説明

Nb3Sn超電導線材の製造方法およびそのための前駆体

【課題】超電導相内に効果的にTiを導入することによって臨界電流密度を有効に向上させることができると共に、残存する非超電導相による超電導特性劣化をできるだけ抑制し、しかも交流損失のできるだけ低減することのできるNbSn超電導線材製造用前駆体の構成を提供する。
【解決手段】本発明の超電導線材製造用前駆体は、CuまたはCu基合金中に、1本または複数本のNbまたはNb基合金芯と、1本または複数本のSnまたはSn基合金芯が、相互に接触しないように配置された超電導マトリクス部と、その外周に安定化銅層を有する超電導線材製造用前駆体において、前記超電導マトリクス部断面内のSnまたはSn基合金芯を中心にして、その近傍から半径方向外側に向けて、NbTi合金芯材を連結して構成される電流遮断領域が少なくとも1箇所配置されたものである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、NbSn超電導線材を内部拡散法によって製造する方法、およびこうしたNbSn超電導線材を製造するための前駆体(超電導線材製造用前駆体)に関するものであり、殊に高磁場発生用超電導マグネットの素材として有用なNbSn超電導線材を製造する為の技術に関するものである。
【背景技術】
【0002】
超電導線材が実用化されている分野のうち、高分解能核磁気共鳴(NMR)分析装置に用いられる超電導マグネットについては発生磁場が高いほど分解能が高まることから、超電導マグネットは近年ますます高磁場化の傾向にある。
【0003】
高磁場発生用超電導マグネットに使用される超電導線材としては、NbSn線材が実用化されており、このNbSn超電導線材の製造には主にブロンズ法が採用されている。このブロンズ法は、Cu−Sn基合金(ブロンズ)マトリクス中に複数のNb基芯材を埋設し、伸線加工することによって上記Nb基芯材を細径化してフィラメントとし、このNb基芯材のフィラメント(Nb基フィラメント)とブロンズ複合材を複数束ねて線材群となし、安定化の為の銅(安定化銅)を配置した後伸線加工する。上記線材群を600℃以上800℃以下程度で熱処理(拡散熱処理)することにより、Nb基フィラメントとマトリクスの界面にNbSn化合物層を生成する方法である。しかしながら、この方法ではブロンズ中に固溶できるSn濃度には限界があり(15.8質量%以下)、生成されるNbSn化合物層の厚さが薄く、また結晶性が劣化してしまい、高磁場特性が良くないという欠点がある。
【0004】
NbSn超電導線材を製造する方法としては、上記ブロンズ法の他に、チューブ法や内部拡散法等が知られている。これらの方法では、ブロンズ法のような固溶限によるSn濃度に限界がないのでSn濃度をできるだけ高く設定でき、良質なNbSn層が生成可能であるため、高磁場特性が優れた超電導線材が得られることが示されている。
【0005】
このうち内部拡散法では、図1(NbSn超電導線材製造用前駆体の模式図)に示すように、CuまたはCu基合金(以下、「Cu母材」と呼ぶことがある)4の中央部に、SnまたはSn基合金からなる芯(以下、「Sn基金属芯」と呼ぶことがある)3を埋設すると共に、Sn基金属芯3の周囲のCu母材4中に複数のNbまたはNb基合金芯(以下、総括して「Nb基金属芯」と呼ぶことがある)2を相互に接触しないように配置して前駆体(超電導線材製造用前駆体)とし、これを伸線加工した後、熱処理(拡散熱処理)によってSn基金属芯3中のSnを拡散させ、Nb基金属芯2と反応させることによってNbSnを生成させる方法である(例えば、特許文献1)。
【0006】
また上記のような前駆体1においては、図2に示すように、前記Nb基金属芯2とSn基金属芯3が配置された部分(以下、「超電導マトリクス部」と呼ぶことがある)とその外部の安定化銅層4aの間に拡散障壁層6を配置した構成のものも知られている。この拡散障壁層6は、例えばNb層またはTa層、或いはNb層とTa層の2層からなり、拡散熱処理の際に超電導マトリクス部内のSn(Sn基金属芯3)が外部に拡散してしまうことを防止し、超電導マトリスク部内でのSnの純度を高める作用を発揮するものである。
【0007】
上記のような、超電導線材製造用前駆体を製造するには、下記の手順で行われる。まず、Nb基金属芯(Nb基金属フィラメント)をCuマトリスク管に挿入し、押出し、伸線等によって縮径加工して複合体とし、これを適当な長さに裁断する。そして、Cu製外筒を有し、拡散障壁層を設け或いは設けないビレット内に前記複合体を充填し、その中央部にCuマトリクス(Cu製中実ビレット)を配置して押出し加工した後、中央部のCuマトリクスを機械的に穿孔してパイプ状複合体を構成する。或いは、他の方法として、Cu外筒とCu内筒で構成され、拡散障壁層6を有しまたは有さない中空ビレット内(外筒と内筒の間)に前記複合体を複数本充填してパイプ押出ししてパイプ状複合体を構成する。
【0008】
そして、これらの方法に作製されたパイプ状複合体の中央空隙部内に、Sn基金属芯3を挿入して縮径加工して図1、2に示したような前駆体が製造される。
【0009】
尚、図1、2に示した前駆体では、Sn金属芯3が1本、Nb基金属芯2が複数本のものを示したけれども、Sn基金属芯3が複数本で構成することも可能である。以下では、これらのものも含めて、「モノエレメント前駆体」と呼ぶ。
【0010】
上記のようにして構成された各前駆体(モノエレメント前駆体)は、拡散障壁層6を有するか或いは有さないCuマトリクス管内部に複数本束ねて充填され、更に縮径加工されて多芯型の超電導線材製造用前駆体(マルチエレメント前駆体)とされる。
【0011】
図3、4は、マルチエレメント前駆体の構成例を示したものであり、このうち図3は前記図1に示した前駆体1(モノエレメント前駆体)を、拡散障壁層6aを有するCuマトリクス5内に複数本束ねて埋設してマルチエレメント前駆体11としたものであり、図4は前記第2図に示した前駆体(モノエレメント前駆体)を、拡散障壁層を有さないCuマトリクス5内に複数本束ねて埋設してマルチエレメント前駆体11aとしたものである。
【0012】
上記のような前駆体を用いて内部拡散法で超電導線材を製造するに当って、NbSn相内に、Ti,Ta,Zr,Hf等の元素を含有させることも提案されている。こうした元素をNbSn相内に含有させることによって、これらの元素を含有しないNbSn超電導線材と比べて、高磁場での超電導特性が向上するといわれている。NbSn相内に上記の元素を含有させる手段として、例えば特許文献2には、Sn基金属芯に30原子%以下、またはNb基金属芯に5原子%以下のTiを含有させることで、15T(テスラ)以上の高外部磁場中での臨界電流密度Jcが向上できることが示されている。
【0013】
しかしながら、この技術ではSn基金属芯3またはNb金属芯2の全てについて、Ti等を含有させる必要があることから、コストが高くなるという問題がある。
【0014】
そこで、超電導マトリクス部内のNb基金属芯2の一部を、入手しやすく比較的安価なNbTi合金芯と入れ替えることによって、Tiの供給源とすると共に、コストの低減をも図ることが提案されている(例えば、非特許文献1)。図5、6は、この技術で提案されているNbSn超電導線材製造用前駆体を模式的に示したものであり、夫々前記図1、図2に類似するものであり、対応する部分には、同一の参照符号が付してある。そして、この技術では、超電導マトリクス部内のNb金属芯2の一部を、NbTi合金芯8(図中、白抜き○で示した部分)を分散した状態で入れ替えるものである。しかしながら、こうした構成を採用すると、NbTi合金芯が熱処理後に非超電導部分として残存する分だけ臨界電流密度Jcが若干低下する場合がある。
【0015】
一方、超電導線材を超電導マグネットとして用いるときに、電流変化による発熱(以下、「交流損失」と呼ぶ)をできるだけ低減する必要がある。こうした技術として、Nb金属芯が熱処理時に結合しないように相互の間隔を適切に調整する方法や、超電導マトリクス部内をフィンで仕切る方法等が提案されている(非特許文献2)。このうち、後者の技術では、例えば図7に示すように、Sn基金属芯3の外周部に、Ta−Nb合金からなるフィン10aを半径方向に間隔をあけて配置したものである。こうした構成は、電流損失の発生が線材周方向に流れる渦電流に起因することから、こうした渦電流の流れをフィン10aによって遮蔽するものである。しかしながら、こうした構成では、フィン10aを構成する部材が超電導相にはならないので、その分さらに臨界電流密度Jcが低下する傾向がある。
【特許文献1】特開昭49−114389号公報 特許請求の範囲等
【特許文献2】特公平1−8698号公報 特許請求の範囲等
【非特許文献1】IEEE Trans.Appl. Supercond.vol.15,no.2,pp.1200-1204
【非特許文献2】Paper M1-D-09,presented at CEC-ICMC,Anchorage Alasla,Sept 23-26,2003
【発明の開示】
【発明が解決しようとする課題】
【0016】
本発明はこうした状況の下でなされたものであって、その目的は、超電導相内に効果的にTiを導入することによって臨界電流密度を有効に向上させることができると共に、残存する非超電導相による超電導特性劣化をできるだけ抑制し、しかも交流損失のできるだけ低減することのできるNbSn超電導線材製造用前駆体の構成、およびこうした前駆体を用いたNbSn超電導線材の製造方法を提供することにある。
【課題を解決するための手段】
【0017】
上記目的を達成することのできた本発明の超電導線材製造用前駆体とは、内部拡散法によってNbSn超電導線材を製造する際に用いる超電導線材製造用前駆体であって、CuまたはCu基合金中に、1本または複数本のNbまたはNb基合金芯と、1本または複数本のSnまたはSn基合金芯が、相互に接触しないように配置された超電導マトリクス部と、その外周に安定化銅層を有する超電導線材製造用前駆体において、前記超電導マトリクス部断面内のSnまたはSn基合金芯を中心にして、その近傍から半径方向外側に向けて、NbTi合金芯材を連結して構成される電流遮蔽領域が少なくとも1箇所配置されたものである点に要旨を有するものである。
【0018】
本発明の超電導線材製造用前駆体において、前記NbTi合金芯材の具体的な構成としては、中心に配置されるNbTi合金芯部と、その周囲に配置されるCu被覆層からなるものが挙げられる(後記図10参照)。またこうした構成のNbTi合金芯材においては、NbTi合金芯部とCu被覆層の間に、Nbからなる拡散障壁層を介在させたものが好ましい。
【0019】
また前記超電導マトリクス部と安定化銅の間に拡散障壁層を配置した構成のものも採用できる。また上記のような超電導線材製造用前駆体を、CuまたはCu基合金中に複数本配置することによって多芯の超電導線材製造用前駆体(マルチエレメント前駆体)を構成することができる。
【0020】
また、上記のような単芯または多芯の超電導線材製造用前駆体を、熱処理することによって希望する特性を発揮するNbSn超電導線材を製造することができる。
【発明の効果】
【0021】
本発明によれば、前記超電導マトリクス部断面内のSnまたはSn基合金芯を中心にして、その近傍から半径方向外側に向けて、NbTi合金芯材を連結して構成される電流遮蔽領域を少なくとも1箇所配置する構成を採用することによって、超電導相内に効果的にTiを導入して臨界電流密度を有効に向上させることができると共に、残存する非超電導相による超電導特性劣化をできるだけ抑制し、しかも交流損失のできるだけ低減することのできるNbSn超電導線材製造用前駆体が実現できた。
【発明を実施するための最良の形態】
【0022】
本発明者らは、上記目的を達成するために様々な角度から検討した。その結果、Tiの供給源として、NbTi合金芯材を用いると共に、このNbTi合金芯材の配置を、超電導マトリクス部断面内のSnまたはSn基合金芯を中心にして、その近傍から半径方向外側に向けて、連結して構成されるようにし、これを電流遮蔽領域として少なくとも1箇所配置すれば、上記目的が見事に達成されることを見出し、本発明を完成した。以下、本発明の前駆体の構成を図面によって説明する。
【0023】
図8は、本発明の超電導線材製造用前駆体の構成の一例を模式的に示した断面図である。この構成では、前記図2の前駆体1(モノエレメント前駆体)の構成に対して、Sn基金属芯3の外周部に、該Sn基金属芯3を中心にしてその近傍から半径方向外側に向けて、NbTi合金芯8aをフィン状に配置して構成したものである。図8の他の部分の構成は、前記図1示した構成と同じであり、対応する部分には同一の参照符号を付してある。
【0024】
NbTi合金芯8aをフィン状に配置した領域では、後の熱処理によってSn,Ti,NbおよびCuを含む合金が形成され、この合金はCuよりも電流を流しにくいことから、渦電流の通過を遮蔽する電流遮蔽領域を形成し、交流損失の低減を図ることができる。こうした電流遮蔽領域は、図8に示したモノエレメント前駆体1aの構成では3箇所設けたものを示したが、少なくとも1箇所あれば本発明の目的を達成することができる。
【0025】
また、交流損失低減のための領域を、上記のように形成することによって、超電導相内へのTiの効果的な導入も図れると共に、臨界電流密度の低下を極力抑えることができる超電導線材を安価に製造することができる。
【0026】
図9は、本発明の超電導線材製造用前駆体の構成の他の例を模式的に示した断面図である。この構成では、前記図8の構成において、例えばTa−Nb合金からなる拡散障壁層6を超電導マトリクス部と安定化銅4aの間に形成したものである(モノエレメント前駆体1b)。こうした構成を採用しても、図8に示した構成を同様に、交流損失の低減を図ると共に、熱処理時にTi元素がNb基金属芯2に拡散することで、NbSn相へのTi元素の拡散が可能となる。
【0027】
図10はNbTi合金芯8aの要部の構成を説明するための図である。Nb基金属芯2を超電導マトリクス部に複数配置する場合には、Cu製パイプ内にNb基金属を埋設し、これを伸線加工した後、断面六角形状に形成し、これを組み合わせて複数束ねることが一般的であるが、図10はこうした状態を示したものである。即ち、NbTi合金芯8aを配置するに当っては、Nb基金属芯2を配置する場合と同様にして、NbTi合金芯8a(NbTi合金芯部)と、その周囲に配置されるCu被覆層13を含んでNbTi合金心材12が構成され、このNbTi合金芯材12を複数連結して配置されることになる。NbTi合金芯材12を連結配置する際、NbTi合金芯材12は超電導マトリックス部の半径方向をほぼ完全に遮蔽するように連結配置されている。尚、連結配置するNbTi合金芯材12の始点と終点は、Sn基金属芯3や拡散障壁層6等と接触しても良いし、接触しなくても良い。また、前記図8、9は、NbTi合金芯8aの配置状態を示したものであって、Cu被覆層13は相互に結合してCu母材4を形成することになる。
【0028】
こうした構成のNbTi合金芯材12においては、図10に示すように、NbTi合金芯8aとCu被覆層13の間に、Nbからなる拡散障壁層15を介在させることも好ましい形態である。こうした拡散障壁層15を介在させることによって、NbTi合金芯8aからのCu被覆層へのTiの拡散を防止し、複合線材を押出し加工時におけるCu−Ti金属化鉱物層の生成を抑えることができて、断線防止の効果が発揮されることになる。
【0029】
電流遮蔽領域において、上記NbTi合金芯8a部分の配置長さ(径の長さを合計した長さ)は、直線距離に換算して超電導マトリスク部の半径方向長さの50%以上とすることが好ましく、より好ましくは70%以上である。この長さが50%未満となると、電流遮蔽領域としての機能が発揮しにくくなる。また、NbTi合金芯8aの大きさ(直径)はNb基金属芯2と同一にし、Nb基合金芯2の一部を入れ替えるようにして、上記図10に示した構成とすることもできるが、NbTi合金芯8aとNb基金属芯2の大きさを異なるとように構成しても良い。更に、NbTi合金芯8aとNb基金属芯2の配置割合については、NbTi合金芯8aの割合が多くなりすぎると、逆に臨界電流特性が劣化するので、本数換算(但し、同一径の場合)で5〜10%程度とすることが好ましい。
【0030】
本発明の前駆体で用いるNbTi合金芯材12は、その素材としてはTiを5〜60質%含むものであることが好ましい。このTi含有量が5質量%よりも少なくなると、Ti供給源としての機能が発揮され難くなり、60質量%を超えると、加工性が悪くなるばかりか、熱処理後のTi残存量が多くなって、超電導特性(特に、臨界電流密度Jc)が却って劣化することになる。
【0031】
前記図8、9では、NbTi合金芯材12を配置する領域(電流遮蔽領域)を周方向に3箇所であるものを示したけれども、本発明の前駆体の構成はこうしたものに限らず、少なくとも1箇所設けることによって本発明の目的が達成される。但し、交流損失を低減するという観点からすれば、電流遮蔽領域は2箇所以上形成して、超電導マトリクス部を周方向で等分割できるような構成をすることが推奨される。
【0032】
また、前記図8、9ではNbTi合金芯8aは、Sn基金属芯3を中心にして半径方向外側に放射線上(直線的)に延びるように配置したけれども、こうした構成に限定されるものではなく、例えば図11に示すようにSn基金属芯3の法線方向に延びるように配置しても良いし、また図12に示すように屈曲した形状となるように配置しても良いことは勿論である。要するに、Sn基金属芯3を中心にして、その近傍から半径方向外側に向けて配置した構成であれば、本発明の目的が達成されるのである。
【0033】
前記図8、9、11、12は、基本となるモノエレメント前駆体の構成はSn基金属芯3が1本で、その周囲に複数のNb基金属芯2を配置したものを用いる場合を示したが、前駆体の基本形態はこうしたものに限らず、Sn基金属芯3を複数本配置したものとすることも勿論可能である。
【0034】
またこれらに示した構成では、モノエレメント前駆体の場合を示したが、いずれかに記載した構成の前駆体を、CuまたはCu基合金中に複数配置することによってマルチエレメント前駆体を構成することができる。
【0035】
図13は、こうしたマルチエレメント前駆体の構成例を模式的に示した断面図であり、この構成では前記図8に示したモノエレメント前駆体1aの複数本をCuマトリクス5a内に配置し、その周囲に拡散障壁層6aを形成することによって、マルチエレメント前駆体11bを構成したものである。
【0036】
こうしたマルチエレメント前駆体を構成するに際しては、拡散障壁層6を形成しないモノエレメント前駆体(図9に示したモノエレメント前駆体)を用いて多芯型にする場合には、図14に示すように、モノエレメント前駆体1bを複数本束ねてCuマトリクス5a内に配置してマルチエレメント前駆体11cとすれば良い。
【0037】
本発明の前駆体は、その基本的な構成として、CuまたはCu基合金中に、Nb基金属芯2(NbまたはNb基合金芯)およびSn基金属芯3(SnまたはSn基合金芯)を相互の間隔をあけて配置するものであるが、こうした構成で用いるCu合金としては、CuにNb,Ni等の元素を含有したものを用いることができる。またSbn基金属芯3として用いる素材としては、Ti,Ta,Zr,Hf等の元素を、加工性を阻害しない程度(5質量%程度以下)含有させたものを使用することができる。Nb基合金芯2は、NbにTa,Hf,Zr等の添加元素(但し、Tiは除く)を10質量%程度以下含有させたものを使用することができる。
【0038】
本発明方法においては、上記のような前駆体を構成し、これに対して焼鈍と伸線加工を行い、その後拡散熱処理(通常650℃以上750℃未満程度)することによって、良好な特性を発揮する超電導線材を得ることができる。
【0039】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
【実施例】
【0040】
実施例1
外径:21mm、内径:18mmのCu製パイプ内に、外径:17mmのNb基金属芯を挿入した後、伸線加工して六角断面形状のCu/Nb複合線(六角対辺:4.3mm)を作製し、これを400mmの長さに裁断した。これと同様にして、外径:21mm、内径:18mmのCu製パイプ内に、外径:17mmのNb−47質量%Ti合金芯を挿入した後、伸線加工して六角断面形状のCu/NbTi複合線(六角対辺:4.3mm)を作製し、これを400mmの長さに裁断した。
【0041】
一方、Cu製外筒(外径:143mm、内径:133mm)およびCu製内筒(外径:68mm、内径:61mm)からなるCu中空ビレットの前記Cu製外筒の内面側に、Nbからなる拡散障壁層(厚さ:5mm)を貼付けて配置した後、前記Cu製内筒の周りに、前記Cu/Nb複合線を1602本束ねて挿入し、その一部(合計54本)をCu/NbTi複合線で置換えた。具体的には、Cu/Nb複合線を束ねて挿入した後、電流遮蔽領域となる部分のCu/Nb複合線を1本ずつ引き抜いて、その引き抜いた部分をNbTi複合線に順次置き換えることにより、NbTi複合線を連結配置した。この実施例では、電流遮蔽領域において、NbTi合金芯の部分の配置長さは、超電導マトリスク部の半径方向長さの約75%とした。この置換に際しては、Cu/NbTi複合線が中心から連続して放射状に6列並ぶように(周方向に6等分)配置した(前記図8類似)。
【0042】
このビレットをパイプ押出し加工した後、Sn基金属芯を挿入して更に伸線し、3.5mm対辺の六角断面形状の複合線材(モノエレメント前駆体)を作製した。
【0043】
次いで、この複合線材を裁断した後、更に19本束ねてCu製パイプ(外径:21mm、内径:18mm)に挿入した後、押出しによって縮径加工して外径:1mmの複合線材(マルチエレメント前駆体)とした(前記図14参照)。このとき、一部のものにつき、外径:0.5mmまでの加工を試みたところ、2回の断線が発生したが、影響のない範囲であった。
【0044】
得られたマルチエレメント前駆体(外径:1mmのもの)を、670℃で200時間熱処理(拡散熱処理)を施して、NbSn超電導線材とした。得られたNbSn超電導線材について、外部磁場12T(テスラ)を印加した状態で臨界電流(Ic)を測定し、線材断面の非銅部の面積でIcを除して臨界電流密度(Jc)の評価を行った。その結果、温度4.2Kでの臨界電流密度(Jc)は、1520A/mmの高い臨界電流密度(Jc)が得られていた。また、4.2Kで±3Tに磁場を変化させ、交流損失を測定したところ、交流損失は389mJ/cmとなった。
【0045】
実施例2
実施例1と同様にして、Cu/Nb複合線(六角対辺:4.3mm)を作製した後、400mmの長さに裁断した。
【0046】
一方、Cu製外筒(外径:68mm、内径:58mm)の内面側に、0.2mmのNbシートを重ね巻きしたもの(拡散障壁層15)を貼付けた後、外径:57mmのNb−47質量%Ti合金芯を挿入した後、押出しによって縮径加工して六角断面形状のCu/NbTi複合線(六角対辺:4.3mm)を作製し、これを400mmの長さに裁断した。
【0047】
引き続き、実施例1と同様に、Cu製外筒(外径:143mm、内径:133mm)およびCu製内筒(外径:68mm、内径:61mm)からなるCu中空ビレットの前記Cu製外筒の内面側に、Nbからなる拡散障壁層(厚さ:5mm)を貼付けて配置した後、前記Cu製内筒の周りに、前記Cu/Nb複合線を1602本束ねて挿入し、その一部(合計54本)をCu/NbTi複合線で置換えた。この置換に際しては、Cu/NbTi複合線が中心から連続して放射状に6列並ぶように(周方向に6等分)配置した。
【0048】
このビレットを押出し加工し、Sn基金属芯を挿入して更に伸線し、3.5mm対辺の六角断面形状の複合線材(モノエレメント前駆体)を作製した。
【0049】
次いで、この複合線材を裁断した後、更に19本束ねてCu製パイプ(外径:21mm、内径:18mm)に挿入した後、伸線によって縮径加工して外径:1mmの複合線材(マルチエレメント前駆体)とした(前記図14参照)。このとき、一部のものにつき、外径:0.5mmまでの伸線加工を試みたが、伸線加工中の断線は見られなかった。
【0050】
得られたマルチエレメント前駆体(外径:1mmのもの)を、670℃で200時間熱処理(拡散熱処理)を施して、NbSn超電導線材とした。得られたNbSn超電導線材について、外部磁場12T(テスラ)を印加した状態で臨界電流(Ic)を測定し、線材断面の非銅部の面積でIcを除して臨界電流密度(Jc)の評価を行った。その結果、温度4.2Kでの臨界電流密度(Jc)は、1512A/mmの高い臨界電流密度(Jc)が得られていた。また、4.2Kで±3Tに磁場を変化させ、交流損失を測定したところ、交流損失は385mJ/cmとなった。
【0051】
比較例1
実施例1と同様にして、Cu/Nb複合線およびCu/NbTi複合線(六角対辺:4.3mm)を作製した後、400mmの長さに裁断した。
【0052】
実施例1と同様に、Cu製外筒(外径:143mm、内径:133mm)およびCu製内筒(外径:68mm、内径:61mm)からなるCu中空ビレットの前記Cu製外筒の内面側に、Nbからなる拡散障壁層(厚さ:5mm)を貼付けて配置し、前記Cu製内筒の周りに、前記Cu/Nb複合線を1602本束ねて挿入し、その一部(合計54本)をCu/NbTi複合線で置換えた。この置換に際しては、Cu/NbTi複合線が超電導マトリクス内に均等となるように配置した。
【0053】
このビレットをパイプ押出し加工した後、Sn基金属芯を挿入して更に伸線し、3.5mm対辺の六角断面形状の複合線材(モノエレメント前駆体)を作製した。
【0054】
次いで、この複合線材を裁断した後、更に19本束ねてCu製パイプ(外径:21mm、内径:18mm)に挿入した後、押出しによって縮径加工して外径:1mmの複合線材(マルチエレメント前駆体)とした(前記図4参照)。
【0055】
得られたマルチエレメント前駆体(外径:1mmのもの)を、670℃で200時間熱処理(拡散熱処理)を施して、NbSn超電導線材とした。得られたNbSn超電導線材について、外部磁場12T(テスラ)を印加した状態で臨界電流(Ic)を測定し、線材断面の非銅部の面積でIcを除して臨界電流密度(Jc)の評価を行った。その結果、温度4.2Kでの臨界電流密度(Jc)は、1510A/mmの高い臨界電流密度(Jc)が得られていた。また、4.2Kで±3Tに磁場を変化させ、交流損失を測定したところ、交流損失は903mJ/cmとなった。
【0056】
比較例2
実施例1と同様にして、Cu/Nb複合線およびCu/NbTi複合線(六角対辺:4.3mm)を作製した後、400mmの長さに裁断した。
【0057】
実施例1と同様に、Cu製外筒(外径:143mm、内径:133mm)およびCu製内筒(外径:68mm、内径:61mm)からなるCu中空ビレットの前記Cu製外筒の内面側に、Nbからなる拡散障壁層(厚さ:5mm)を貼付けて配置すると共に、Ta−40原子%Nbのシートをフィン状に配置した後、前記Cu製内筒の周りに、前記Cu/Nb複合線を1602本束ねて挿入し、その一部(合計54本)をCu/NbTi複合線で置換えた。この置換に際しては、Cu/NbTi複合線が超電導マトリクス内に均等となるように配置した。
【0058】
このビレットをパイプ押出し加工した後、Sn基金属芯を挿入して更に伸線し、3.5mm対辺の六角断面形状の複合線材(モノエレメント前駆体)を作製した。
【0059】
次いで、この複合線材を裁断した後、更に19本束ねてCu製パイプ(外径:21mm、内径:18mm)に挿入した後、押出しによって縮径加工して外径:1mmの複合線材(マルチエレメント前駆体)とした(前記図4参照)。
【0060】
得られたマルチエレメント前駆体(外径:1mmのもの)を、670℃で200時間熱処理(拡散熱処理)を施して、NbSn超電導線材とした。得られたNbSn超電導線材について、外部磁場12T(テスラ)を印加した状態で臨界電流(Ic)を測定し、線材断面の非銅部の面積でIcを除して臨界電流密度(Jc)の評価を行った。その結果、温度4.2Kでの臨界電流密度(Jc)は、1321A/mmの臨界電流密度(Jc)であった。また、4.2Kで±3Tに磁場を変化させ、交流損失を測定したところ、交流損失は378mJ/cmとなった。
【図面の簡単な説明】
【0061】
【図1】内部拡散法に適用される超電導線材製造用前駆体(モノエレメント前駆体)の構成例を模式的に示した断面図である。
【図2】内部拡散法に適用される超電導線材製造用前駆体(モノエレメント前駆体)の他の構成例を模式的に示した断面図である。
【図3】内部拡散法に適用される超電導線材製造用前駆体(マルチエレメント前駆体)の構成例を模式的に示した断面図である。
【図4】内部拡散法に適用される超電導線材製造用前駆体(マルチエレメント前駆体)の他の構成例を模式的に示した断面図である。
【図5】従来技術における超電導線材製造用前駆体(モノエレメント前駆体)の構成例を模式的に示した断面図である。
【図6】従来技術における超電導線材製造用前駆体(モノエレメント前駆体)の他の構成例を模式的に示した断面図である。
【図7】従来技術銃の超電導線材製造用前駆体(モノエレメント前駆体)の更に他の構成例を模式的に示した断面図である。
【図8】本発明の超電導線材製造用前駆体(モノエレメント前駆体)の構成例を模式的に示した断面図である。
【図9】本発明の超電導線材製造用前駆体(モノエレメント前駆体)の他の構成例を模式的に示した断面図である。
【図10】NbTi合金芯8aの要部の構成を説明するための図である。
【図11】本発明の超電導線材製造用前駆体(モノエレメント前駆体)の更に他の構成例を模式的に示した断面図である。
【図12】本発明の超電導線材製造用前駆体(モノエレメント前駆体)の他の構成例を模式的に示した断面図である。
【図13】本発明の超電導線材製造用前駆体(マルチエレメント前駆体)の構成例を模式的に示した断面図である。
【図14】本発明の超電導線材製造用前駆体(マルチエレメント前駆体)の他の構成例を模式的に示した断面図である。
【符号の説明】
【0062】
1,1a〜1c モノエレメント前駆体
2 Nb基金属芯
3 Sn基金属芯
4 Cu基合金(Cu母材)
4a 安定化銅
5 Cuマトリクス
6,6a,15 拡散障壁層
8,8a NbTi合金芯
12 NbTi合金芯材
10,10a,10b シート状層
11,11a,11b マルチエレメント前駆体
13 Cu被覆層

【特許請求の範囲】
【請求項1】
内部拡散法によってNbSn超電導線材を製造する際に用いる超電導線材製造用前駆体であって、CuまたはCu基合金中に、1本または複数本のNbまたはNb基合金芯と、1本または複数本のSnまたはSn基合金芯が、相互に接触しないように配置された超電導マトリクス部と、その外周に安定化銅層を有する超電導線材製造用前駆体において、前記超電導マトリクス部断面内のSnまたはSn基合金芯を中心にして、その近傍から半径方向外側に向けて、NbTi合金芯材を連結して構成される電流遮蔽領域が少なくとも1箇所配置されたものであることを特徴とするNbSn超電導線材製造用前駆体。
【請求項2】
前記NbTi合金芯材は、中心に配置されるNbTi合金芯部と、その周囲に配置されるCu被覆層からなるものである請求項1に記載の超電導線材製造用前駆体。
【請求項3】
前記NbTi合金芯部とCu被覆層の間に、Nbからなる拡散障壁層を介在させたものである請求項2に記載の超電導線材製造用前駆体。
【請求項4】
前記NbTi合金芯材を連結して構成される電流遮蔽領域は2箇所以上配置され、超電導マトリクス部断面内の各SnまたはSn基合金芯を中心にした周囲の領域を周方向に等分割するように構成させる請求項1〜3のいずれかに記載の超電導線材製造用前駆体。
【請求項5】
前記超電導マトリクス部と安定化銅層の間に拡散障壁層を配置したものである請求項1〜4のいずれかに記載の超電導線材製造用前駆体。
【請求項6】
請求項1〜5にいずれかに記載の超電導線材製造用前駆体が、CuまたはCu基合金中に複数本配置されたものである超電導線材製造用前駆体。
【請求項7】
請求項1〜6のいずれかに記載の超電導線材製造用前駆体を、熱処理することによってNbSn系超電導相を形成することを特徴とするNbSn超電導線材の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2007−149494(P2007−149494A)
【公開日】平成19年6月14日(2007.6.14)
【国際特許分類】
【出願番号】特願2005−342046(P2005−342046)
【出願日】平成17年11月28日(2005.11.28)
【出願人】(000001199)株式会社神戸製鋼所 (5,860)
【Fターム(参考)】