説明

Fターム[2G016CC28]の内容

Fターム[2G016CC28]に分類される特許

121 - 140 / 966


【課題】二次電池の状態を判定する技術を提供する。
【解決手段】この二次電池システム10は、直列に接続された複数の二次電池50と、複数の二次電池50の電圧値を順次測定する電圧計を備えた二次電池システム10である。この二次電池システム10では、二次電池50の状態を判定する際に、各二次電池50の電圧値Vを測定して、その差分電圧値ΔVを算出する。また、当該差分電圧値ΔVを差分電圧値ΔVの算出に用いた期間ΔTで除して、判定値Hを算出し、当該判定値Hを用いて二次電池50の状態を判定する。差分電圧値ΔVは、二次電池50の内部抵抗に比例することから、判定値Hを用いて二次電池50の状態を判定することができる。 (もっと読む)


【課題】簡易な方法で電池の充電率(SOC)を得る。
【解決手段】電極体を内包したセルケース6の積層方向面の歪を検知することができる歪ゲージ9aと、歪ゲージ9aで検知される歪と二次電池1の充電率との関係を示す関係情報Fが記憶されているメモリ12と、歪ゲージ9aで実際に検知された歪と関係情報Fとを用いて、充電率を求める演算部CPU11と、を備えていることを特徴とする通電状態の差異の充電率も得ることができ、検知コストが抑制された、電気自動車に搭載できる二次電池システム。 (もっと読む)


【課題】組電池を構成する二次電池を交換する際に、当該組電池の性能をよりよく引き出すことができるようにする。
【解決手段】組電池10(組電池)を構成する電池モジュール(二次電池)を交換する際、制御部350が、組電池10の具備する残りの電池モジュールの使用履歴や特性に基づいて、当該残りの電池モジュールの特性に近い特性を有する電池モジュールを、在庫電池群40の収納する電池モジュールから選択する。適当な電池モジュールが無い場合は、電池処理装置20が、電池モジュールに対するエージング処理を行うことにより、当該残りの電池モジュールの特性に近い特性を有する電池モジュールを生成する。組電池10の具備する電池モジュールの特性を揃えることにより、組電池10の性能をよりよく引き出すことができる。 (もっと読む)


【課題】電池モジュールを構成する電池セル単位で劣化度を高精度で、且つ、手軽に評価可能な電池セル制御装置、及び該電池セル制御装置が搭載された電池セルを提供する。
【解決手段】本発明の電池セル制御装置(10)は、二次電池セル(1)に搭載され、内部抵抗検出手段(11)によって検出した内部抵抗値に基づいて、電池セルの劣化度を判定する。特に、検出した内部抵抗値、充電度及び温度を履歴データとして記憶手段(14)に記憶し、内部抵抗値を充電度及び温度によって正規化することによって劣化度を算出し、判定信号を出力する信号出力手段(16)を備えることを特徴とする。 (もっと読む)


【課題】 非水電解液型二次電池の電解液の液枯れを,安価に検知することができる非水電解液型二次電池システムおよびこれを用いた車両を提供すること。
【解決手段】 正極にスピネル系の活物質を有する非水電解液型二次電池の液枯れ状態では,その充放電時の残電池容量と電池電圧との関係において,電解液の量が適正である状態に比して特有の挙動を示す。よって,このスピネル系における特有の挙動を検出することにより,非水電解液型二次電池の液枯れを検知する。 (もっと読む)


【課題】二次電池が静定状態であるか否かによらず、二次電池の劣化による満充電容量の変化を加味した充電率の推定を行う。
【解決手段】SOC変化量演算部104は、容量演算周期の間のSOCの変化量を求める。満充電容量演算部106は、当該変化量を用いて二次電池の満充電容量を演算する。また、電流値積算部105は、容量演算周期の間の電流値を積算する。そして、SOCI演算部110は、当該満充電容量及び電流積算値を用いて、二次電池のSOCを演算する。 (もっと読む)


【課題】セル電池のリミッタを動作させずに、精度良く劣化度の推定を行う。
【解決手段】電流値特定部105は、セル電池11の内部抵抗を変化させる要因となるSOC及び温度に応じて、セル電池11に印加する周期電流の振幅、すなわち印加する電流の最大値を決定する。そして、周期電流印加部106は、電流値特定部105が特定した振幅を有する周期電流をセル電池に印加し、劣化推定部108は、その結果に基づいてセル電池11の劣化度を推定する。 (もっと読む)


【課題】キャパシタの劣化の程度を精度よく判定することが可能な充電システム、電子機器および充電装置を提供する。
【解決手段】充電可能な内蔵電源24を内蔵する電子機器(放射線画像撮影装置1)と、内蔵電源24への充電を制御する充電制御回路81と、内蔵電源24の電圧を検出する電圧検出回路82と、内蔵電源24の劣化の程度を判定する判定部(本体制御部22a)と、充電制御回路81を介して内蔵電源24に電力を供給する充電装置(クレードル60)と、を備え、判定部は、充電制御回路81による定電流充電時に電圧検出回路82の検出結果に基づき内蔵電源24の電圧上昇率を取得するとともに、電圧検出回路82により検出される内蔵電源24の電圧に応じて所定の閾値を設定し、取得した内蔵電源24の電圧上昇率と、設定した所定の閾値との比較により内蔵電源24の劣化の程度を判定するように構成されている。 (もっと読む)


【課題】二次電池の劣化を加味したSOVの推定を行う。
【解決手段】静定判定部105は、二次電池が静定状態であるか否かを判定する。また、SOCV演算部104は、二次電池の電圧を用いて二次電池のSOCを演算する。そして、満充電容量推定部107は、静定判定部105によって二次電池が静定状態であると判定された場合に、SOCV演算部104が演算したSOVを用いて、二次電池の満充電容量を推定する。SOCI演算部103は、満充電容量推定部107によって推定された満充電容量を用いてSOCを演算する。 (もっと読む)


【課題】複数の単電池を直列に接続した組電池の充放電制御において、SOCの上限値および下限値に対し大きなマージンを設定することなく充放電制御を行うことを可能とする。
【解決手段】
本発明による組電池の状態検出方法においては、組電池の各々の単電池の端子電圧をセルコントローラで検出し、この検出された各々の単電池の端子電圧のバラツキの大きさと組電池を流れる充放電電流から、各々の単電池の内部抵抗を算出し、この各々の単電池の内部抵抗と組電池の残存容量とから、各々の単電池の残存容量を算出し、この各々の単電池の残存容量から算出される各々の単電池の最大許容放電電流および最大許容充電電流の内、最も小さい最大許容放電電流と最も小さい最大許容充電電流を越えないように充放電電流を制御する。 (もっと読む)


【課題】第1デバイスの昇圧回路を小型化できる複合デバイスシステムを提供することを目的とする。
【解決手段】書き換え可能な不揮発性メモリ22を有する第1デバイス11と第1デバイスに電源を供給する第2デバイス12とを接続した複合デバイスシステムであって、第2デバイス12は、外部から供給される第1電源を安定化し第1電源より低い第2電源として記第1デバイスに供給する電源回路33と、第1デバイスから送信される制御データを受信する通信回路31と、制御データによりオン/オフを切り換えてオン時に外部から供給される第1電源を第1デバイスに供給するスイッチ34とを有し、不揮発性メモリへのデータの書き込み時に第1デバイスからの制御データを通信回路で受信してスイッチをオンし第1電源を前記第1デバイスに供給する。 (もっと読む)


【課題】リチウムイオン電池の動作状態をリアルタイムで監視,表示できるようにして電池事故の拡大を防止し、適切な充放電動作を可能として電池寿命の延伸を図る。
【解決手段】電池内部抵抗を基準内部抵抗値として設定しておき、この基準内部抵抗値と所定の充放電電流とに基づき予め作成された基準I−V特性パターンを予め記憶しておくパターン部9を設け、別途検出される電池実動作中の電圧,電流で示される動作点、または同電圧,電流から作成される実I−V特性パターンを監視装置52により作成し、上記基準I−V特性パターンとともに表示装置53に表示し、電池の充放電動作状態がリアルタイムで監視できるようにする。 (もっと読む)


【課題】SOCの変化に対して電圧変動が小さく安定した出力特性領域において充電状態の高精度な検出を可能とする組電池装置を提供する。
【解決手段】組電池装置200は、SOC(充電状態)に対する電圧変化幅が所定の値以下である低変化領域を有する充電特性を備える複数個の二次電池10と、二次電池10への充電の際に、二次電池10について検出された電圧及び電流を用いて、二次電池10のSOCを算出する演算装置42と、を少なくとも備える。演算装置42は、低変化領域において充電を実施する際に、電圧の時間変化率が予め定めた閾値を所定の時間、上回った場合に、二次電池10のSOCを、当該予め定めた閾値に対して予め対応付けられたSOCの規定値に決定する。 (もっと読む)


【課題】バッテリ装置の負荷装置の稼働中に、該バッテリ装置を構成する各バンクの内部抵抗の推定を可能とすること。
【解決手段】複数のバンク12が並列接続されて構成されるバッテリ装置10において、バッテリ装置10の稼働中(放電/充電中)に、バンク12の接続/開放時の各バンクの電流I及び電圧Vの変化量ΔI,ΔVから、バンク12の内部抵抗Rを算出する。 (もっと読む)


【課題】蓄電装置の充電時間を正確に予測する。
【解決手段】第1ECUは、充電制御が完了した場合に(S200にてYES)、今回の充電実績時間と充電予測時間とを取得するステップ(S202)と、充電実績時間が所定値よりも大きい場合に(S204にてYES)、充電予測時間の算出に用いられる修正係数を算出するステップ(S206)と、算出された修正係数を用いてメモリに記憶された値を更新するステップ(S208)とを含む、プログラムを実行する。 (もっと読む)


【課題】管理者による蓄電池交換時期の判断に資する作業機械を提供すること。
【解決手段】エンジン7の駆動力及びバッテリ15に蓄えられた電気エネルギーのいずれか一方又は双方によって駆動されるアクチュエータ3を備える作業機械において、バッテリの現在の劣化度に基づいて将来における劣化度の変化を演算する劣化度変化演算部222と、劣化度の変化に基づいて将来におけるバッテリによる燃費向上率の変化を演算する燃費向上率変化演算部223と、複数種類のサイクルでバッテリを交換したそれぞれの場合について、将来の所定期間における累積ランニングコストの変化を燃費向上率の変化に基づいて算出するランニングコスト演算部224と、バッテリの交換サイクルごとに算出された累積ランニングコストの変化を交換サイクルごとに表示するモニタ23とを備える。 (もっと読む)


【課題】2次電池の充放電量(クーロン量)の積算を内部で行うことができ、任意のタイミングで積算したクーロン量を読み出すことができ、回路規模の縮小を可能とした低コスト化が見込めるクーロンカウンタを得る。
【解決手段】検出抵抗の両端に生じる電位差を入力電圧とし、該入力電圧に比例したカウント値を出力するクーロンカウンタ100aにおいて、該入力電圧を入力信号とし、該入力電圧に応じたデューティー比を有するパルス信号を出力デルタ−シグマ・モジュレータ100と、クロック信号の入力時に、該デルタ−シグマ・モジュレータの出力パルスがハイレベルであるときカウントアップし、該クロック信号の入力時に、該デルタ−シグマ・モジュレータの出力パルスがローレベルであるときカウントダウンするアップダウン・カウンタ101とを備えた。 (もっと読む)


【課題】非線形領域を含む二次電池の内部状態の演算精度を高めることができる電池状態推定装置を提供することである。
【解決手段】二次電池の電流を、電流計測値として検出する電流検出手段と、二次電池の端子電圧を、電圧計測値として検出する電圧検出手段と、二次電池の電池モデルを定義し、電流計測値および電圧計測値を、電池モデルに基づく状態変数フィルタを用いて、状態量変換して変換状態量を算出し、変換状態量から、電池モデルに基づく二次電池の端子電圧を電圧推定値として推定する端子電圧推定手段と、電圧計測値と電圧推定値との差分がゼロに収束するように、二次電池のパラメータを同定する同定手段と、二次電池の電流―電圧と特性のうちの非線形領域の存在割合を検出する非線形領域検出手段とを備え、端子電圧推定手段は、存在割合に応じて、状態変数フィルタのカットオフ周波数を設定する。 (もっと読む)


【課題】各電池セルと電池監視装置との間にRCフィルタを備えた構成において、どの経路にも関わらず、カットオフ周波数のバラツキを低減することができる構成を備えた電池監視装置を提供する。
【解決手段】各電池セル11のうちの直列接続された隣同士の電池セル11では、高電圧側の電池セル11の負極端子と低電圧側の電池セル11の正極端子とが共通化されて共通端子20に接続されている。そして、RCフィルタ回路40は、共通端子20が分岐されてそれぞれにRCフィルタを構成する抵抗41、42がそれぞれ接続され、これら各抵抗41、42にはそれぞれ異なる一対の検出端子61、62の一方の端子が接続されており、さらに、一対の検出端子61、62の端子間にRCフィルタを構成するコンデンサ43がそれぞれ接続されて構成されている。 (もっと読む)


【課題】各電池セルと電池監視装置との間にRCフィルタを備えた構成において、どの経路にも関わらずカットオフ周波数のバラツキを低減すると共に、回路の異常の有無の誤判定を防止する。
【解決手段】隣同士の電池セル11では、高電圧側の電池セル11の負極端子と低電圧側の電池セル11の正極端子とが共通化されて共通端子20に接続されている。そして、RCフィルタ回路40は、共通端子20が分岐されてそれぞれに抵抗41、42が接続され、各抵抗41、42にはそれぞれ異なる一対の検出端子61、62の一方の端子が接続され、さらに、一対の検出端子61、62の端子間にコンデンサ43が接続されている。また、2組の第1、第2検出端子63、64のうちの低電圧側の端子63a、64a同士に第1短絡スイッチ73が接続され、高電圧側の端子63b、64b同士に第2短絡スイッチ74が接続されている。 (もっと読む)


121 - 140 / 966