説明

Fターム[2G085BD01]の内容

粒子加速器 (3,302) | 真空 (101) | 真空室の形成 (72)

Fターム[2G085BD01]の下位に属するFターム

Fターム[2G085BD01]に分類される特許

21 - 40 / 49


ハイパーサーマル分子状水素を生成する方法を開示し、且つ他の結合を切断することなくC-H結合又はSi-H結合を選択的に切断するためのその使用を開示する。水素プラズマを維持し、プロトンを電場で抽出して、適切な運動エネルギーに加速させる。プロトンはドリフト領域に入り込んで、気相の分子状水素と衝突する。衝突カスケードによって、水素プラズマから抽出されたプロトンのフラックスより何倍も大きいフラックスを有する、ハイパーサーマル分子状水素の高フラックスが生成される。ハイパーサーマル分子状水素とプロトンとの公称のフラックス比は、ドリフト領域の水素圧力及びドリフト領域の長さによって制御される。プロトンの抽出エネルギーは、これらのハイパーサーマル分子によって共有され、その結果、ハイパーサーマル分子状水素の平均エネルギーは、プロトンの抽出エネルギー及び公称のフラックス比によって制御される。ハイパーサーマル分子状水素プロジェクタイルは、電荷を帯びていないので、ハイパーサーマル水素のフラックスを使用して、電気絶縁性生成物と導電性生成物の両方の表面改質を達成することができる。このハイパーサーマル分子状水素の高フラックスを生成する方法を適用して、基材上の望ましい一つ/複数の化学官能性を有する有機前駆体分子(又はシリコーン又はシラン分子)を衝撃すると、C-H結合又はSi-H結合は、ハイパーサーマル水素プロジェクタイルから前駆体分子の水素原子へのエネルギー付与の運動学的選択性のため優先的に開裂される。誘導された架橋反応によって、制御可能な架橋度を有し、且つ前駆体分子の望ましい一つ/複数の化学官能性を保持している安定な分子層が生成される。 (もっと読む)


【課題】電磁ノイズ遮蔽用仕切り板を荷電粒子加速器用真空チェンバのアンテ部に溶接を行うことなく取付けるための方法および構造を提供する。
【解決手段】電磁ノイズ遮蔽用仕切り板6として、排気孔6aを配列形成した所定幅の長尺状金属板を使用する。アンテ部3の上壁部内面および下壁部内面の相対向する部位にガイド溝3aをそれぞれ形成し、真空チェンバ1に加圧力を作用させて、各ガイド溝3a相互の間隔が拡がるように真空チェンバ1を弾性変形させる。拡げられた状態の各ガイド溝3aに沿ってスライドさせながら仕切り板6を各ガイド溝3a間に挿入した後、真空チェンバ1に対する加圧力を除き、これに伴って発生する弾性復元力によって仕切り板6を各ガイド溝3a間に挟持する。 (もっと読む)


【課題】低インピーダンス化を実現すると共に放熱性及び耐熱性に優れた、荷電粒子加速器用ビームパイプ内における電子又はイオン除去用電極の形成方法及びその電極を提供する。
【解決手段】荷電粒子加速器用のビームパイプ内における電子又はイオン除去用電極の形成方法であって、前記ビームパイプの内表面の一部に電気絶縁膜を形成する行程(S1)と、前記電気絶縁膜上に、金属の微粒子体を溶射することにより電極膜を形成する行程(S2)と、前記電極膜に電位を供給するための電力供給手段を設ける行程(S3)、の各行程を有する。 (もっと読む)


【課題】大電流かつ高エネルギの直流陽子加速器を提供する。
【解決手段】本発明における加速器システムは直流の高電圧・大電流の電力供給装置と、排出イオン加速管と、陽子イオン源と、双極子分解磁石と、高電圧端子に設置された真空ポンプとを有する。大電流・高エネルギの直流陽子ビームは、ホウ素中性子補足治療法(BNCT)、核共鳴吸収法(NRA)、及びシリコン分割のようなアプリケーションに応じて、多くの対象に指向することができる。 (もっと読む)


デュートリウムプラズマ等の、少なくとも部分的にプラズマ状態の材料を容れるコンテナを含む中性粒子発生器が開示される。ある態様では、コンテナ内に配置され、第1の中性粒子ビームを生成して、自身から放出する第1のカソードを設ける。オプションとして、コンテナ内に配置され、第2の中性粒子ビームを生成して、自身から放出する第2のカソードが設けられてもよく、および/または、コンテナ内に配置されるターゲットが設けられてもよい。ある態様では、第1のカソードおよび第2のカソードは、線上に対向するよう配置されることで、第1の中性粒子ビームを第2の中性粒子ビームと相互作用/衝突させ、該中性粒子の少なくとも一部を融合反応させて、放出される中性子を生成する。 (もっと読む)


本発明は、癌腫瘍の多軸荷電粒子照射治療と併用される荷電粒子ビーム入射方法及び装置を有する。陰イオン源は、陰イオン・ビーム源、真空システム、イオン・ビーム・フォーカス・レンズ、及び又は2連型加速器を備えている。陰イオン源は、陰イオン・ビームをフォーカスするために電場線を使用する。陰イオン源プラズマ室は磁性材料を有し、その磁性材料は高温プラズマ室及び低温プラズマ領域の間に磁場障壁を設ける。入射システム真空システム及びシンクロトロン真空システムは変換箔によって分離され、その変換箔において陰イオンが陽イオンに変換される。その箔は、入射システム真空室に高めの部分圧力及びシンクロトロン真空システムに低めの圧力を用意する真空管の端に貼付される。 (もっと読む)


本発明は、癌腫瘍の多軸荷電粒子照射治療の一部として使用される荷電粒子ビーム加速方法及び装置を有する。加速器は、方向転換磁石、エッジ・フォーカス磁石、磁場収束磁石、及び抽出の利点を有するシンクロトロン、及び、シンクロトロンの全体のサイズを最小にし、厳しく制御された陽子ビームを供給し、必要な磁場のサイズを直接低減し、必要な動作電力を直接低減し、及びシンクロトロンから陽子を抽出する処理中であってもシンクロトロンにおける陽子の連続的な加速を可能にし、抽出された荷電粒子ビームのエネルギー及び強度を独立して制御する制御要素を備えている。 (もっと読む)


本発明は、医療用同位体産生および核廃棄物の変換を含む他の用途に有用な小型高エネルギー陽子源を提供する。本発明は、燃料種を変化させることによって、高同位体中性子束を発生させるために使用可能なデバイスをさらに提供する。本発明は、18F、11C、15O、63Zn、124I、133Xe、111In、125I、131I、99Mo、および13Nを含むが、それらに限定されない、同位体の発生のための装置をさらに提供する。一実施形態において、核子を発生させる方法は、イオン源を作動させてイオンビームを産生することと、該イオンビームを好適なエネルギーまで加速して加速イオンビームを産出することと、該加速イオンビームを該ビームと反応する選択された核子導出標的材料を含む標的システムに向けて核子を産出することとを含む。
(もっと読む)


医療用アイソトープを産生するように動作可能であるハイブリッド原子炉は、ガスからイオンビームを産生するように動作可能なイオン源と、中性子を産生するようにイオンビームと相互作用するターゲットを含むターゲットチャンバと、ターゲットチャンバに近接して位置付けられ、核分裂反応を介して医療用アイソトープを産生するように中性子と相互作用する母材を含む放射化セルとを含む。減衰器は、放射化セルに近接して位置付けられ、核分裂反応を未臨界レベルで維持するように選択され、反射器は、ターゲットチャンバに近接して位置付けられ、放射化セルに向かって中性子を反射させるように選択され、減速材は、放射化セル、減衰器、および反射器を実質的に包囲する。
(もっと読む)


単色空間電荷で中性化された中性ビームで活性化される化学プロセスによって基板を処理する化学プロセスシステム及び当該化学プロセスシステムの使用方法が記載されている。当該化学プロセスシステムは、第1プラズマポテンシャルで第1プラズマを生成する第1プラズマチャンバ、及び、前記第1プラズマポテンシャルよりも大きい第2プラズマポテンシャルで第2プラズマを生成する第2プラズマチャンバを有する。前記第2プラズマは前記第1プラズマからの電子束を用いて生成される。さらに当該化学プロセスシステムは、前記第2プラズマチャンバ内に基板を設置するように備えられた基板ホルダを有する。
(もっと読む)


【課題】
荷電粒子加速装置においては加速電極の間に数十kVの電圧が印加される。このような場合、加速電極間で放電が発生することがある。
【解決手段】
加速電極の一部または全部を、金属と比較して融点が高いセラミックスまたは合金よりなる放電抑制層で被覆した荷電粒子加速装置にある。セラミックスまたは合金の放電抑制層により、不純物の微粒子が電界により加速され、電極に衝突した際にも電極から金属蒸気が発生しにくく、電離プラズマとなりにくいため、電極間の放電を抑制することができる。 (もっと読む)


地下環境で使用するために構成され配置された粒子加速装置。粒子加速装置は、1つ又はそれ以上の共振フォトニックバンドギャップ(Photonic Band Gap:PBG)空洞を備え、1つ又はそれ以上の共振PBG空洞は、複数の電子または複数のイオンのいずれかの粒子ビームの加速、集束または操縦を行う、局在した共振電磁界(EM)を提供することが可能である。さらに、粒子加速装置は、RFパワー損失の点で最適化された幾何形状および1つ又はそれ以上の材料を含むようにした1つ又はそれ以上の共振PBG空洞を提供し、最適化は、同等の常電導性のピルボックス(pill-box)空洞より高いPBG空洞Q値(quality factor)を提供する。
(もっと読む)


【課題】イオン源から引き出したイオンビームがビーム加速電極による加速・集束領域に入射するまでの間に、空間電荷効果によって拡散(損失)することを軽減したイオンビーム引出加速方法及び装置の提供。
【解決手段】イオン源3は、線形加速器4の容器4aに結合した接地電位の真空容器3a内に絶縁状態に設置した容器状の高電圧ターミナル3b内にプラズマ発生ターゲット3dを設置し、プラズマ発生ターゲット3dから発生した高電圧ターミナル3b内のプラズマを線形加速器4のビーム加速・集束空間4bまで輸送するための筒状電極3fを高電圧ターミナル3bに設けて、筒状電極3fの先端位置が線形加速器4のイオンビーム加速・集束空間4bを形成するビーム加速電極4cの開口端の位置に一致するように設置する。 (もっと読む)


【課題】挿入光源の永久磁石列に接触する電子ビームのハロー部の強度を高い応答速度で高感度に検出することができる電子ビーム検出器を備えた挿入光源装置を提供する。
【解決手段】本発明の挿入光源装置は、ギャップ空間を介して対向配置された一対の永久磁石列を備え前記永久磁石列間に挿入された電子ビームに蛇行運動させることによってシンクロトロン光を発生させる挿入光源と、前記電子ビームの強度を検出する電子ビーム検出器を備え、前記電子ビーム検出器は、半導体板と、前記半導体板を挟んで配置され且つ前記電子ビームの入射側から見て互いに重なる重なり部分を有する第1及び第2電極を備え、前記重なり部分は、前記永久磁石列の前記ギャップ空間側の面を含む平面の近傍に配置されることを特徴とする。 (もっと読む)


【課題】電子ビーム電流又はX線強度安定性において、高強度のX線を発生するX線発生装置を得る。
【解決手段】電子銃及び前記電子銃電源は、電子を放出するカソードと、カソードに対して高電位で電子を加速するアノードと、アノードに電圧を印加する電源と、カソードから熱電子を放出させるカソード加熱手段とを含む二極管であり、電子銃から出射される電子ビーム電流又は、電子ビームにより発生したX線の強度を測定し測定値を得るモニターと、モニターで測定した測定値に基づいて電子銃電源を制御するコントローラとを備え、コントローラにより、発生する電子ビームの単位時間あたりの平均電流を制御して、X線強度を一定にするようにした。 (もっと読む)


【課題】第1磁気回路と第2磁気回路とを空間部を隔てて対向配置させる場合に、空間部に形成される磁場を強くできると共に耐放射線特性を改善する。
【解決手段】周期磁場を形成するための第1磁気回路と、第1磁気回路を支持する第1支持体と、第1磁気回路に対向配置され、周期磁場を形成する第2磁気回路と、第2磁気回路を支持する第2支持体と、対向配置される第1磁気回路と第2磁気回路の間に形成され、電子ビームが通過する空間部と、第1磁気回路と第2磁気回路とを真空封止する真空槽と、第1磁気回路と第2磁気回路を構成する永久磁石を冷却する冷却機構と、第1磁気回路の温度を検出する第1温度センサーと、第1磁気回路を加熱可能な第1ヒーターと、第2磁気回路の温度を検出する第2温度センサーと、第2磁気回路を加熱可能な第2ヒーターと、第1・第2温度センサーによる温度計測データに基づいて、第1・第2ヒーターを制御する温度制御部とを備えている。 (もっと読む)


【課題】 ベータトロン加速器で電子を加速するX線発生装置において、加速電圧を制御するコイルに過渡現象を含まない電圧を与えることにより、電子ビーム軌道の変更を正確に行えるようにする。
【解決手段】 電子ビームの軌道を制御するためのビーム制御コイル5に対し、複数の直流電源11ないし14のいずれか1つを接続する構成とする。電子ビーム軌道の遷移時に、スイッチ15ないし18のいずれか1つを投入してビーム制御コイル5に直流電圧を印加し、安定した電子ビーム軌道の変更を実現するようにしたものである。 (もっと読む)


【課題】簡単な構成で高放射線場の設置物の腐食を低減すること。
【解決手段】
高放射線場(6)に設置された放射線場設置物(7)と、前記高放射線場(6)内で前記放射線場設置物(7)に沿って設けられ気体が移送される気体流路(Ya)と、前記気体流路(Ya)から外れた位置に形成され気体が滞留する気体滞留空間(V1〜V3)と、前記気体滞留空間(V1〜V3)に配置され、放射線により発生する腐食性ガスを吸着する腐食性ガス吸着材(21)と、を備えた高放射線施設(1)。 (もっと読む)


【課題】半導体製造装置等に併設しあるいは組み込むことが可能な、小型の低速陽電子ビーム発生装置を得る。
【解決手段】真空チャンバー内に、陽電子源(2)で生成されモデレータによって低速化された陽電子ビームのうち所望のエネルギーを有する陽電子ビームを取り出すためのエネルギー弁別器(3)と、被測定試料(11)を保持する試料保持部(9)と、エネルギー弁別器(3)を出射した陽電子ビームを加速して被測定試料(11)に照射するための加速部(5)と、を備える低速陽電子ビーム発生装置(1)において、真空チャンバー内の被測定試料(11)の周辺に、陽電子ビームを被測定試料(11)上に輸送するための磁場を発生する第1の永久磁石(12、13)を配置する。 (もっと読む)


【課題】単位時間当たりの中性子発生量を増加することができるイオン発生装置および中性子発生装置を提供すること。
【解決手段】中性子発生装置1は、イオン発生装置2を備え、このイオン発生装置2は、重水素ガスまたは三重水素ガスが供給されるイオン発生管21と、イオン発生管21の外部に配置され、このイオン発生管21に磁界を発生させる磁石23と、イオン発生管21の外部に配置され、このイオン発生管21に電界を発生させるプラズマ発生用アンテナ22と、プラズマ発生用アンテナ22に高周波電力を供給する高周波電源24と、を備える。高周波電源24は、イオン発生管21においてプラズマの非定常状態を繰り返し発生するように、プラズマ発生用アンテナ22に、高周波電力をパルス制御して供給する。 (もっと読む)


21 - 40 / 49