説明

RFIDタグおよびアンテナ配置方法

【課題】複数の周波数帯域に対応し、小型で十分な性能を発揮するRFIDタグおよびアンテナ配置方法を提供すること。
【解決手段】アンテナ間にスペーサ140を配置することによってアンテナ間の干渉を回避するように構成したので、特定の周波数に対応した複数のアンテナを設置面積が最少となるように自由に配置することができ、もって、複数の周波数帯域に対応し、小型で十分な性能を発揮するRFIDタグを提供することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数のアンテナを備えたRFIDタグおよびそのRFIDタグにおけるアンテナ配置方法に関し、特に、複数の周波数帯域に対応し、小型で十分な性能を発揮するRFIDタグおよびアンテナ配置方法に関するものである。
【背景技術】
【0002】
近年、従来のバーコードの機能を置き換える商品識別技術として、RFID(Radio Frequency Identification)タグが注目されているが、これは、単なるバーコードの置き換えのみならず、従来の物品管理の効率を大きく変革するものと期待されている。RFIDタグは、小型のIC(Integrated Circuit)チップをアンテナと共にカードなどの形状の内部に収めたものであり、電磁界及び電波を介してリーダライタから非接触で情報を読み出したり、書き込んだりする。また、パッシブ型RFIDの場合には、バッテリーを内臓せずに、リーダライタから送信される電磁界及び電波をICチップの電力源として使用するため、薄くて小型の形状を実現できることができる。
【0003】
一般にパッシブ型RFIDタグで利用される周波数帯域は、複数存在し、それぞれ異なる特性をもっている。たとえば、マイクロ波帯の2.45GHzは、比較的長い通信距離を実現できる反面、ISM(Industrial, Scientific and Medical)バンドとしてRFID機器以外の通信機器や電子レンジ等にも使用されており、これらの機器が設置されている環境においては、その影響を大きく受けることにより、通信性能が劣化する場合もある。また、水により吸収される特性も持ち合わせているので、水分が多く存在する環境では、RFIDタグとリーダライタとの通信が不安定となる場合もある。
【0004】
HF(High Frequency)帯域の13.56MHzは、通信方式が電磁界による電磁誘導を利用したもので、交信距離が短い反面、水の影響を受けにくいが、金属物が使用環境に存在した場合には、その影響を強く受け、通信距離が著しく短くなる場合や通信不能となる場合がある。UHF(Ultra High Frequency)帯の950〜956MHzは、マイクロ波帯と同様に、長い通信距離を実現できるものの、電波による通信であるために、使用環境に水が存在した場合には、マイクロ波帯ほど強く影響は受けないものの、通信エラーが発生する場合もある。
【0005】
一般的なパッシブ型RFIDタグは、単一の周波数帯域のみに対応するため、実際の使用環境において十分な機能を発揮できない場合がある。たとえば、マイクロ波帯を使用した場合は、水に濡れてしまうと、電波が水に吸収される等の効果により、タグとリーダライタとの通信ができず、情報の読出しと書き込みが非常に困難になる。また、HF帯を使用した場合は、タグを適用する物品が金属であったり、近くに金属があったりすると、リーダライタから発生する電磁界によるタグ側アンテナの起電が十分できずに、情報の読み書きが難しくなる。
【0006】
様々な使用環境においてRFIDタグを適切に機能させるには、RFIDタグを複数の周波数帯域に対応させるとよい。RFIDタグを複数の周波数帯域に対応させる技術は、既に存在している。特許文献1では、並列接続することで相互干渉を回避した複数のアンテナを一つの形状の中に収める技術が開示されている。また、非特許文献1では、アンテナの形状を工夫することにより、一つのアンテナで複数の周波数帯に対応するRFIDタグが紹介されている。
【0007】
【特許文献1】特開2001−28037号公報
【非特許文献1】“TOPPAN FORMS RFID-ing / RFIDタグ製造からシステム構築まで”、[online]、トッパン・フォームズ株式会社、[平成17年3月25日検索]、インターネット<URL:http://rfid.toppan-f.co.jp/tech/mm/c_mm.html>
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかしながら、特許文献1で開示された技術は、複数のアンテナを並列接続する必要があるため、RFIDタグのサイズが大きくなってしまうという問題がある。たとえば、RFIDタグを小型化するためには、この問題を解決することは極めて重要である。また、非特許文献1のように、一つのアンテナで複数の周波数帯に対応する方式は、アンテナの設計自由度が制限されるために、各周波数の特性に応じた最適な形状をとることが困難となるため、十分な性能を発揮させることが難しい。
【0009】
一般に、アンテナ設計に必要なパラメータは、マイクロ波帯/UHF帯とHF帯とで異なる。すなわち、前者はアンテナ利得を下げることなく、RFIDチップの入力端子とのインピーダンスをマッチングすることが必要となるが、後者は共振周波数のマッチングを確保しつつ、アンテナコイルの巻き数、アンテナの大きさの調整により電磁誘導で十分に起電させることが必要となる。したがって、各周波数に対応しそれぞれの通信性能を落とすことなく、各周波数にチューニングされたアンテナをタグの中に混載させるためには、それぞれのアンテナの設計自由度を損なうことなく、さまざまなタグ形状に対応させることが求められる。
【0010】
この発明は、上述した従来技術による問題点を解消するためになされたものであり、複数の周波数帯域に対応し、小型で十分な性能を発揮するパッシブ型RFIDタグおよびそのアンテナ配置方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
上述した課題を解決し、目的を達成するため、本発明は、複数のアンテナを備えたパッシブ型RFIDタグであって、アンテナ間の干渉を防止する干渉防止手段を備えたことを特徴とする。
【0012】
また、本発明は、上記の発明において、前記干渉防止手段は、アンテナ間に絶縁物を配置することでアンテナ間の干渉を防止することを特徴とする。
【0013】
また、本発明は、上記の発明において、前記絶縁物は、絶縁性のある樹脂素材からなることを特徴とする。
【0014】
また、本発明は、上記の発明において、前記樹脂素材は、ポリエチレンテレフタレートであることを特徴とする。
【0015】
また、本発明は、上記の発明において、前記絶縁物は、少なくとも2mm以上の厚さを有することを特徴とする。
【0016】
また、本発明は、上記の発明において、前記絶縁物は、セラミックからなることを特徴とする。
【0017】
また、本発明は、上記の発明において、前記絶縁物は、絶縁紙からなることを特徴とする。
【0018】
また、本発明は、上記の発明において、前記干渉防止手段は、当該のアンテナが送受信すべき周波数帯の電磁波を透過する素材をもちいてアンテナをコーティングすることにより、アンテナ間の干渉を防止することを特徴とする。
【0019】
また、本発明は、複数のアンテナを備えたRFIDタグにおけるアンテナ配置方法であって、アンテナ間に絶縁物を配置することでアンテナ間の干渉を防止することを特徴とする。
【0020】
また、本発明は、複数のアンテナを備えたパッシブ型RFIDタグにおけるアンテナ配置方法であって、当該のアンテナが送受信すべき周波数帯の電磁波を透過する素材をもちいてアンテナをコーティングすることにより、アンテナ間で干渉が抑止されるスペースを確保することを特徴とする。
【0021】
この発明によれば、絶縁物やコーティングによってアンテナ間の干渉を回避するように構成したので、特定の周波数に対応した複数のアンテナを設置面積が最少となるように自由に配置することができ、これにより、複数の周波数帯域に対応し、小型で十分な性能を発揮するパッシブ型RFIDタグを提供することができる。
【発明の効果】
【0022】
本発明によれば、絶縁物やコーティングによってアンテナ間の干渉を回避するように構成したので、特定の周波数に対応した複数のアンテナを設置面積が最少となるように自由に配置することができ、これにより、複数の周波数帯域に対応し、小型で十分な性能を発揮するRFIDタグを提供することができるという効果を奏する。
【発明を実施するための最良の形態】
【0023】
以下に添付図面を参照して、この発明に係るRFIDタグおよびアンテナ配置方法の好適な実施の形態を詳細に説明する。なお、以下の実施例では、マイクロ波帯域(2.45GHz)、UHF帯域(950〜956MHz)およびHF帯域(13.56MHz)という3つの周波数帯域に対応したRFIDタグを例にして説明をおこなうが、組み合わせる周波数帯が異なっていても本発明は有効である。
【実施例】
【0024】
図1は、本実施例に係るRFIDタグ100aの平面図である。同図に示すように、RFIDタグ100aは、HF帯域用コイルアンテナ111と、HF帯域用RFIDチップ112と、UHF帯域用ダイポールアンテナ121と、UHF帯域用RFIDチップ122と、マイクロ波帯域用ダイポールアンテナ131と、マイクロ波帯域用RFIDチップ132とを有する。
【0025】
HF帯域用コイルアンテナ111は、RFIDチップ内の回路動作と信号を送信するための電力をリーダライタから発する電磁界を受けて、電磁誘導により起電する機能を持っていると同時に、タグからの電磁信号による送受信を実現する機能を持つものである。HF帯域用RFIDチップ112は、HF帯域用コイルアンテナ111を介しての通信を制御するとともに、所定の情報を記憶する不揮発メモリ回路を備えたICチップである。本実施例では、リーダライタとタグ間での通信で使用される電磁界の周波数は13.56MHzであり、タグアンテナの共進周波数は13.56MHzに調整している。
【0026】
UHF帯域用アンテナ121は、UHF帯域の電波を送受信するのに適した形状のダイポールアンテナであり、UHF帯域用RFIDチップ122は、UHF帯域用ダイポールアンテナ121を介してリーダライタとの通信を制御するとともに、所定の情報を記憶する不揮発メモリを内蔵したICチップである。このダイポールアンテナは950−956MHz帯域の電波長を考慮した長さとしており、この電波帯域では、電波の送受信に十分必要なアンテナゲインとなるように設計している。
【0027】
マイクロ波帯域用ダイポールアンテナ131は、マイクロ波帯域の電磁波を送受信するのに適した形状のダイポールアンテナであり、マイクロ波帯域用RFIDチップ132は、マイクロ波帯域用ダイポールアンテナ131を介しての通信を制御するとともに、所定の情報を記憶する不揮発メモリを内蔵したICチップである。
【0028】
このように、RFIDタグ100aは、HF帯域用コイルアンテナ111と、UHF帯域用ダイポールアンテナ121と、マイクロ波帯域用ダイポールアンテナ131という3つのアンテナを有し、これらを並列に配置せず、同一タグ内に重ねて配置することによってサイズが大きくなることを回避している。
【0029】
このように複数のアンテナを重ねて配置した場合、アンテナ同士の干渉やカップリングによってアンテナが機能しなくなる恐れがある。アンテナ間のスペースが近接しすぎると、アンテナ間の電気的結合により、結合性容量がアンテナの容量として見えるため、UHF帯やマイクロ波帯のアンテナでは、あらかじめチューニングしたインピーダンスから大きくずれ、チップ側回路へ電力を十分に供給できずに、タグの通信特性の劣化、或いは通信応答しない場合もある。また、HF帯では、アンテナの共振周波数がずれ、リーダライタとの通信性能が著しく低下する場合もあるが、本実施例に係るRFIDタグ100aは、アンテナ間に絶縁性のスペーサを配置することで、この問題を解決している。
【0030】
図2は、本実施例に係るRFIDタグ100aの断面図である。同図に示すように、RFIDタグ100aは、HF帯域用コイルアンテナ111とUHF帯域用ダイポールアンテナ121の間と、HF帯域用コイルアンテナ111とマイクロ波帯域用ダイポールアンテナ131の間にスペーサ140を配置している。
【0031】
このスペーサ140は、電磁波の干渉を回避するために、絶縁性と所定の厚みを必要とする。スペーサ140の素材は、たとえば、ポリエチレンテレフタレート(PET)などの樹脂を利用することができる。スペーサ140の素材を樹脂とした場合、2mm以上の厚さがあれば電磁波の干渉を回避することができる。スペーサ140の素材は、樹脂以外に、たとえば、セラミックや絶縁紙などであってもよい。また、今回の実施例では、スペーサにより確保されるスペース厚みを2mmとしているが、スペーサ材の誘電率を変化させることにより、その厚みも制御することができる。すなわち、誘電率を小さくすることにより、スペース厚みを薄くできる。
【0032】
電磁波の干渉を回避するには、スペーサを使用する手法以外に、アンテナをコーティングする手法も有効である。図3は、コーティングにより電磁波干渉を回避する場合のRFIDタグ100bの断面図である。RFIDタグ100bは、本実施例に係るRFIDタグ100aと同様のアンテナを内蔵したRFIDタグである。
【0033】
同図に示すように、HF帯域用コイルアンテナ111は、コーティング150を施されており、UHF帯域用ダイポールアンテナ121やマイクロ波帯域用ダイポールアンテナ131と直接接触しないようになっている。このコーティングの素材は、HF帯域用コイルアンテナ111が送受信する周波数帯域の電磁波を透過させ、他の周波数帯域の電磁波は遮蔽する特性をもつ。
【0034】
上述してきたように、本実施例では、RFIDタグ内に、それぞれの周波数帯域に適した形状のアンテナを重ねて配置し、スペーサやコーティングによって電磁波の干渉を回避するように構成したので、複数の周波数帯域に対応し、小型で十分な通信性能を発揮するRFIDタグを提供することができる。
【0035】
また、このようにRFIDタグ内に複数のアンテナ及びRFIDチップを備えることで動作不良に対する二重化対策がとられることとなり、信頼性も向上する。
【0036】
なお、本実施例ではアンテナごとにRFIDチップを備えた構成としているが、複数のアンテナが一つのRFIDチップを共用する構成とすることもできる。
【産業上の利用可能性】
【0037】
以上のように、本発明に係るRFIDタグおよびアンテナ配置方法は、複数の周波数帯への対応が必要な場合に有用であり、特に、小型で十分な性能を発揮するRFIDタグが必要な場合に適している。
【図面の簡単な説明】
【0038】
【図1】本実施例に係るRFIDタグの平面図である。
【図2】本実施例に係るRFIDタグの断面図である。
【図3】コーティングにより電磁波干渉を回避する場合のRFIDタグの断面図である。
【符号の説明】
【0039】
100a、100b RFIDタグ
111 HF帯域用コイルアンテナ
112 HF帯域用RFIDチップ
121 UHF帯域用ダイポールアンテナ
122 UHF帯域用RFIDチップ
131 マイクロ波帯域用ダイポールアンテナ
132 マイクロ波帯域用RFIDチップ
140 スペーサ
150 コーティング

【特許請求の範囲】
【請求項1】
複数のアンテナを備えたRFIDタグであって、
アンテナ間の干渉を防止する干渉防止手段
を備えたことを特徴とするRFIDタグ。
【請求項2】
前記干渉防止手段は、アンテナ間に絶縁物を配置することでアンテナ間の干渉を防止することを特徴とする請求項1に記載のRFIDタグ。
【請求項3】
前記絶縁物は、絶縁性のある樹脂素材からなることを特徴とする請求項2に記載のRFIDタグ。
【請求項4】
前記樹脂素材は、ポリエチレンテレフタレートであることを特徴とする請求項3に記載のRFIDタグ。
【請求項5】
前記絶縁物は、少なくとも2mmの厚さを有することを特徴とする請求項3または4に記載のRFIDタグ。
【請求項6】
前記絶縁物は、セラミックからなることを特徴とする請求項2に記載のRFIDタグ。
【請求項7】
前記絶縁物は、絶縁紙からなることを特徴とする請求項2に記載のRFIDタグ。
【請求項8】
前記干渉防止手段は、当該のアンテナが送受信すべき周波数帯の電磁波を透過する素材をもちいてアンテナをコーティングすることにより、アンテナ間の干渉を防止することを特徴とする請求項1に記載のRFIDタグ。
【請求項9】
複数のアンテナを備えたRFIDタグにおけるアンテナ配置方法であって、アンテナ間に絶縁物を配置することでアンテナ間の干渉を防止することを特徴とするアンテナ配置方法。
【請求項10】
複数のアンテナを備えたRFIDタグにおけるアンテナ配置方法であって、当該のアンテナが送受信すべき周波数帯の電磁波を透過する素材をもちいてアンテナをコーティングすることにより、アンテナ間の干渉を防止することを特徴とするアンテナ配置方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2006−295729(P2006−295729A)
【公開日】平成18年10月26日(2006.10.26)
【国際特許分類】
【出願番号】特願2005−116142(P2005−116142)
【出願日】平成17年4月13日(2005.4.13)
【出願人】(000005223)富士通株式会社 (25,993)
【Fターム(参考)】