説明

Fターム[2G059CC04]の内容

光学的手段による材料の調査、分析 (110,381) | 検出物質 (6,138) | 無機物 (1,821) | CO、CO2 (416)

Fターム[2G059CC04]に分類される特許

401 - 416 / 416


【課題】 センサ特性によって変動するCO2濃度を補正する。
【解決手段】 光を発する光源10と、光を受光面にて受光すると共に、光の強度に応じたレベルの電気信号を発生させる第1およびIRセンサ21、22と、第2IRセンサ22の受光面上に配置され、CO2ガスの光吸収波長を含む光を通過させるCO2濃度依存フィルタ30と、第2IRセンサ22の起電圧を第1IRセンサ21の起電圧で割り算した値を電圧比とし、この電圧比を算出する比較部40と、を備えている。そして、温度センサ51および湿度センサ52にて第1IRセンサ21の温度および湿度を検出する。補正部60は、センサ特性として第1IRセンサ21における起電圧の温度特性および湿度特性を有し、第1IRセンサ21の起電圧、温度、湿度、そして起電圧の温度特性および湿度特性に基づき、電圧比の値を補正する。 (もっと読む)


本発明は信号強度と信号変調移相に関する情報測定による光センサーの検出に関する。提供された方法はCMOS及び/又はCCDイメージャーと異なった波長の照明を使用する。この装置は移相の非接触測定を実現してガス濃度を追う。
(もっと読む)


圧縮ポンプ2と、第1の空気制御部4と、二酸化炭素の除去装置6と、フィルタ8と、第1の冷却装置10と、少なくとも2つ以上の堆肥槽12と、少なくとも2つ以上の第2の冷却装置10’と、少なくとも2つ以上の第2の空気制御部14と、少なくとも2つ以上の非分散赤外線のガス分析機16と、捕集部18と、前記第1の空気制御部4、第2の空気制御部14、堆肥槽12に連設されるコンピュータ34とを含む、生分解度の測定装置を開示する。本発明によれば、二酸化炭素の量を非分散赤外線の分光分析法を利用して速やかに定量的に測定し、前記測定した結果が再現性を表すようにし、生分解性の高分子を実験して開発する過程において適切なデータを迅速に供給することができる効果がある。
(もっと読む)


下流に検出装置(7)が配置されたフィルタ装置(6)と、検出装置(7)に接続された評価装置(8)を備え、フィルタ装置(6)は、帯域フィルタとして構成され、それぞれ、通過帯域を有する第1のフィルタ(9)と第2のフィルタ(10)を具備しており、第1のフィルタ(9)は、所定のIR帯域を通過させ、第2のフィルタ(10)は一部を通過させず、検出装置は、それぞれ、フィルタ(9、10)と関連した2つの検出器(14、15)を具備しているIRセンサ(1)、とりわけCO2センサが説明される。その目的は、こうしたIRセンサの利用を単純化することにある。そのため、一方のフィルタ(10)の通過帯域が、もう一方のフィルタ(9)の通過帯域内に設定されており、評価装置(8)によって、検出器(14、15)の信号(S1、S2)の差が生じ、それが検出器(14)の信号(S1)に対して正規化される。
(もっと読む)


マルチモード光ファイバ(302)と、該マルチモード光ファイバ(302)内を伝搬する光の信号レベル変動であってモードノイズにより誘起された信号レベル変動を平均化する手段(308)とを含む、光学的モードノイズ平均化デバイス(300)。上記デバイスは、選択された期間に亙り上記マルチモード光ファイバ(302)の屈折率を循環的に変化させること、上記マルチモード光ファイバ(302)内の光分布をスクランブリングすること、または、その両方により、モードノイズにより誘起された信号レベル変動を平均化し得る。上記マルチモード光ファイバの屈折率は、該マルチモード光ファイバ(302)の温度を循環的に変化させることで循環的に変化され得る。代替的に、マルチモード光ファイバ(302)を循環的に操作することにより、屈折率が変更され得るか、または、該マルチモード光ファイバ内の光分布がスクランブリングされ得る。
(もっと読む)


自動車の排ガス組成を測定するための遠隔排ガス計測(RES)システムおよび方法を提供し、較正方法論を備え、周囲の温度効果および/または圧力効果を補正する。
(もっと読む)


流体(7)、すなわち分析対象の気体や液体の一定量を封入するための流体セル(1)が含まれている流体センサー、およびこのようなセンサーの製造方法である。流体センサーは、電磁波(4)が流体セル(1)中を通過するように配設された電磁エネルギー源(3)と、流体セル(1)を通過する電磁波を検知するための少なくとも一つの検知器(5)と、分析する流体が出入りするための少なくとも一つの開口部(2)とから構成される。流体センサーは、前記の少なくとも一つの検知器(5)に到達する電磁波の強度を評価し、および/または電磁エネルギー源(3)用の回路構成部材となる回路基板(8、10、11、12、13、14、15、16)とからも構成される。流体セル(1)の少なくとも一部は、回路基板(8、10、11、12、13、14、15、16)の基材に組み入れられている。

(もっと読む)


非分散形赤外線ガスセンサ用の特有な光キャビティと、二酸化炭素濃度が100ppmから2,000ppmでの試験結果を開示している。提案するセンサモジュールは、パルス継続時間が500msのときに最大電圧を示すが、パルス継続時間が200msで最大部分電圧変化量が得られ、18,000倍の増幅率を示す。二酸化炭素濃度が100ppmから2,000ppmの間で、センサモジュールの電圧差(V)は、パルス継続時間が200msでターンオフ時間が3秒のときに200mVとなる。
(もっと読む)


【解決手段】二酸化炭素13CO2と二酸化炭素12CO2 とを成分ガスとして含む被測定ガスをセルに導き、各成分ガスの測定に適した波長の透過光の強度を測定しデータ処理することによって、各成分ガスの濃度を測定する前処理として、ガス注入器21に一定の体積Vaの大気を吸い込み、セル11のガス排気口V6をふさぎ、ガス注入器21に蓄積された大気を、大気圧の大気が満たされたセル11に移送してセル内を加圧する。その加圧された圧力Pを測定し、同位体ガス分析測定を行うときに検量線を作成したときの被測定ガスの圧力P0と圧力Pとの比P0/Pを、前記体積Vaとセルの体積Vcとの和V0に乗じて、これからセルの体積Vcを引いてガス注入器21の一回のガス注入量を決定する。
【効果】大気圧の変動に基づく測定濃度変動を補正することができる。 (もっと読む)


自動非破壊ヘッドスペース分析のためのシステム及び方法。本システムは、複数の概ね光学的に透明な試験密閉容器(14)を容器コンベア(12)の検査前領域(16)、検査領域(18)及び検査後領域(20)の中を通して運搬し、かつ、少なくとも1つの基準密閉容器(30)を検査領域(18)の中を通して運搬する、容器コンベア(12)を含む。また、レーザ放射装置(42)、及び前記検査領域(18)に配置され前記レーザ放射装置(42)が容器移動経路Pと交差するようにレーザビームBを放射するように調整されたセンサ(48)を含む区域(26)も含む。前記コンベアは試験容器(14)及び基準容器(30)を前記区域(26)の中を通って交互に運搬する。

(もっと読む)


このガスセンサーは、少なくとも2つの光源と、投影光学部品と、少なくとも1つの光の入口を備える光反射室と、を備える。このガスセンサーは光反射室と共に働く検出器をさらに備え、この検出器を用いて光源からの光が検出され得る。前記投影光学部品を用いて室の光の入口にそれぞれ投影され得る少なくとも2つの光源を備える。 (もっと読む)


ガス検出装置は少なくとも1つの面発光レーザ(34、36)及び検出すべきガスを収納している検出域(48)を通過した光線(50、52)を検出するために少なくとも1つの光センサ(54、56)を含んで構成されている。第一の実施例ではこの光センサはホトダイオードであり、検出信号は電子微分演算器(64)より時間に関して微分され、その値を2つのロックイン増幅器(84、86)に送りF−検出及び2F−検出が生成される。Fはレーザ源の波長変調の周波数であり、得られた2つの測定信号を除した商は正確なガス濃度値を提供する。第二の実施例では、光センサは入射光を時間により微分した値に比例する検出信号を直接に提供する焦電センサである。このように第二の実施例では微分演算器を必要としない。
(もっと読む)


本発明はセンサ1を使用する測定方法に関する測定値に対して、特に「ドリフト」誤差に関する温度依存誤差補償を行う方法および電子配置6に関する。電子回路6は1つ以上のガスおよび/またはガス混合物の存在の確立および/またはガスまたはガス混合物の濃度の演算に適合する。選択した測定サイクルT1の間に発生し確立した最高測定値Mmaxまたは最低測定値Mminはメモリー69’に格納する。選択した期間T1の間に発生し評価した最低アナログ値または最高デジタル測定値を前記メモリー69’に格納し、選択した測定サイクルまたは期間T1の最後に発生し評価した測定値Mmax、Mminと、格納したアナログまたはA/D変換器を介したデジタルの制御値65’を比較し、評価した最低または最高測定値と前記格納した制御値の差を、次の期間T2に発生する測定値の関係および/または対応する測定値の補償K1の基礎として使用することを提案する。 (もっと読む)


サンプル領域における化学物質を検出するための光センサには、光を生成し、その光がサンプル領域を通過するように導くための放射体が含まれる。また、センサには、光がサンプル領域を通過した後、光を受光し、検出器が受光する光に対応する信号を生成するための検出器が含まれる。更に、センサには、放射体と検出器との間に配置された熱光学フィルタが含まれる。光学フィルタは、放射体からの光のフィルタ処理を選択的に行うための調整可能な通過帯域を有する。光学フィルタの通過帯域は、光学フィルタの温度を変更することによって調整可能である。また、センサには、光学フィルタの通過帯域を制御し、検出器からの検出信号を受信するためのコントローラが含まれる。コントローラは、光学フィルタの通過帯域を変調し、検出信号を分析して化学物質の吸収ピークが存在するかどうかを判定する。
(もっと読む)


本発明は、光学的なセンサ装置、特にサーモパイルセンサ装置であって、センサチップ装置(10;10´)が設けられており、該センサチップ装置(10;10´)が、光学的に透過性の照射範囲(OB;OB´)と、該照射範囲を取り囲むマウント範囲(RB;RB´)と、ワイヤボンディング範囲(BB)とを備えており、光学的に絶縁性のマウントフレーム(MLF;MLF´)が設けられており、該マウントフレーム(MLF;MLF´)が、チップ搭載範囲(DP;DP´)と多数の接続エレメント(AB;AB´;AB´´;AB´´´)とを備えており、光学的に絶縁性のパッケージ装置(MV;MV´;MV´´;MV´´´)が設けられている形式のものにおいて、センサチップ装置(10;10´)が、マウント範囲(RB;RB´)ではチップ搭載範囲(DP;DP´)に、ワイヤボンディング範囲(BB)では1つまたは複数の接続エレメント(AB;AB´;AB´´;AB´´´)にそれぞれ結合されており、チップ搭載範囲(DP;DP´)に、光学的に透過性の照射範囲(OB;OB´)の少なくとも一部が前記チップ搭載範囲(DP;DP´)によって覆われないように配置された窓(F;F´)が設けられており、ほぼ該窓(F;F´)を通じてのみ光学的な放射線がセンサチップ装置(10;10´)に入射し得るようにパッケージ装置(MV;MV´;MV´´;MV´´´)がセンサチップ装置(10;10´)とマウントフレーム(MLF;MLF´)とを取り囲んでいる
ことを特徴とする、光学的なセンサ装置を提供する。
(もっと読む)


四塩化チタンを製造する流動床反応装置(10)のガス状生成物中の一酸化炭素の二酸化炭素に対する濃度比を決定するための方法。反応装置の熱い流動床を赤外線の供給源として使用する。赤外線(18)は、反応装置の窓(15)を経て反応装置の上位部におけるガス状生成物を通過し、赤外分光計(19)に向かって誘導される。濃度比を使用して、反応装置に導入される冷たい四塩化チタンの量を制御することによって、流動床反応装置(10)の温度を制御することが可能である。
(もっと読む)


401 - 416 / 416