混合物の液滴はそのようなカラム中で30秒〜5分の滞留時間、例えば1〜4分、より好ましくは2〜4分で硬化でき、形成樹脂中に良好なメソ孔質を生成して、メソ孔質はこの樹脂からその後に生じる炭化材料に明らかに残存することが見出された。
【0071】
樹脂および炭化材料形成における樹脂の実用性
本発明は、非混和性液体分散媒中に分散可能であって、懸濁してその媒体の層流中または層流を通って移動する液滴として硬化可能な重合性液体の反応混合物からの重合ビーズの形成に応用することができる。本発明は重合によって分散液滴から形成されるビーズにメソ孔質を与えるのに効果的な量の孔形成剤を含む前述の反応混合物に応用することができる。
【0072】
本発明はとりわけ炭化材料のビーズ生産の中間体として、かつ例えばイオン交換材としても有用な樹脂ビーズの生産に応用できる。カーボン材料に転換できる炭化可能な有機樹脂としてはスチレンおよびビニルピロリドン由来またはスチレンおよびジビニルベンゼン由来のようなヒドロキシル置換芳香族樹脂および非フェノール樹脂が挙げられる。ヒドロキシル置換芳香族樹脂、特にフェノール由来のものが好適である。
【0073】
本発明は具体的には孔形成剤の存在下で、求核成分を求電子架橋剤と縮合して樹脂を形成する工程、樹脂を炭化する工程、および得られた炭素材料を活性化する工程を含む多孔質炭素の生産方法を含む。
【0074】
フェノール樹脂−求核成分
この樹脂は国際公開第WO02/12380号に開示されているいかなる出発原料からでも調製できる。求核成分はフェノール、ビスフェノールA、クレゾールなどのアルキルフェノール類、レゾルシノールおよびハイドロキノンなどのジフェノール類、およびm−アミノフェノールなどのアミノフェノール類を含んでよい。
【0075】
求核成分はすでに部分的に重合しているので、所望の樹脂ビーズへの重合をより少ない発熱反応、したがってより制御しやすい反応にするノボラックまたは他のオリゴマーの出発原料を求核成分として使用するのが好ましい。好適なノボラックは架橋前の重量平均分子量(Mw)が300〜3000の範囲にある(約3〜30のフェノールに対する重合度(DP)に相当)。ノボラック樹脂が使用される場合、樹脂は固体で融点は100℃の範囲にある。Mwが2000未満、好ましくは1500未満のノボラック樹脂は炭化されるとより少量の孔形成剤の使用で所望の孔径分布を有する炭素を生じやすい。市販のノボラックは主にフェノールおよびホルムアルデヒドを使用して生産されるが、種々の異なる含酸素官能基および含窒素官能基と架橋部位を導入するためにプレポリマー生成段階でいろいろな変性試薬を使用することができる。これらには、限定的ではないが次のものが含まれる。
【0076】
(a)レゾルシノールなどのジフェノール類およびハイドロキノンなどのキニーネ類。両方ともフェノールよりも反応しやすくプレポリマー生産段階である程度の架橋をさせることができる。これらの化合物を架橋段階で導入して異なる架橋経路をもたらすこともできる。これらはまた樹脂の含酸素官能基を増やす。
【0077】
(b)尿素、芳香族(アニリン、m−アミノフェノール)および複素環式芳香族アミン類(メラニン)などの重縮合反応に活性な窒素含有化合物。これらにより、特定の種類の含窒素官能基を最初の高分子および最終的な炭素に導入することが可能になり、樹脂および最終的な炭素両方のメソ孔質構造の発達が影響を受ける。ハイドロキノンおよびレゾルシノールのように、使用できるすべての窒素含有求核変性試薬は二つ以上の活性部位を有し、フェノールまたはノボラック類よりも縮合反応における反応性に富む。このことは、それらがまず一次架橋剤と反応することでその場で二次架橋剤を形成することを意味する。
【0078】
ノボラック類は、構造変化なしに繰り返し加熱冷却することができるという点で熱的に安定である。それらは架橋剤の添加と加熱時に硬化する。
【0079】
求核成分は単独で、またはノボラックと混和性がありおよび/またはサリチル酸、シュウ酸、フタール酸またはp−トルエンスルホン酸(ただし硫黄含有化合物の添加は望ましくないため、炭化を意図する樹脂には向かない)などの孔形成剤中に可溶な弱有機酸でもよい重合触媒と一緒に供給してもよい。サリチル酸の供給量は1.5%だが所望により2.5%以上まで増量してもよい。
【0080】
孔形成剤中のノボラック濃度は、同じ孔形成剤中の架橋剤溶液と組み合わせる場合、孔形成剤の(ノボラック+架橋剤)に対する全体重量比は少なくとも125:100である。実際のノボラック:孔形成剤比および架橋剤:孔形成剤比は、ポンプが使用できるように、設備の運転によって設定されかつノボラック:孔形成剤溶液の粘度に支配され、また架橋剤:孔形成剤比は設備の至る所で架橋剤が溶液中に残留するようにする。
【0081】
フェノール樹脂用架橋剤
架橋剤は通常はノボラックなどの求核成分100重量部あたり5〜40重量部、典型的には求核成分100重量部あたり10〜30(10、15、または20など)重量部使用される。それは例えばホルムアルデヒドまたはフルフラールなどのアルデヒドまたはヘキサメチレンテトラミン(ヘキサミン)、メラミンまたはヒドロキシメチル化メラミンなどのポリアミンでよい。
【0082】
ヘキサミンはノボラック100重量部あたり10〜25例えば約20重量部のヘキサミン濃度でノボラック樹脂の架橋に好適に使用される。これは最大限に架橋した固体樹脂を確実に生成し、その後の孔形成剤除去中のメソ孔構造の安定性を確実なものにする。これは以前に開示されたノボラック100重量部あたり3重量部までのヘキサミンを通常は必要とする焼結樹脂構造と対照的である。
【0083】
孔形成剤
孔形成剤は溶媒としても作用する。したがって、孔形成剤は樹脂系成分が溶けるのに十分な量で使用されるのが好ましく、孔形成剤の樹脂系樹脂の全成分に対する重量比は少なくとも1.25:1であることが好ましい。それは好ましくは非極性有機液体である分散剤との組み合わせで選択される極性有機液体からなり、主にまたは完全に非混和な組み合わせを生じ、分散相を形成する孔形成剤と分散媒との非混和度が大きいほど孔形成剤が分散媒中に抽出される量がより少なくなる。孔形成剤は、好ましくは分散媒よりも大きな密度を有し、溶解樹脂形成成分を含む孔形成剤の液滴が分散媒の下降流よりも急速にカラムを下方へ通過するように使用されることが意図される。異なる種類の有機化合物のプロトン性溶媒および非プロトン性溶媒の両方がこれらの要件に合致して、孔形成剤として個別にまたは混合して使用できる。反応性成分および触媒を溶かすことのほかに、フェノール樹脂の場合は、孔形成剤は重合が進行して脱離生成される水との相溶性も必要とされ、孔形成剤は水と高度に混和し、その結果洗浄によって重合された樹脂ビーズから容易に除去できることが好ましい。
【0084】
適切な孔形成剤の詳細は国際公開第WO02/12380A2号(Tennison)に記載されている。孔形成剤は例えばジオール、ジオールエーテル、環状エステル、置換環状または直鎖アミドまたはアミノアルコールでよく、具体例としてエチレングリコール、1,4−ブチレングリコール、ジエチレングリコール、トリエチレングリコール、γ−ブチロラクトン、プロピレンカーボネート、ジメチルホルムアミド、N−メチル−2−ピロリジノンおよびモノエタノールアミンが挙げられるが、エチレングリコールが好適で、選定には溶媒の熱特性によっても制限を受ける、というのはミキサーまたは硬化カラム中での使用温度で沸騰したり過剰な蒸気圧を有したりすべきでないからである。
【0085】
メソ孔の発生機構は架橋反応中に起きる相分離工程によるものと思われる。孔形成剤が存在しないとプレポリマーの直鎖は架橋されるため、その分子量は最初に増加する。残留する低分子量成分はより高分子量の領域中に溶けなくなり、より低分子量の連続相中で架橋高分子量領域への相分離が起こる。架橋相が領域間に捕捉されたより軽量の残留プレポリマーと本質的に連続になるまで軽量成分の成長領域の外へのさらなる縮合が起きる。孔形成剤が低レベルで存在すると、孔形成剤は架橋樹脂領域と相溶し、その中に留まり(例えばノボラック−ヘキサミン−エチレングリコール反応系では100部のノボラックあたり120部未満)、一方残りは領域間で部分的に架橋した高分子と溶液を形成する。孔形成剤がより高レベルで存在すると、架橋樹脂の容量を超えるため、孔形成剤は軽量高分子部分に加わって領域間の空隙中の材料体積の増大をもたらしメソ孔質を生じる。一般に孔形成剤の含有量が大きいほど、ミクロ孔は広がり孔体積が大きくなる。
【0086】
この相分離機構は架橋樹脂構造中の孔の発達制御の各種方法を提供する。これらには孔形成剤の化学組成と濃度、架橋求電子剤の化学組成と量、変性求核剤の存在、化学的性質と濃度、フェノール性求核成分(フェノール、ノボラック)の化学組成、存在、化学的性質(酸性、塩基性)、溶媒内の水の存在、および任意の架橋触媒が存在する場合の濃度が含まれる。
【0087】
分散媒
分散媒は硬化が行われる温度、例えば160℃まで大気圧で沸騰も分解もせず加熱することができる液体で、エチレングリコールおよびその中に溶けている成分とは混和しない。それは精製鉱油であり石油の分留の副産物である炭化水素系の変圧器油でよい。それは基本的にC15〜C40のアルカン類およびシクロアルカン類からなっていてもよく、等級により0.8〜0.9の密度を有し、また等級により大気圧で260〜330℃の沸点を有する。変圧器油は通常の硬化温度である150℃で約0.5ポアズの粘度を有する。前述のごとく変圧器油またはその他の分散媒は求核前駆体と架橋剤の合流体積の3〜10倍、例えば約5倍の体積で使用される。
【0088】
分散剤
分散媒がそこに分散されることになる反応混合物と接触する前に分散媒中に分散して液滴の合一を遅らせるのに好適な分散剤は、デニッシュオイルなどの乾性油として販売されているか、あるいはキリ油、アマニ油などの天然に存在する前駆体を部分的に酸化して生産されている。分散剤は工程の進行につれて消費されるので分散媒を再利用する場合には再利用油流中の分散剤は補充しなければならない。分散剤は変圧器油などの分散媒中に溶液流として簡便に供給され、低濃度の活性成分を含むデニッシュオイルが使用される場合、例えば5〜10%v/vの量が供給される。酸化された油を使用する場合にはより多くの溶液が使用されるだろう。
【0089】
ある実施形態では、キリ油をエチルヘキサン酸コバルトおよびその他の未特定樹脂成分のような硬化剤(乾燥剤)と共に灯油中に分散させた木材処理/ニスのブランド商品であるある種のデニッシュオイルを分散剤として使用する。管理範囲に酸化された天然に存在する油があれば好適である。管理可能な分散性能はともに乾性油であるキリ油とアマニ油、食用油である大豆油、ひまわり油、菜種油などで実現されたが、後者が効果を発揮するにはとにかくより激しい酸化条件を必要とし、例えば菜種油なら最適性能には3日以上必要なことがある。
【0090】
樹脂形成材料の好ましい組み合わせ
多孔質炭素材料の生産に使用するのに好適な樹脂は、分散媒としての変圧器油中に分散剤としてデニッシュオイルを用いて孔形成剤としてのエチレングリコール中でヘキサメチレンテトラミン(ヘキサミン)と架橋したノボラック樹脂である。
【0091】
好ましい装置とその使用
図1の装置の第二の実施形態では、エチレングリコール中のヘキサミンなどの重合性液体前駆体成分用の供給タンクまたは容器はスターラー12を備えた。ヘキサミン/エチレングリコール溶液は現場でPlater Chemicals社製 の固体ヘキサミンを容器中のエチレン
グリコールに加えてヘキサミンが溶解するまで撹拌して調製された。容器は例えば約3バールに加圧され、外部蒸気カバーで当初90℃に維持されたが、試運転後は110℃に高めた。第一の成分はタンク10から加熱されないライン14を経由して流量調節弁16を通過した。まず、供給タンク10は必要なレベルに加圧されその後放置されたので、タンクが空になるに従ってゆっくりと減圧される。圧力流はポンプよりも好ましい、というのは流れが脈動して下流に位置するインラインミキサー28、48の動作に影響を与える可能性を回避するためである。エチレングリコール中のノボラックなどの重合性液体前駆体からなる第二の成分供給タンク18はスターラー20を備え、圧力流をもたらすために約3バールに加圧され、また外部蒸気カバーによって当初90℃に維持された。
【0092】
使用時、ノボラックは1mのステンレス製蒸気加熱中型バルク容器に充填されたHexion Ltd製65%w/vのTPR210樹脂をエチレングリコールに溶解した溶液として供給された。TPR210は硬化触媒として作用する1.5%遊離サリチル酸を含む。単一の生産バッチとして20mが購入された。容器18は必要に応じてこの供給形態で補給された。この成分はタンク18から第二の流量調節弁24があるライン22を経由して移動した。ライン22はライン中でノボラックが固まるのを防ぐためその長さの一部については80℃に電気により軽く加熱された。ヘキサミンのエチレングリコール溶液からなる第二の成分は合流中で所望の樹脂:溶媒比になるのに十分な濃度で固体のヘキサミンをエチレングリコールに溶解することにより容器10中で調製された。この成分は容器10からライン14を経由して調整弁16を通った。このラインはヘキサミンの再結晶を防ぐため約80℃に加熱された。容器10、18の体積は7mであり、それぞれ約5mの供給が調製された。二つの流れ14、22は質量流量計により手動調整弁16、24を用いて独立に制御され、ライン26中で合流し、重合性液体前駆体を形成するための乱流条件下、十分に混合される最初のインラインミキサー28へ供給される。
【0093】
重合性液体前駆体が分散されることになる連続相をもたらすための変圧器油はスターラー32を有する供給タンク30中に保存され、やはり圧力流のために約3バールに加圧され、ライン34を通過した。変圧器油中の供給タンク36からの分散剤、たとえば8%v/vデニッシュオイルの小さな流れはポンプ38によってライン40を経由してライン34中の変圧器油に連続的に供給された。分散剤は重合反応中に消費されるため変圧器油を再利用する際に補充する必要があった。変圧器油と分散剤の合流はライン42を流れ、管状予熱器44で約145℃に加熱され、その後インラインミキサー46で分散剤と変圧器油は乱流条件下で混合した。
【0094】
重合性液体前駆体の流れと変圧器油/分散剤の流れは合流して4´2mmの複数の穴を有する1cm管で構成された散布注入器を経由して主ミキサーアセンブリー46、48に供給された。再利用の熱油は油と分散剤の完全な混合を確実にする上流インラインミキサー46に流入した。得られた流れは、例えば、流量が600〜1000L/時の範囲内にあり、全流量が100〜200L/時の間にある混合供給流と合流した。合流は主ビーズ分散ミキサー48に移動したが、このミキサー48は重合カラム52の比較的大きな直径の頭部50にある熱油中に部分的に浸された「脚浸し(dip leg)」ミキサーであった。イ
ンラインミキサー48は重合性液体前駆体を約500μmのサイズの液滴として分散し、比較的狭い範囲のサイズを有する液滴の母集団を生成する特性を有した。頭部50における油レベルはレベルセンサー49で監視された。全体の流れは、担体油中に分散したビーズからなり、その後重合カラム52を下降して回収容器54に移動した。
【0095】
重合性液体前駆体を含む変圧器油はミキサー48から重合カラム52の頭部50中の油体中に移動すると、その速度は減少して乱流が消失した。油はその後、例えば、全長約6mの重合カラム52を下降流として移動し加熱カバーで加熱し内部材料を適切な重合温度、例えば140℃に維持した。重合カラム52を下降する変圧器油の流れは層流であった。ここで使用する語「層流」は流体の動きが滑らかで規則的であり、隣接する層または薄層は互いに滑るように進んで相互間の混合がほとんどない流れの態様をいう。通常、層流はレイノルズ数が2000未満のときに存在する。層流条件は重合性液体前駆体の液滴間の衝突をカラム52の下降流において最小限にし、その結果液滴の凝集が最小限に抑えられる。またこれらの条件は液滴の分裂をも最小限に抑える。
【0096】
カラム52の全長および維持温度は分散した重合性液体前駆体または少なくともその実質的な部分が回収容器54に到達する前に硬化して得られる粒子またはビーズの凝集を最小限に抑えるように構成された。図2に概略が示されるカラム52は約500リットルの容量を有し、カラム中の油の滞留時間は流量が1000L/時のときに約30分であった。対照的に、上述したように変圧器油よりも密度が高い液滴すなわちビーズの重力沈降は500μmのビーズについて約4分の滞留時間であった。すなわち重合カラム52内部では油の流速(0.003m/秒)に比較してビーズは高速(0.025m/秒)であったことになる。これは約400mlの自由体積を有し、約1.5秒(0.4m/秒)の滞留時間が生じるインラインミキサー48内部の状況とは顕著な対照をなした。ミキサー28、48内での短い滞留時間により、これらを通る反応混合物の重合は顕著には進行せず、またミキサー内の流れの条件による意図しない粘度の増大や凝集した重合反応混合物による詰まりは観察されなかった。研究では140℃でビーズはフラッシュ硬化条件下で約2分のうちに完全に硬化することが示され、このフラッシュ硬化は有用なメソ孔質のビーズでその後メソ孔質/ミクロ孔質炭素ビーズに転換できるものの生産と同時に実行できることが見出された。
【0097】
回収容器54は使用時に大部分が油で満たされた。その後油をカラム52に押し上げ戻すため加圧し静止油先端を圧力でバランスをとり図1に示すように上部重合カラム域50を横切る線で表わされるカラムの頭部52中の管理レベルと図1の回収容器54を横切る線で表わされる残留レベルが得られた。カラム52中のレベル制御をさらに補助するため当初の設計では再利用ポンプ58と中間製品受入容器62の間にヘアピン管63によって示される「リュート管路(lute line)」を含んでいた。これはサイフォン管のように機能
して、油が回路に送り込まれる間、頭部50中の正しいレベルを維持することを意図した。またビーズスラリーポンプ58を使用してスラリーをリュート管路63から受入容器に戻し再循環させて「リュート管路」までビーズを持ち上げるためのライン63中の線速度を増加させることが意図された。
【0098】
カラム52から回収容器54に移動した硬化高分子ビーズはスターラー56で懸濁状態に維持された。回収容器54からの材料はポンプ58とライン60を経由して第一の保留容器62への移動し、そこでビーズはスターラー64で懸濁状態が維持されビーズ懸濁液が冷却されることが意図された。しかし実際にはポンプ58を使用してビーズ懸濁液を送ることは困難であったので、その代わり回収容器54内の圧力に基づく圧力流を使用した。冷却後、材料は中間容器62から保留容器70へ移動し、そこではビーズはスターラー68によって懸濁状態が維持されながらポンプ72を経由して連続循環され、材料はそこから遠心分離機74に移動した。実質的に変圧器油を含まないビーズは例えば保存容器76に移され、分離した油はライン78によって容器30へ戻された。
【0099】
カラム装置50、52および回収容器54の詳細を図2に示す。ライン26中の反応混合物とライン42中の変圧器油62は、カラム52への底部開口を有し他の部分は閉じられた槽のように見える頭部空間50に排出するように構成されたミキサー48に移動する。補助ライン65は頭部空間50の上部からのガス64の通気を可能にした。カラム52には点検窓51、52が組み込まれ、回収容器54中の液体59のレベル以下で容器に排出する縦型パイプで終結した。頭部空間57は窒素などの不活性ガスを供給源72からバルブ74とポート76を経由してパージすることができた。始動時の頭部空間57の加圧によってカラム52と頭部50における変圧器油のレベルが定まり、回収容器54中の液のレベルはいつでも圧力解放によってカラムの変圧器油が容器54中に戻ることができるように好適に維持された。
【0100】
ビーズは製品回収容器76から除去されると、すぐに真空乾燥された。粒子状製品についてレーザー粒径分析を行った。グリコールと油の残留レベルは熱重量分析により測定された。粒子は走査型電子顕微鏡により観察された。
【0101】
真空乾燥樹脂試料の粒径はMalvern Masterisizer(レーザー回折)を用いて測定した。乾燥試料は小型振動ホッパーに供給された後、実質的に流動状態で小型穴あきバスケットを通した。試料の第一の部分から「代表的」結果が得られ、試料の第二の部分は結果に再現性があり再現性を確認するための再測定であることおよび試料の損耗がないということを裏付けるために使用された。装置自体が粒径分布の報告のために十分な時間を取ったとき、すなわち結果の収束時を効果的に判断した。樹脂試料は受け入れ時のままで試験し、試験に先立って分散させることはなかった。
【0102】
主な粒子ピーク径の分散はD10:D90が約2であった。
【0103】
孔構造分析用試料は十分に真空乾燥し大型箱型炉中で一回で炭化した。結果は図3および表1にまとめてある。すべての試料が本質的に同じ孔構造を示す。
【0104】
【表1】

上述の実施形態について数多くの修正がなされ試験が成功し、図5を参照してすでに説明された。圧力流に代えて、ノボラックの流れ114、ヘキサミンの流れ122、変圧器油の流れ134は対応する貯蔵容器110、118、および130から十分に脈動を除いたことが分かっているギヤポンプ113、123、133によって送り出された。例えば回転羽根ポンプまたは蠕動ポンプなどほかの形態の非脈動ポンプを使用してもよい。ノボラックの流れおよびヘキサミンの流れは熱交換器115、125を対応するギヤポンプ113、123とインラインミキサー128との間に組み込んでミキサーに入る流れを例えば100〜120℃あるいはそれ以上に加熱してもよい。混合反応物の流れは十分に暖めて重合カラム152の頭部150で混合される変圧器油の温度が過剰に下がらないようにすることが重要である、そうしないと重合カラム152(点検窓151を組み込んでもよい)内の所要の重合温度がカラム全長の十分な部分にわたって維持されず重合が不完全となる危険性がある。デニッシュオイルまたは他の分散剤は熱交換器内の堆積を減らすため管熱交換器144の下流側で供給容器(図不視)からギヤポンプ138とライン140によって変圧器油に添加してもよい。受入容器154は重合ビーズの沈殿物153を含む油の沈降タンクとして運転してもよく、ビーズは受入容器54の底から排出バルブ157とポンプ158(スクリューコンベアの形態でもよい)を経て排出され、その容器からの浮遊油155は油貯蔵容器130へ再循環される。濾過器131をギヤポンプ133の上流の油貯蔵容器からの帰還ライン134に備えて、再循環する油から例えば樹脂ビーズなどの固形物を除去してギヤポンプによる送り込みを促進してもよい。受入容器154からのライン159はヘッダーすなわちオーバーフロータンク161連通し、それは本実施形態では拡大頭部50における液体レベルの規定に役立ち、油が油貯蔵タンク160に戻る油を供給するオーバーフローライン160を有する。補充油は必要に応じて貯蔵容器170からポンプ171を経て供給される。
【0105】
炭化と活性化のためのビーズの調製
ビーズは変圧器油をできる限り物理的に分離するために遠心分離機にかけ、エチレングリコールを除去するために水で洗浄した後に残留する水とエチレングリコールを最少にするため真空乾燥する。
【0106】
炭化と活性化
炭素質材料の炭化および活性化の方法を提供する。
【0107】
この方法はココナッツ由来材料などの植物由来材料からなる炭素質材料の炭化に応用することができる。廃イオン交換樹脂のビーズを炭素吸着材に転換する方法についてはとりわけBratek et al., Carbon, 40, 2213−2220 (2001)に開示されている。この方法はまた例えば樹脂ビーズ、特にフェノール樹脂ビーズなどの樹脂材料の炭化にも応用できる。ビーズがメソ孔質構造を有すると、この方法の実施形態ではメソ孔質を炭化・活性化された樹脂ビーズ製品にそのまま残すことが可能になる。炭素質材料は上述のビーズ形成方法による製品でよい。
【0108】
キルンは5〜10個の堰を備え、堰は等間隔または不等間隔でキルン全長にわたって位置する。使用時、炭素質材料は床を形成し、その一部は堰の間にある縦方向を向いて角度つきで間隔をあけた持上げバーによって持ち上げられキルン雰囲気中を滝のように落とされる。ここで、ある実施形態の持上げバーはキルンの円筒内表面上の高さが堰の高さの約50%である。
【0109】
キルンは好ましくは炭素質材料から溶媒を乾燥または除去するように構成された入り口領域を有し、ビーズを受入れるための入り口領域は350℃以下、好ましくは300℃以下に維持される。過熱水蒸気をキルンの排出端に導入し、炉内雰囲気を形成するためにビーズと反対方向に流すことが好ましく、ある実施形態では水蒸気を約150℃で導入する。キルンは炭素質材料の滞留時間が2〜5時間になるように構成してよい。
【0110】
ある実施形態では、炭化は酸素を含まないガス流中で約600℃〜約850℃の温度で行われる。活性化はパージガスが水蒸気の場合は約750℃よりも高温で、パージガスがCOの場合は約800℃よりも高温で行われてよい。
【0111】
キルン構造は実施形態において前述のごとく、5〜10個の堰を備え、堰の間の持上げバーによって炭素質材料を撹拌し、材料の一部を持上げ、持上げた材料をキルン内雰囲気を通してキルン底へ滝のように落下させる。実施形態においては、筺体が本体と筺体に沿って間隔をあけた隔壁を囲み、この隔壁は本体と共にキルンに沿って配置される独立燃焼加熱帯域、例えば5〜10個の独立燃焼加熱帯域を画定する。
【0112】
より具体的には、上述の洗浄および乾燥操作を受けた硬化樹脂ビーズは図6および7に示す回転キルンを用いて単一の操作で炭化・活性化されてよい。
【0113】
図6では、回転キルンは通常参照番号200で示され、例えば軟鉄またはステンレス製の全長が約3.7メートル(12フィート)で直径が約0.46メートル(18インチ)の開放式長尺管状キルン本体202からなり、その本体は断熱キルン筺体204内でその長手方向軸の廻りに回転するようローラー受け台アセンブリー206、208によって支持され、各アセンブリーはキルン本体を支持しキルン本体の回転軸に平行する回転軸を有する円筒状表面を有する3個以上の支持ローラーで構成されている。予備実験のために3.7メートルの全長を選定したが、最終的な溶媒蒸発、炭化および活性化の3操作のすべてを容易に実行するためには、キルン全長を約5.5メートル(18フィート)まで増大することが好ましいであろう。ローラー受け台のローラーは例えば鋼鉄製またはフェノール樹脂などの耐熱プラスチック材料でもよい。一実施形態において回転はドライブチェーン212を介してモーターとギヤボックスアセンブリー214によって駆動されるキルン本体202の円筒外表面上のスプロケット構成210によって行われてもよい。高速回転は必要でも好ましくもない。本実施形態では必要な処理時間は数時間、例えば約3時間であり、回転速度は約1rpmが適当である。例えばキルン本体の円筒外表面上に取り付けた
ウォームホイール構成と、モーターとギヤボックスによって駆動されるウォームギヤなどの別の配置が可能である。キルン本体202は水平から小鋭角で例えば約10°排出端が下向くようにその軸を支持する。
【0114】
注入室216はその面の一つに開口部があり、キルン本体202の注入端を受入れ、室216は本体202が回転すると、本体202の円筒外表面を拭い気密を提供するシール218を有する。供給ホッパー220または他の供給手段が加工される樹脂ビーズを、室216を通りシュート222を経由してキルン本体の供給端域241aへ供給する。炭化中にビーズから発生するガスを運搬する水蒸気はキルン本体202から室216に入りそこから矢印226で示すように排出管224内に移動する。処理されるビーズは本体202に沿って排出端域241fへ移動し、そこから排出室228内に入り、その室は室216の場合と同じようにその面の一つに開口部があり、キルン本体202の排出端を受入れ、本体の円筒外表面を拭って気密を提供するシール230を有する。炭化・活性化されたビーズは回収漏斗232内に移動しそこから受入ホッパー234に入る。水蒸気または二酸化炭素などの他の活性化ガスは矢印238で示すようにライン236を通り室228に入り、その後矢印239で示すようにビーズの流れに対して反対向きに流れて室216に移動する。キルン本体202と導入室216および排出室228を含むキルン内の雰囲気は実質的に酸素を含まない。例えば約150℃の過熱水蒸気は活性化段階で炭化物から除去されることになる炭素量に基づく化学量論量の3〜4倍量がライン236に適切に注入される。所要の水蒸気流は実際には比較的小さな線速度を有する。
【0115】
このキルンは従来型キルンよりも短く、より顕著に下方に傾いている。処理されるビーズ材料は例えば従来型の活性化炉内の植物由来炭化物に比べて耐摩耗性があり流動性が高い。これらの理由から、キルンが回転するとビーズは排出端に向かって、望ましいことではないが、急速に流れる傾向があり、ビーズ処理のための実効時間が不足することになる。この問題は図示の実施形態ではキルン本体202内部に、例えば本体の円筒内表面に溶接され、本体の全長方向に間隔を介してビーズ処理域241a〜241eと最後の環状堰240eの下流のビーズ排出域241fを区切る、鋼鉄製の板などの環状堰240a〜240eを備えることによって回避される。各堰はその後方に処理されるビーズの集まり223を保持し、定常状態の運転ではキルン中のビーズの体積はキルンの全体積の約10%である。上述の炉の実施形態では最大床深さは、それは各堰に直近するところの深さであるが、約10cm(4インチ)である。この比較的浅い床の深さは高速での炭化と活性化の実現に貢献する。上述の実施形態においてはやはり5個の堰を有したが、前記のように生産キルンはより長く、例えば8〜10個の堰に増やし相応するキルン筺体内の内部隔壁と加熱帯域の数を増やしてもよい。図示の実施形態ではキルン本体中の帯域241a〜241fは加熱帯域246a〜246fとは正確には一致していないが、他の実施形態では堰240a〜240eと隔壁244a〜244dの軸位置を再調整してこれらの帯域を一致させキルン本体の各帯域中の温度の個別制御を容易にしてもよい。一つの処理帯域から別の帯域へのビーズの動きは主として追加材料供給によるオーバーフローであり、曲線矢印243で表わされる。したがって回転速度は概してまたは完全にビーズ滞留時間とは分離しており、ビーズ滞留時間を許容できないほど減らすことなく所望の床撹拌と床内容物の炉内雰囲気への暴露を実現するための速度選定ができる。さらに内部堰があることにより主に新たな材料のキルンへの供給速度によって材料滞留時間の制御ができる。これに対して従来型のキルンでは滞留時間の実質的な制御ができず炭化・活性化された製品材料の再現性に欠ける。例えば、キルン内のビーズの全体積が約50リットルでホッパー220から新ビーズが約10リットル/時で供給されると、キルン内の平均ビーズ滞留時間は約5時間になる。
【0116】
断熱キルン筺体204はキルン本体202よりも短い軸長を有し、その両端はシール(図不視)で塞がれる。それはシール(図不視)で本体の円筒外表面を塞いだ環状内部隔壁244a〜244dを含み加熱室246a〜246eを形成する。この実施形態のキルンは間接ガス燃焼される。各加熱室はそれぞれ1対のガスバーナー248a〜248eを含み、排出口250a〜250eにて通気され、各室でのキルンへの供給熱は必要に応じて独立に制御される。
【0117】
キルン本体の内部構造は図7および8に示すように、2個の堰240a、240bがあり、その間に縦方向を向いて角度つきで間隔をあけた撹拌機すなわち持上げバー252があり、それぞれ堰間の全長に伸び、それぞれの高さは堰の高さの約半分である。キルンが回転すると、撹拌機のバー252は床の材料を撹拌し新しいビーズ材料を炉内雰囲気に曝す。さらに、各帯域のビーズのうちのいくらかは撹拌機のバーによってキルンの上方域に運ばれキルンが回転し続けるとキルンの底に向けて滝のように落とし戻される。このビーズの滝は現在の商用炭化・活性化キルンにはない特徴であり、炭化・活性化される材料と炉内雰囲気との間の接触を促進してこれらの操作を早める。キルンを通る水蒸気または他の活性化ガスの向流239は上述のように比較的低い線速度を有しており、滝のように落下するビーズが出所である処理帯域へ実質的に戻ることを妨害するには不十分である。このキルンでは活性化は数時間内で実現できるが、一方従来型の商用キルンではこの操作を完了するには約5日間を必要とする。
【0118】
運転に際し、キルンには三つの主要領域がある。上流端には残留エチレングリコールおよびその他の溶媒が吸熱的に除去される領域がある。これはほぼ領域241aと一致し、メソ孔質樹脂ビーズの場合約300℃未満、好ましくは約200〜250℃で運転すべきである、というのは、メソ孔質は供給帯域241aの温度が300℃を超えると徐々に失われるからである。続いてビーズが炭化帯域に進むと約850℃の温度まで急激に温度上昇するがこれはおおよそ領域241bに一致するかもしれない。ビーズ樹脂は分子量が例えば約500までの単量体種およびオリゴマー種を含む水素含有ガス生成物を発生して吸熱的に炭化物に転換される。水蒸気と炭化ガス生成物の流れは発生したガス状の生成物をライン224へ運び、キルン内のこの位置でビーズを光学検査すると白熱して見える。キルンの下流端は帯域241c〜241dでおおよそ画定されているが、吸熱活性化領域にほぼ相応し、そこでは下記反応によってミクロ孔中の炭素が除去されて新しく炭化されたビーズ内の表面積が増大する。
C + HO → CO + H または
CO + C → 2CO.
炉内のこの端にある材料はもはや白熱して輝くことはなく、活性化の進行を可能にするため例えば約800℃など800〜850℃の範囲の温度を維持することが好ましい。活性化された炭素が筺体204内部の炉本体202部分を離れると、流入する水蒸気によって約150℃に急速に冷却される。その後、図のように回収される。
【0119】
生成物は微粒子含有量の少ないビーズ形態の活性化炭素で、メソ孔質/ミクロ孔質の構造と大きな活性化表面積の両方を有する。
【0120】
本発明の説明した態様についての本発明の範囲と精神から逸脱しない範囲で種々の修正や変形をおこなうことは当業者にとっては容易である。本発明は特定の好ましい実施形態に関連して説明したが、特許請求の範囲に規定された発明はそのような特定の実施形態に過度に限定されないことは当然である。実際に、関連分野の当業者には自明の本発明の実施のために記載された態様の種々の修正が下記の特許請求の範囲に入ることが意図される。
【図1】

【図2】

【図3】

【図4】

【図5】

【図5a】

【図6】

【図7】


【特許請求の範囲】
【請求項1】
炭素質材料の炭化・活性化方法であって、炭化温度および活性化温度に維持された外部燃焼回転キルンに前記材料を供給する工程を含み、前記キルンは回転時に前記材料を前進させるための下方傾斜を有し、前記キルンは水蒸気または二酸化炭素の向流による実質的に酸素を含まない雰囲気を有し、複数の環状堰が前記キルンに沿って間隔をおいて備えられていて前記材料の進行を制御する、方法。
【請求項2】
前記炭素質材料は植物由来材料を含む、請求項1に記載の方法。
【請求項3】
前記炭素質材料は樹脂ビーズを含む、請求項1に記載の方法。
【請求項4】
前記炭素質材料はフェノール樹脂を含む、請求項1に記載の方法。
【請求項5】
前記ビーズがメソ孔ビーズであり、前記活性化炭素生成物がマクロ孔、メソ孔、およびミクロ孔を有する、請求項4に記載の方法。
【請求項6】
前記炭素質材料は、フェノール樹脂を孔形成剤中で硬化させてえられたものである、請求項4または5に記載の方法。
【請求項7】
前記キルンがその全長に沿って5〜10個の堰を備える、請求項1〜6のいずれか1項に記載の方法。
【請求項8】
前記炭素質材料は床を形成し、その一部は堰の間にある縦方向を向いて角度つきで間隔をあけた複数の持上げバーによって持上げられ前記キルン雰囲気中を滝のように落下する、請求項1〜7のいずれか1項に記載の方法。
【請求項9】
前記持上げバーは前記キルンの円筒内表面上の高さが前記堰の高さの約50%である、請求項8に記載の方法。
【請求項10】
前記キルンが前記炭素質材料から溶媒を乾燥または除去するように構成された入り口領域を有する、請求項1〜9のいずれか1項に記載の方法。
【請求項11】
前記キルンが300℃以下に維持されるビーズを受入れるための入り口領域を有する、請求項1〜10のいずれか1項に記載の方法。
【請求項12】
過熱水蒸気を前記キルンの排出端に導入し、炉内雰囲気を形成するためにビーズと反対方向に流す、請求項1〜11のいずれか1項に記載の方法。
【請求項13】
前記水蒸気を約150℃で導入する、請求項12に記載の方法。
【請求項14】
前記炉が、前記炭素質材料について2〜5時間の滞留時間になるように構成される、請求項1〜13のいずれか1項に記載の方法。
【請求項15】
排出端に向けて下方に傾斜する中空の回転本体を有する炭素質材料の炭化・活性化のための外部燃焼回転キルンであって、炭素質材料の進行制御のための複数の環状堰をその全長に沿って間隔をあけて備える、キルン。
【請求項16】
前記中空の回転本体が5〜10個の堰を備える、請求項15に記載のキルン。
【請求項17】
前記中空の回転本体が前記炭素質材料を撹拌するため前記堰の間に複数の持上げバーを備え、前記材料の一部を持上げ、持上げられた材料がキルン雰囲気を通って滝のようにキルン底へ落下させる、請求項15または16に記載のキルン。
【請求項18】
前記本体を囲む前記筺体および前記筺体に沿って間隔をあけて配置され本体と共にキルンに沿って配置される独立燃焼加熱帯域を画定する隔壁を有する、請求項15〜17のいずれか1項に記載のキルン。
【請求項19】
5〜10個の加熱帯域がある、請求項18に記載のキルン。
【請求項20】
活性化炭素生成物を調製する方法であって、
炭化材料を形成するために第一の温度で炭化条件下で有機樹脂を加熱する工程、および
活性化炭素生成物を形成するために第二の温度で活性化条件下で前記形成された炭化材料を加熱する工程、
を含み、前記有機樹脂の温度は前記第一の温度から前記第二の温度へ徐々に上昇され前記有機樹脂はメソ孔構造を有する、活性化炭素生成物を調製する方法。
【請求項21】
前記メソ孔構造の実質的劣化を起こさずに前記有機樹脂の炭化を達成するように前記有機樹脂の温度を前記第一の温度から前記第二の温度へ十分に低速で徐々に上昇させる、請求項20に記載の方法。
【請求項22】
炭化および活性化が単一の間接加熱回転炉中で行われ、前記回転炉は前記第一の温度を与えるように構成される少なくとも第一の帯域を備え、また前記第二の温度を与えるように構成される少なくとも第二の帯域を備えるように適合される、請求項20または21に記載の方法。
【請求項23】
炭化粒子生成物を調製する方法であって、有機樹脂を炭化させるのに十分な温度になるように構成された回転キルン中で前記有機樹脂を加熱する工程を含み、前記回転キルンは
導入口、
排出口、
長手軸の周りに回転する前記導入口と前記排出口の間に伸びる実質的に円筒状の加熱室、前記回転軸と実質的に平行に延在する前記加熱室の内部表面に取り付けられた複数の持上げバー、および
前記加熱室の内表面に取り付けられた一つ以上の横断堰、
を含む、炭化粒子生成物を調製する方法。
【請求項24】
活性化炭素生成物を調製する方法であって、炭化前駆体樹脂を活性化させるのに十分な温度になるように構成された回転キルン中で前記炭化前駆体樹脂を加熱する工程を含み、前記回転キルンは
導入口、
排出口、
長手軸の周りに回転する前記導入口と前記排出口の間に伸びる実質的に円筒状の加熱室、前記回転軸と実質的に平行に延在する前記加熱室の内部表面に取り付けられた複数の持上げバー、および
前記加熱室の内表面に取り付けられた一つ以上の横断堰、
を含む、活性化炭素生成物を調製する方法。
【請求項25】
前記炭素質材料を350℃以下の温度から約650℃〜約850℃に加熱する工程を含む請求項24に記載の工程。
【請求項26】
回転炉であって、長手軸の周りに回転する実質的に円筒状の加熱室を含み、前記加熱室は内部が一つ以上の横断堰によって複数の横断帯域に分配され、前記加熱室の内表面は前記長手軸と実質的に平行に延在する複数の持上げバーを有する、回転炉。
【請求項27】
回転炉内の炭化物を高温で活性化ガス雰囲気に曝して活性化炭素を調製する方法であって、炉内の複数の環状邪魔板が前記炉に沿って順に処理帯域を画定し、前記炉に入る新しい炭化物により、活性化される材料が一つの処理帯域から次へと邪魔板をオーバーフローする、活性化炭素を調製する方法。
【請求項28】
回転炉内の炭化物を高温で活性化ガス雰囲気に曝して活性化炭素を調製する方法であって、炉内の複数の環状邪魔板が炉に沿って順に処理帯域を画定し、前記炉に入る新しい炭化物により、活性化される材料が一つの処理帯域から次へと前記邪魔板をオーバーフローし、前記複数の処理帯域に位置する複数の持上げバーが、前記炉の回転にともない炭化物の床の一部を持上げ、それにより炭化物が活性化ガス雰囲気を通って滝のように落下して床に戻る、活性化炭素を調製する方法。
【請求項29】
高分子材料製のバラバラの固体ビーズを製造する方法であって、
(a)重合性液体前駆体の流れと、前記液体前駆体と実質的または完全に不混和な液体分散媒の流れから合流を生成する工程、
(b)前記重合性液体前駆体を分散媒中に液滴として分散させるように合流を処理する工程、
(c)凝集できないバラバラの固体ビーズを形成するように前記液滴を前記分散媒の層流中で重合させる工程、および
(d)前記分散媒からビーズを回収する工程
を含み、分散処理中の前記液体前駆体の凝集を実質的に回避するように層流重合時間に比較して分散処理時間が短い、固体ビーズを製造する方法。
【請求項30】
前記重合性液体前駆体の流れが重合性成分の第一の極性有機液体溶液からなり、前記液体分散媒は第二の非極性有機液体からなり、前記第一および第二の有機液体は実質的に不混和である、請求項29に記載の方法。
【請求項31】
前記第一の有機液体がエチレングリコールまたはジエチレングリコールである、請求項30に記載の方法。
【請求項32】
前記第二の有機液体が鉱油である、請求項30または31に記載の方法。
【請求項33】
前記第二の有機液体が変圧器油である、請求項32に記載の方法。
【請求項34】
前記液体分散媒の体積流量が前記重合性液体前駆体の流量の3〜10倍である、請求項29〜33のいずれか1項に記載の方法。
【請求項35】
前記液体分散媒の体積流量が前記重合性液体前駆体の流量の約5倍である、請求項34に記載の方法。
【請求項36】
第一および第二の成分流の混合合流によって前記重合性液体前駆体を形成する、請求項29〜35のいずれか1項に記載の方法。
【請求項37】
孔形成剤に溶解したフェノール求核成分を含む第一の成分の流れを孔形成剤に溶解した架橋剤の第二の成分の流れと合流させる、請求項36に記載の方法。
【請求項38】
前記孔形成剤がエチレングリコールである、請求項37に記載の方法。
【請求項39】
前記フェノール求核成分がノボラックである、請求項37または38に記載の方法。
【請求項40】
前記ノボラックが1500未満の分子量を有する、請求項39に記載の方法。
【請求項41】
前記架橋剤がヘキサメチレンテトラミンを含む、請求項39または40に記載の方法。
【請求項42】
前記架橋剤がメラミンまたはヒドロキシメチル化メラミンを含む、請求項39または40に記載の方法。
【請求項43】
前記第一および第二の流れを第一および第二の容器からこれらの容器を加圧して供給する、請求項29〜42のいずれか1項に記載の方法。
【請求項44】
非脈動ポンプを使用して第一および第二の容器から前記第一および第二の流れを供給する、請求項29から42のいずれか1項に記載の方法。
【請求項45】
前記非脈動ポンプがギヤまたは回転羽根ポンプである、請求項44に記載の方法。
【請求項46】
インラインミキサー中で前記第一および第二の成分の合流を混合することを含む、請求項29〜45のいずれか1項に記載の方法。
【請求項47】
固体粒子を生成する重合が2〜4分未満で完了する層流重合温度よりも20℃以上低い温度で、前記インラインミキサー中で前記第一および第二の成分の合流を混合することを含む、請求項46に記載の方法。
【請求項48】
前記重合性液体前駆体の流れとの合流に先立って前記層流重合温度よりも低いがその差は10℃以下である温度まで前記液体分散媒の流れを加熱することを含む、請求項29〜47のいずれか1項に記載の方法。
【請求項49】
前記重合性液体前駆体が前記分散媒中に液滴として0.2〜5秒以内に分散するように前記合流の処理を完了させることを含む、請求項29から48のいずれか1項に記載の方法。
【請求項50】
前記重合性液体前駆体を前記分散媒中に液滴として0.5〜3秒以内に分散させるように前記合流の処理を完了させることを含む、請求項29から49のいずれか1項に記載の方法。
【請求項51】
前記合流を処理して体積平均粒径が100〜1000μmの範囲の高分子ビーズを生じる液滴を生成することを含む、請求項29から50のいずれか1項に記載の方法。
【請求項52】
前記合流を処理して平均粒径が300μm〜1000μmの範囲の高分子ビーズを生じる液滴を生成することを含む、請求項29から51のいずれか1項に記載の方法。
【請求項53】
前記合流を処理してD90/D10粒径分布が10以下の重合ビーズを生じる液滴を生成することを含む請求項29から52のいずれか1項に記載の方法。
【請求項54】
前記合流を処理してD90/D10粒径分布が5以下の重合ビーズを生じる液滴を生成することを含む請求項29から53のいずれか1項に記載の方法。
【請求項55】
前記分散処理をインラインミキサー中で行うことを含む、請求項29から54のいずれか1項に記載の方法。
【請求項56】
前記分散処理を乱流条件下で行う、請求項29から55のいずれか1項に記載の方法。
【請求項57】
前記分散処理を遷移乱流条件下で行う、請求項29から55のいずれか1項に記載の方法。
【請求項58】
液滴として分散した前記重合性液体前駆体を有する液体分散媒の前記流れを液体分散媒の下降流を有する垂直重合カラムへ供給する工程を含み、前記液滴の密度は前記液体分散媒の密度よりも大きい、請求項29から57のいずれか1項に記載の方法。
【請求項59】
前記分散媒が前記カラムを0.5〜1.5時間で下降する、請求項58に記載の方法。
【請求項60】
平均粒径が約400μmの分散液滴が前記カラムを約1〜5分の平均時間で下降する、請求項58または59に記載の方法。
【請求項61】
分散液滴が前記カラムを約2〜4分の平均時間で下降する、請求項58または59に記載の方法。
【請求項62】
前記重合カラムからの重合ビーズを回収容器に回収する、請求項29から61のいずれか1項に記載の方法。
【請求項63】
前記重合ビーズは堆積によって前記容器中に回収される、請求項62に記載の方法。
【請求項64】
重合ビーズが遠心分離によって回収された分散媒を再循環することをさらに含む、請求項29から63のいずれか1項に記載の方法。
【請求項65】
前記遠心分離されたビーズを水で洗浄して孔形成剤を除去することをさらに含む、請求項64に記載の方法。
【請求項66】
前記ビーズを真空乾燥して孔形成剤を回収し、ヘキサミン/溶媒溶液および/または樹脂/溶媒溶液の製造のため前記回収した孔形成剤を再循環することをさらに含む、請求項65記載の方法。
【請求項67】
高分子材料製のバラバラの固体ビーズを形成する装置であって、
重合性液体前駆体の流れを輸送する第一のライン、
前記重合性液体前駆体と実質的または完全に不混和な分散媒の流れを輸送する第二のライン、
前記第一および第二のラインの合流を受入れ、前記重合性液体前駆体を前記分散媒中に液滴として分散させるように構成されたインラインミキサー、
前記液滴を分散させた前記分散媒を受入れ、前記重合性液体前駆体が重合媒体の下降流中でカラムを下降する間に重合可能になるように構成された垂直重合カラム、および
分散媒の前記下降流を受入れ重合した個体ビーズを回収するための前記カラム底部にある容器、
を含む、装置。
【請求項68】
前記重合性液体前駆体の第一の液体成分および第二の液体成分を貯蔵するための第一の容器および第二の容器、
前記液体成分輸送のための第一の成分のラインおよび第二の成分のライン、
これらのラインを通して成分流を輸送するためのこれらのラインに設けられた第一の非脈動ポンプおよび第二の非脈動ポンプ、および
前記第一の成分の流れおよび第二の成分の流れを受入れ混合して重合性液体前駆体の流れを形成するように構成された第二のインラインミキサー
をさらに含む、請求項67に記載の装置。
【請求項69】
前記ポンプがギヤポンプまたは回転羽根ポンプである、請求項68に記載の装置。
【請求項70】
前記第二のインラインミキサーへの流れを加熱するために前記第一の成分のラインおよび第二の成分のラインの少なくとも一方にヒーターをさらに含む、請求項68または69に記載の装置。
【請求項71】
分散媒用貯蔵容器、前記貯蔵容器から前記インラインミキサーへ通じるライン、および分散媒の流れを輸送する当該ライン中の第三の非脈動ポンプをさらに含む、請求項68から70のいずれか1項に記載の方法。
【請求項72】
前記第三の非脈動ポンプがギヤポンプまたは回転羽根ポンプである、請求項71に記載の装置。
【請求項73】
前記分散媒のラインは前記貯蔵容器からの前記分散媒の流れを加熱する熱交換器を含む、請求項71または72に記載の装置。
【請求項74】
前記熱交換器からの加熱された分散媒を受入れかつそこを通過した分散媒を前記第一のインラインミキサーへ供給するため第三のインラインミキサーをさらに含む、請求項73に記載の装置。
【請求項75】
前記カラム底部の容器は前記タンク中で堆積物を形成するビーズの排出口を有する沈降タンクである、請求項68〜74のいずれか1項に記載の装置。

【公表番号】特表2010−510947(P2010−510947A)
【公表日】平成22年4月8日(2010.4.8)
【国際特許分類】
【出願番号】特願2009−531894(P2009−531894)
【出願日】平成19年10月4日(2007.10.4)
【国際出願番号】PCT/GB2007/003755
【国際公開番号】WO2008/043982
【国際公開日】平成20年4月17日(2008.4.17)
【出願人】(500252844)ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド (111)
【氏名又は名称原語表記】BRITISH AMERICAN TOBACCO (INVESTMENTS) LIMITED
【Fターム(参考)】