説明

荷電粒子癌治療システムの一部としての荷電粒子ビーム加速方法及び装置

本発明は、癌腫瘍の多軸荷電粒子照射治療の一部として使用される荷電粒子ビーム加速方法及び装置を有する。加速器は、方向転換磁石、エッジ・フォーカス磁石、磁場収束磁石、及び抽出の利点を有するシンクロトロン、及び、シンクロトロンの全体のサイズを最小にし、厳しく制御された陽子ビームを供給し、必要な磁場のサイズを直接低減し、必要な動作電力を直接低減し、及びシンクロトロンから陽子を抽出する処理中であってもシンクロトロンにおける陽子の連続的な加速を可能にし、抽出された荷電粒子ビームのエネルギー及び強度を独立して制御する制御要素を備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般的には強力な癌の治療に関する。さらに詳しくは、本発明は、イオン・ビーム加速システムに関し、荷電粒子癌治療のビームの入射、抽出、及び又は目標方法及び装置と併用される。
【背景技術】
【0002】
(癌の治療)
陽子線治療システムは、通常、ビーム発生器、加速器、及びビーム輸送システムを備え、その結果、加速された陽子を、患者の体の中の腫瘍に陽子が配送される治療室に移動する。
【0003】
陽子線治療は、粒子加速器で加速された陽子などのエネルギー値の高いイオン化粒子を目標の腫瘍に向けることによって機能する。これらの粒子は、細胞のDNAを破壊し、ついには細胞を死滅させる。癌細胞は、急速な分裂及び破壊されたDNAを回復する能力が低下しているので、癌細胞のDNAは攻撃を特に受けやすい。
【0004】
陽子は、その比較的大きなサイズのために、組織の中では容易には散乱せず、横方向の分散は極めてわずかである。したがって、陽子ビームは、周辺組織に対して大きな横方向の破壊を及ぼさずに、腫瘍の形状にフォーカスされた状態を維持する。所定のエネルギーのすべての陽子は、ブラッグ・ピーク(Bragg peak)によって定まるある飛程(体内距離)を持っており、組織に対する配送線量比は粒子の飛程のまさに最後の数ミリの範囲で最大になる。浸透する深さは粒子のエネルギーに依存し、その深さは陽子加速器によって粒子が加速された速度に直接関係する。陽子の速度は、加速器の最大速度に調節することができる。したがって、腫瘍が位置している組織の非常に深いところに達する陽子ビームによって、細胞の破壊にフォーカスを合わせることができる。ブラッグ・ピークの前に位置している組織はある程度低下した線量を受けるが、ブラッド・ピークの後に位置している組織は線量を受けない。
【0005】
(シンクロトロン)
K. Hiramoto等に対して1989年9月26日に付与された特許文献1「Accelerator System(加速システム)」には、放射線同位体生成ユニット又はシンクロトロンのいずれかにおける予備加速器によって加速されたイオン・ビームを導入するための選択磁石を備えた加速システムが記載されている。
【0006】
K. Hiramoto等に対して1998年8月4日に付与された特許文献2「Circular Accelerator, Method of Injection of Charged Particle Thereof, and Apparatus for Injection of Charged Thereof(円形加速器、その荷電粒子の入射方法及び入射装置)」及びK. Hiramoto等に対して1997年2月4日に付与された特許文献3「Circular Accelerator, Method of Injection of Charged Particle Thereof, and Apparatus for Injection of Charged Thereof(円形加速器、その荷電粒子の入射方法及び入射装置)」の双方には、入射ビームがダクトの幾何学的な中心に合う高さ及び幅を持つ真空ダクトの中に多くの荷電粒子を入射する方法及び装置が記載されている。
【0007】
(加速/シンクロトロン)
S. Peggs等に対して2008年10月7日に付与された特許文献4「Rapid Cycling Medical Synchrotron and Beam Delivery System (急速周回の医療用シンクロトロン及びビーム配送システム)」には、結合された作用磁石及び高周波(RF)空洞加速器を有するシンクロトロンが記載されている。結合された作用磁石は、最初に粒子ビームを軌道経路に沿って偏向するように作用し、次にその粒子ビームをフォーカスするように作用する。RF空洞加速器は、急速周回の粒子加速器に対して揺り動く高速周波数に適応した空洞である。
【0008】
H. Tanaka等に対して2007年8月21日に付与された特許文献5「Charged Particle Accelerator(荷電粒子加速器)」には、第1の加速期間及びその後の第2の加速期間に印加される固定の電場によって2つの期間の加速処理を有し、コンパクトでハイパワーの荷電粒子加速を実現する荷電粒子加速器が記載されている。
【0009】
T. Haberer等に対して2004年1月27日に付与された特許文献6「Ion Beam Therapy System and Method for Operating the System(イオン・ビーム治療システム及びそのシステムの操作方法)」には、イオン・ビーム治療システム及びそのシステムの稼働方法が記載されている。そのイオン・ビーム・システムは、エッジ・フォーカス効果から生じる平行スキャン・モードの結果を得る最後の偏向磁石の前に、垂直偏向システム及び水平偏向システムが配置された移動保持台(ガントリー)を使用する。
【0010】
V. Kulish等に対して2002年8月13日に付与された特許文献7「Inductional Undulative EH-Accelerator(誘導波動のEH加速器)」には、荷電粒子ビームの加速のための誘導波動のEH加速装置が記載されている。その装置は電磁波動システムで構成され、その電磁波用駆動システムは、約100kHzから10GHzまでの範囲の周波数で動作する高周波発振器の形態で作られている。
【0011】
K. Saito等に対して1999年6月29日に付与された特許文献8「Radio-Frequency Accelerating System and Ring Type Accelerator Provided with the Same(高周波加速システム及びそのシステムを用いたリングタイプ加速器)」には、磁気コア群に結合されたループ・アンテナ及びループ・アンテナに接続されたインピーダンス調整手段を有する高周波加速システムが記載されている。そのインピーダンス調整手段には比較的低い電圧が供給されるので、小型構造の調整手段を実現している。
【0012】
J. Hirota等に対して1997年8月26日に付与された特許文献9「Ion Beam Accelerating Device Having Separately Excited Magnetic Cores (分離して励磁された磁気コアを有するイオン・ビーム加速装置)」には、複数の高周波磁場誘導ユニット及び磁気コアを有するイオン・ビーム加速装置が記載されている。
【0013】
J. Hirota等に対して1992年12月1日に付与された特許文献10「Acceleration Device for Charged Particles (荷電粒子の加速装置)」には、結合定数及び又は再調整を制御するために組み合わされた高周波電力源及び制御の下に動作するループ導体を備え、粒子に対して電力をより効率的に送信できる加速空洞が記載されている。
【0014】
(磁石形状)
M. Tadokoro 等に対して2002年4月2日に付与された特許文献11「Electromagnetic and Magnetic Field Generating Apparatus(磁石及び磁場発生装置)」、M. Tadokoro 等に対して2001年5月22日に付与された特許文献12「Electromagnetic and Magnetic Field Generating Apparatus(磁石及び磁場発生装置)」の各々には、一対の磁極、戻りヨーク、及び励磁コイルが記載されている。一対の磁極の各々の内部に有する複数のエア・ギャップ空間によって、磁場強度を増加している。
【0015】
(呼吸)
K. Matsuda等に対して1996年7月23日に付与された特許文献13「Radioactive Beam Irradiation Method and Apparatus Taking Movement of the Irradiation Area Into Consideration(照射領域の移動を考慮した放射性のビーム照射方法及び装置)」には、呼吸及び心臓の鼓動などの身体的作用のために患部の位置が変化した場合であっても、照射が可能な方法及び装置が記載されている。最初に、患者の患部の位置変化及び身体的作用が同時に測定されて、それらの間の関係が関数として定義される。照射治療は、その関数に応じて実施される。
【0016】
(患者の位置決め)
Y. Nagamine等に対して2007年5月1日に付与された特許文献14「Patient Positioning Device and Patient Positioning Method(患者位置決め装置及び患者位置決め方法)」及びY. Nagamine等に対して2007年5月1日に付与された特許文献15「Patient Positioning Device and Patient Positioning Method(患者位置決め装置及び患者位置決め方法)」には、基準のX線画像の比較領域と現在の患者位置を示す現在のX線画像とを、パターン・マッチングによって比較する患者位置決めシステムが記載されている。
【0017】
D. Miller等に対して2007年2月6日に付与された特許文献16「Modular Patient Support System(モジュール方式の患者サポート・システム)」には、モジュール的に拡がる格納部及び塑造可能な構造の籠などの少なくとも1つの固定装置を有する患者サポート・システムを備えた照射治療システムが記載されている。
【0018】
K. Kato等に対して2005年8月16日に付与された特許文献17「Multi-Leaf Collimator and Medical System Including Accelerator(マルチ・リーフ・コリメータ及び加速器を備えた医療システム)」、及びK. Kato等に対して2004年11月23日に付与された特許文献18「Multi-Leaf Collimator and Medical System Including Accelerator」、及びK. Kato等に対して2004年11月16日に付与された特許文献19「Multi-Leaf Collimator and Medical System Including Accelerator」、及びK. Kato等に対して2004年9月14日に付与された特許文献20「Multi-Leaf Collimator and Medical System Including Accelerator」のすべてには、照射治療において患者を短時間で位置決めするのに使用されるリーフ・プレートのシステムが記載されている。モータの駆動力が、小歯車によって複数のリーフ・プレートに同時に伝達される。そのシステムはまた、上側及び下側の空気シリンダー並びに上側及び下側のガイドを使用して、患者を位置決めする。
【0019】
(コンピュータ制御)
A. Beloussov 等に対して2008年5月6日に付与された特許文献21「Configuration Management and Retrieval System for Proton Beam Therapy System(構造管理及び陽子ビーム治療システムのための検索システム)」、及びA. Beloussov 等に対して2006年8月1日に付与された特許文献22「Configuration Management and Retrieval System for Proton Beam Therapy System」、及びA. Beloussov 等に対して2004年11月23日に付与された特許文献23「Configuration Management and Retrieval System for Proton Beam Therapy System」のすべてには、公認のユーザによって容易に修正できる治療の構成的なパラメータを有するマルチ・プロセッサ・ソフトウェア制御による陽子ビーム・システムが記載され、そのシステムにおいては、様々な手術の形態に対応するソフトウェア制御のシステムを用意して、データベースの中に単一障害点がある場合でも、データ及び構造的なパラメータがアクセスできることを保証するようになっている。
【0020】
J. Hirota等に対して1997年12月16日に付与された特許文献24「Automatically Operated Accelerator Using Obtained Operating Patterns (取得される稼働パターンを用いた自動稼働加速器)」には、稼働パターンから得られる制御によって、加速器本体のすべての要素の制御量及び制御タイミングを判断する主制御部が記載されている。
【先行技術文献】
【特許文献】
【0021】
【特許文献1】米国特許第4,870,287号明細書
【特許文献2】米国特許第5,789,875号明細書
【特許文献3】米国特許第5,600,213号明細書
【特許文献4】米国特許第7,432,516号明細書
【特許文献5】米国特許第7,259,529号明細書
【特許文献6】米国特許第6,683,318号明細書
【特許文献7】米国特許第6,433,494号明細書
【特許文献8】米国特許第5,917,293号明細書
【特許文献9】米国特許第5,661,366号明細書
【特許文献10】米国特許第5,168,241号明細書
【特許文献11】米国特許第6,365,894号明細書
【特許文献12】米国特許第6,236,043号明細書
【特許文献13】米国特許第5,538,494号明細書
【特許文献14】米国特許第7,212,609号明細書
【特許文献15】米国特許第7,212,608号明細書
【特許文献16】米国特許第7,173,265号明細書
【特許文献17】米国特許第6,931,100号明細書
【特許文献18】米国特許第6,823,045号明細書
【特許文献19】米国特許第6,819,743号明細書
【特許文献20】米国特許第6,792,078号明細書
【特許文献21】米国特許第7,368,740号明細書
【特許文献22】米国特許第7,084,410号明細書
【特許文献23】米国特許第6,822,244号明細書
【特許文献24】米国特許第5,698,954号明細書
【発明の概要】
【発明が解決しようとする課題】
【0022】
癌腫瘍の粒子線治療の技術分野においては、シンクロトロンの中で荷電粒子を効率的に加速することが求められている。また、その技術分野においては、陰イオンを発生し、陰イオンを抽出し、陰イオンを陽イオンに変換して、陽イオンをシンクロトロンの中に入射することが求められている。さらにまた、その技術分野においては、荷電粒子配送の特定のエネルギー、強度、及び又はタイミングに関して荷電粒子癌治療システムを制御することが求められている。さらにまた、周辺の患者の正常組織への破壊を最小限にして、効率的に、精密に、及び又は正確に、無痛で、強力な癌腫瘍の生体内の治療をすることが求められている。
【課題を解決するための手段】
【0023】
本発明は、粒子ビーム加速器を備え、その粒子ビーム加速器が荷電粒子癌治療ビーム・システムの一部を構成する。
【図面の簡単な説明】
【0024】
【図1】粒子線治療システムの構成の接続を示す図である。
【図2】荷電粒子治療システムを示す図である。
【図3】イオン・ビーム発生システムを示す図である。
【図4】陰イオン・ビーム源を示す図である。
【図5】イオン・ビーム・フォーカス・システムを示す図である。
【図6】(A)乃至(D)は陰イオン・ビーム経路のまわりの電極を示す図である。
【図7】(A)は箔を有する2連型加速器を示し、(B)は支持構造を示し、(C)は変換箔を示す図である。
【図8】シンクロトロンの制御フローチャートである。
【図9】シンクロトロンの直線部及び方向転換部を示す図である。
【図10】シンクロトロンの偏向磁石を示す図である。
【図11】偏向磁石の斜視図である。
【図12】偏向磁石の断面図である。
【図13】偏向磁石の断面図である。
【図14】偏向磁石における磁場収束を示す図である。
【図15】偏向磁石における補正コイルを示す図である。
【図16】シンクロトロンの磁気的方向転換部を示す図である。
【図17】磁場制御システムを示す図である。
【図18】荷電粒子の抽出及び強度の制御システムを示す図である。
【図19】患者位置決めシステムを示し、(A)は正面図、(B)は上面図である。
【図20】荷電粒子ビーム・スポット・スキャン・システムの多次元スキャンを示す図であり、(A)は腫瘍の2次元の輪切りスキャンで動作する図、(B)は3次元の体積スキャンで動作する図である。
【発明を実施するための形態】
【0025】
本発明は、一般的には強力な癌の治療に関する。さらに詳しくは、本発明は、荷電粒子ビームをシンクロトロンの中で加速する方法及び装置に関する。
【0026】
一実施形態において、シンクロトロンの利点を説明することにより、設置面積の小さな加速器を実現する。さらに、方向転換磁石、エッジ・フォーカス磁石、磁場収束磁石、及び抽出要素の説明によって、シンクロトロンの全体のサイズを最小にし、厳しく制御された陽子ビームを供給し、必要な磁場のサイズを直接低減し、必要な動作電力を直接低減し、シンクロトロンから陽子を抽出する処理中であってもシンクロトロンにおける陽子の連続的な加速を可能にすることを説明する。この実施形態に記載されたシステムの種々の実施形態において、シンクロトロンは以下の任意の組合せを備えている。
・フォーカス形状を与える多数の方向転換磁石、
・4つの方向転換部を有するシンクロトロンにおける荷電粒子ビームの90度の偏向ごとに少なくとも4個、好ましくは6、8、10個、以上のエッジのフォーカス・エッジ、
・シンクロトロンにおける荷電粒子ビームの軌道ごとに少なくとも約16個、好ましくは24、32個、以上のエッジのフォーカス・エッジ、
・少なくとも4個、好ましくは8個のエッジのフォーカス・エッジを各方向転換部が有する4個だけの方向転換部、
・同数の直線部及び方向転換部、
・正確に4個の方向転換部、
・4極磁石を有しないシンクロトロンの周回経路、
・抽出された荷電粒子ビームのエネルギー及び強度の独立した制御、
・60メートル未満の円周、
・60メートル未満の円周及び32個のフォーカス・エッジ面、及び
・シンクロトロンの各周回経路においてフォーカス・エッジのエッジを有する4極磁石からなる約8、16、24、又は32個の4極磁石を持たない構造。
【0027】
任意のイオン・ビーム入射システムは、好ましくは、陰イオン源、イオン・ビーム・フォーカス・システム、2つの部分真空システム、及び2連型加速器を含む種々の要素を備えている。陰イオン源は、好ましくは、高温プラズマ室の中に水素ガスの入射のための注入口を有する。プラズマ室は磁性材料を備えており、その磁性材料は磁場障壁を発生して、その磁場障壁を挟んで相対する高温プラズマ室及び低温プラズマ領域を形成する。抽出パルスが、陰イオン抽出電極に印加されて、陰イオン・ビームを陰イオン・ビーム経路の中に引き出し、その陰イオン・ビームは、第1の部分真空システムの中に進み、イオン・ビーム・フォーカス・システムの中に進み、2連型加速器の中に進み、変換箔において陽子ビームに変換された後に、シンクロトロンの中に進む。
【0028】
さらに、他の実施形態において、イオン・ビーム源システム及びシンクロトロンは、好ましくは、呼吸監視センサを有する患者インターフェースを統合したコンピュータであり、患者の呼吸周期の一組の期間と荷電粒子配送とを同期させる。
【0029】
(サイクロトロン/シンクロトロン)
サイクロトロンは、一定の電場及び一定の周波数の印加された電場を使用する。磁場及び電場の1つはシンクロサイクロトロンの中で変化する。磁場及び電場の双方はシンクロトロンの中で変化する。このように、シンクロトロンは特定のタイプの周回粒子加速器であり、そこで磁場は粒子を偏向するのに使用されてその粒子が周回し、電場は粒子を加速するのに使用される。シンクロトロンは、印加された磁場及び電場を周回する粒子ビームに精密に同期させる。
【0030】
磁場及び電場を適切に増加することにより粒子がエネルギーを得るにしたがって、荷電粒子経路が一定に保持されることが可能になり粒子は次第に加速される。このことにより、粒子にとって真空室を大きな細い円環にすることができる。実際は、偏向磁石及びいくつかの方向転換部の間にいくつかの直線部分を使用して、角の丸い八角形の形をした円環が容易に実現される。このため、サイクロトロン型の装置の円盤型の室とは異なり、大きな有効半径の経路が単純な直線パイプ要素及び曲がったパイプ要素を使用して構成される。その形状により、粒子ビームを曲げるための多数の磁石の使用が可能にもなり必要にもなる。
【0031】
周回加速器が与え得る最大のエネルギーは、通常、磁場の強度及び粒子経路の最小半径/最大曲率によって制限される。サイクロトロンにおいては、最大半径は粒子が中央でスタートし外側に向かって螺旋状になるので非常に制限され、このため、全体の経路は、自己支持型の円盤形状の真空排気室でなければならない。半径が制限されるので、装置の電力は磁場の強さによって制限される。通常の電磁気の場合においては、すべての磁気領域が並んでいる場合には磁場がそれ以上の実質的な範囲には増加しないので、磁場の強さはコアの飽和によって制限される。磁石の一対の配列によっても、装置のサイズが経済的観点から制限される。
【0032】
シンクロトロンは、非常に小さくて且つより厳格にフォーカスする磁石によって囲まれた細いビームパイプを使用して、これらの制限を解決する。粒子を加速するこの装置の能力は、加速される粒子が荷電されなければならないのは確かであるが、加速された荷電粒子は陽子を放出するのでエネルギーを失うという事実によって、制限される。円形のビーム経路を維持するために必要な横方向の加速で失われたエネルギーが、各周期で加算されたエネルギーと等しくなった時、ビーム・エネルギーは限界に達する。さらに強力な加速器は、大きな半径路を使用することによって、且つ、多くの且つさらに強力なマイクロ波空洞を使用することによって構築されて、コーナーとコーナーとの間の粒子ビームを加速する。電子のようにより軽い粒子は、偏向するときにそのエネルギーの大部分を失う。実用的な観点から言えば、電子/陽電子・加速器のエネルギーはこの半径損失によって制限されるけれども、エネルギーの制限が陽子又はイオンの加速器の力学的な性能に大きな作用を及ぼすものではない。これらのエネルギーは、磁石の強さによって且つコストによって厳しく制限される。
【0033】
(荷電粒子ビーム治療)
この明細書を通じて、陽子ビーム、水素イオン・ビーム、又はカーボン・イオン・ビームなどの、荷電粒子線治療について説明する。この実施形態では、陽子ビームを用いる荷電粒子線治療について説明する。しかしながら、陽子ビームの観点から教示し説明する態様は、陽子ビームの態様に限定されるものではなく、荷電粒子ビーム・システムを説明するためのものである。任意の荷電粒子ビーム・システムも、この実施形態に記載された技術に等しく応用することができる。
【0034】
図1には、荷電粒子ビーム・システム100が示されている。荷電粒子ビーム・システムは、好ましくは、主制御部110、入射システム120、(1)加速器システム132及び(2)抽出システム134を通常有するシンクロトロン130、スキャン/目標/配送システム140、患者インターフェース・モジュール150、表示システム160、及び又は、画像システム170のうち任意のものを有するいくつかのサブシステムを備えている。
【0035】
一実施形態においては、1つ以上のサブシステムがクライアントに収容されている。クライアントは、例えば、パーソナル・コンピュータ、デジタル媒体プレーヤ、パーソナル・デジタル・アシスタント、その他のクライアント装置として動作するために構成されたコンピュータ・プラットホームである。クライアントは、例えば、マウス、キーボード、表示装置、その他のいくつかの外部又は内部の入力装置に接続されるプロセッサを備えている。プロセッサはまた、情報を表示するコンピュータ・モニタ等の出力装置に接続されている。一実施形態においては、主制御部110がプロセッサである。他の実施形態においては、主制御部110は、メモリに格納されてプロセッサによって実行される一組の命令である。
【0036】
クライアントは、コンピュータ読取可能な記憶媒体すなわちメモリを有する。メモリは、コンピュータ読取可能な命令を記憶する電子記憶媒体、光記憶媒体、磁気記憶媒体、若しくは他の記憶媒体、又は、コンピュータ読取可能な命令を有するプロセッサに接続できる送信装置、例えば、タッチ・センサ入力装置と併用されるプロセッサを備えているが、これらに限定されるものではない。適切な媒体の他の実施例には、例えば、フラッシュ・メモリ、CD−ROM、読取専用メモリ(ROM)、ランダム・アクセス・メモリ(RAM)、特定用途向け集積回路(ASIC)、DVD、磁気ディスク、メモリ・チップその他が含まれる。プロセッサは、メモリに記憶された一組の読取可能なプログラム・コードの命令を実行する。その命令は、例えば、C、C++、C#、Visual Basic、Java(登録商標)、及びJavaScriptを含む任意のコンピュータ・プログラミング言語からのコードを有することができる。
【0037】
荷電粒子ビーム・システム100を使用する方法の一実施例を提供する。主制御部110は、1つ以上のサブシステムを制御して、陽子を患者の患部に正確に且つ精密に配送する。例えば、主制御部110は、体及び又は腫瘍の位置などの画像を画像システム170から取得する。また、主制御部110は、位置情報及び又はタイミング情報を患者インターフェース・システム・モジュール150から取得する。次に、主制御部110は、入射システム120を任意に制御してシンクロトロン130の中に陽子を入射する。シンクロトロンは、通常、少なくとも加速システム132及び抽出システム134を有する。主制御部は、好ましくは、例えば、陽子ビームの速度、軌道、及びタイミングを制御することにより、加速システム内の陽子ビームを制御する。次に、主制御部は、抽出システム134によって加速器からの陽子ビームの抽出を制御する。例えば、制御部は、抽出されたビームのタイミング、エネルギー、及び又は強度を制御する。また、制御部110は、好ましくは、スキャン/目標/配送システム140によって、陽子ビームの目標を患者インターフェース・モジュール150にするように制御する。患者インターフェース・モジュール150の1つ以上の要素は、好ましくは、主制御部110によって制御される。さらに、表示システム160の表示要素は、好ましくは、主制御部110を介して制御される。表示スクリーン等の表示要素は、通常、一人以上のオペレータ及び又は一人以上の患者に対して提供される。一実施形態においては、主制御部110は、陽子が最適な治療方法で患者に配送されるように、すべてのシステムからの陽子ビームの配送のタイミングを測る。
【0038】
この実施形態において、主制御部110は、荷電粒子ビーム・システム100を制御する単一のシステム、荷電粒子ビーム・システム100を制御する複数のサブシステムを制御する単一のシステム、又は、荷電粒子ビーム・システム100の1つ若しくは複数のサブシステムを制御する複数の個々の制御部を指す。
【0039】
(シンクロトロン)
この実施形態において、シンクロトロンという用語は、周回経路において荷電粒子ビームを維持するシステムを指すのに使用される。しかしながら、サイクロトロンは、そのエネルギー、強度、及び抽出制御の固有の限界にもかかわらず、シンクロトロンの代わりに使用される。さらに、この実施形態では、荷電粒子ビームは、シンクロトロンの中央点の周りに周回経路に沿って周回するビームと称される。あるいは周回経路は軌道経路と称されるが、軌道路は完全な円又は楕円を指すものではなく、それはむしろ中央点又は中央領域の周囲の陽子の循環を指すものである。
【0040】
図2は、荷電粒子ビーム・システム100の1つのバージョンの実施例を説明する図である。構成要素の番号、位置、及び記載されたタイプは、説明をするためのものであり、何らこれらに限定されるものではない。図に示された実施形態において、入射システム210又はイオン源又は荷電粒子ビーム源は、陽子を発生する。陽子は、シンクロトロンの中に延びて、そこを通って、そこから出る真空管の中に配送される。発生された陽子は、最初の経路262に沿って配送される。4極磁石又は入射用4極磁石などのフォーカス用磁石230は、陽子ビーム経路をフォーカスするのに使用される。4極磁石は、フォーカス磁石である。入射用偏向磁石232は、陽子ビームをシンクロトロン130の平面の方向に偏向する。初期のエネルギーを持つフォーカスされた陽子は、入射用磁石240の中に誘導され、その入射用磁石240は、好ましくは、入射用ラムバーソン磁石である。通常、最初のビーム経路262は、シンクロトロン130の周回面から外れた上側の軸に沿っている。入射用偏向磁石232及び入射用磁石240は組み合わされて、陽子をシンクロトロン130の中に移動する。主偏向磁石250又は双極磁石若しくは周回用磁石は、陽子を周回ビーム経路264に沿って向きを変えるのに使用される。双極磁石は偏向磁石である。主偏向磁石250は、最初のビーム経路262を周回ビーム経路264の中に偏向する。この実施例においては、主偏向磁石250又は周回用磁石は、4個の磁石の4組として表され、周回ビーム経路264を安定した周回ビーム経路に維持する。しかしながら、任意の数の磁石又は任意の組の磁石が、周回プロセスにおいて単一の軌道の周りに陽子を移動するために任意に使用されてもよい。陽子は、加速器270の中を通り抜ける。加速器は、周回ビーム経路264の中で陽子を加速する。陽子が加速されるときには、磁石によって供給される磁場が増加される。特に、加速器によって達成される陽子の速度は、主偏向磁石250又は周回用磁石の磁場に同期してシンクロトロンの中央点又は中心280のまわりで陽子の安定した周回を維持する。周回経路又は軌道の中に陽子を維持する間、加速器270/主偏向磁石250が連携して時分割で使用され、陽子を加速及び又は減速する。予備加速器/偏向器システム290の抽出要素は、ランバーソン抽出磁石292と組み合わせて使用されて、シンクロトロン130内において周回ビーム経路264から陽子を離反させる。偏向器要素の一例がランバーソン磁石である。通常、偏向器は、陽子を周回面から例えばその上方の周回面から外れた軸に移動する。抽出された陽子は、好ましくは、配送路268に沿った4極磁石などの抽出用偏向磁石237及び抽出用フォーカス磁石235によって、スキャン/目標/配送システム140の中に導かれ及び又はフォーカスされる。スキャン・システム又は目標システムの2つの要素は、通常、垂直制御部などの第1の軸制御部142、及び水平制御部などの第2の軸制御部144を有する。ノズル・システム146は、陽子ビームの像を作るのに使用され、及び又は、シンクロトロンの低圧ビーム経路と大気圧との間の真空障壁として使用される。制御された陽子は、患者インターフェース・モジュール150及び患者の腫瘍に配送される。上記に掲げたすべての要素は任意のものであり、種々の置き換え及び組合せにおいても使用することができる。
【0041】
(イオン・ビーム発生システム)
イオン・ビーム発生システムは、水素陰イオンすなわちHビームなどの陰イオン・ビームを発生し、好ましくは、その陰イオン・ビームをフォーカスし、その陰イオン・ビームを陽子又はHビームなどの陽イオン・ビームに変換し、その陽イオン・ビームをシンクロトロン130の中に照射する。イオン・ビーム経路の陽子は、好ましくは、軽度の真空のもとにある。以下、これらのシステムの各々について説明する。
【0042】
図3には、イオン・ビーム発生システム300の一実施例が示されている。図に示すように、イオン・ビーム発生システム300は、4個の主要な要素として、陰イオン源310、第1の部分真空システム330、任意の陰イオン・フォーカス・システム350、及び2連型加速器390を有する。
【0043】
図3において、陰イオン源310は、好ましくは、高温プラズマ室314の中に水素ガスを入射するための入力口312を有する。一実施形態において、プラズマ室は磁性材料316を有し、その磁性材料316は高温プラズマ室314とその反対側の低温プラズマ領域との間に磁場障壁317を設けている。抽出パルスは、陰イオン抽出電極318に印加されて、陰イオン・ビーム経路319の中に陰イオン・ビームを引き出す。その陰イオン・ビームは、第1の部分真空システム330の中に進み、イオン・ビーム・フォーカス・システムの中を通って、2連型加速器390の中に進む。
【0044】
図3において、第1の部分真空システム330は、水素ガスの入力口312から2連型加速器390の変換箔395に延びる密閉されたシステムである。箔395は、箔395の第1の部分真空システム330側に維持される約10−5トール(torr)などの高圧、及び、箔390のシンクロトロン側に印加される約10−7トールなどの低圧を提供する真空管320の端に直接的又は間接的に封止されている。第1の部分真空システム330を励起し、且つ、センサの読取に基づいてイオン・ビーム源真空を半連続的に動作させるだけで、半連続的に動作するポンプの寿命が延びる。以下、センサの読取についてさらに説明する。
【0045】
図3において、第1の部分真空システム330は、好ましくは、連続的に動作されるポンプ及び又はターボ分子ポンプなどの第1のポンプ332、大容積保持体334、及び半連続的に動作されるポンプ336を有する。ポンプ制御部340は、好ましくは、大容積保持体334内の圧力を監視する圧力センサ342から信号を受信する。大容積保持体334において十分な圧力を表す信号を受信したときは、ポンプ制御部340はアクチュエータ345に指示して大容積保持体と半連続的動作ポンプ336との間のバルブ346を開けさせ、且つ、半連続的動作ポンプに指示して残留媒体ガスを荷電粒子の流れのまわりの真空ライン320の外に排気させる。この方法において、半連続的動作ポンプの寿命は、必要に応じて半連続的に動作させるだけで延びる。一実施例において、半連続的動作ポンプ336は、4時間ごとに5分間などのように、数時間ごとに数分間動作すると、これにより約2,000時間のポンプの寿命が約96,000時間に延びる。
【0046】
さらに、シンクロトロン真空システムから入力ガスを分離することにより、ターボ分子ポンプなどのシンクロトロン真空ポンプは、シンクロトロン真空ポンプが処理するガス分子が少なくなるので、長い寿命で動作することができる。例えば、入力ガスは主として水素ガスであるが、二酸化窒素及び二酸化炭素などの不純物を含んでいることもある。陰イオン源システム310、第1の部分真空システム330、イオン・フォーカス・システム350、及び2連型加速器側の陰イオン・ビームにおける入力ガスを分離することによって、シンクロトロン真空ポンプは低圧で長時間動作することができ、これによりシンクロトロン130の効率が向上する。
【0047】
図3において、イオン・ビーム・フォーカス・システム350は、1つ以上の電極を有し、各電極対の1つの電極は導電メッシュなどの導電路372でイオン・ビーム経路を部分的に遮蔽する。図に示す例においては、2電極イオン・フォーカス部360、第1の3電極イオン・フォーカス部370、及び第2の3電極イオン・フォーカス部380の3つのイオン・ビーム・フォーカス・システム部が示されている。所定の電極対において、電場線は、第1の電極及び第2の電極の導体メッシュの間に延びて、陰イオン・ビームをフォーカスする内向きの力を与える。このような多数の電極対は、多数の陰イオン・フォーカス領域を実現する。好ましくは、2つの電極イオン・フォーカス部360、第1の3電極イオン・フォーカス部370、及び第2の3電極イオン・フォーカス部380は、陰イオン源の後、且つ、2連型加速器の前に配置され、及び又は、イオン・ビーム経路に沿って約0.5、1、又は2メートルの空間を覆う。イオン・ビーム・フォーカス・システムについては、さらに後述する。
【0048】
図3において、2連型加速器390は、好ましくは、カーボン箔などの箔395を有する。陰イオン・ビーム経路319における陰イオンは、陽子などの陽イオンに変換されて、その結果、最初のイオン・ビーム経路262が生じる。箔395は、好ましくは、陰イオン・ビーム経路319を有する箔395の側に維持される約10−5トールなどの高圧、及び、陽子イオン・ビーム経路262を有する箔390の側に維持される約10−7トールなどの低圧を提供する真空管320の端に直接的又は間接的に封止されている。2つの圧力領域の中で真空室320を物理的に分離する箔395を有することにより、より少数及び又はより小型のポンプを有するシステムにとって、入力水素及びその残留が分離した密閉され且つ分離された空間の中で第1の部分真空システム330によって抽出されるので、シンクロトロン130の中で低圧システムを維持することが可能になる。
【0049】
(陰イオン源)
ここで、陰イオン源310の一実施例についてさらに説明する。図4には、陰イオン源システム400の一実施例の断面図が示されている。陰イオン・ビーム319は、多数のステージの中で生成される。第1のステージの期間においては、水素ガスが室の中に入射される。第2のステージの期間においては、第1の高電圧パルスの印加によって、陰イオンを生成する水素ガスのまわりにプラズマを生成する。第3のステージの期間においては、磁場フィルタがプラズマの成分に対して適用される。第4のステージの期間においては、第2の高電圧パルスの印加によって、陰イオンが低圧プラズマ領域から磁場障壁の反対側に抽出される。以下、4つのステージの各々についてさらに説明する。室が円筒状の断面図として示されているが、その円筒状は一例にすぎず、以下に説明するように、いかなる形状であっても磁気ループの格納壁に当てはまる。
【0050】
第1のステージにおいて、水素ガスは入力口312を通って高温プラズマ領域490の中に入射される。入射口442は、約1、5又は10秒よりも短い時間の期間に開口して、真空ポンプの要件を最小にして、真空室320の要件を維持する。高温プラズマ領域は、部分真空システム330によって低減された圧力に維持される。水素ガスの入射は、主制御部110によって任意に制御され、水素ガスの入射が、患者の位置決め及び呼吸の周期の期間などの、画像システム170の情報及び患者インターフェース150の情報に応答する。
【0051】
第2のステージにおいては、高温プラズマ領域は、第1の電極422及び第2の電極424の両端に印加される第1の高電圧パルスによって生成される。例えば、5kVのパルスが、約20μSの間に、5kVで第2の電極424に印加され、約0kVで第1の電極422に印加される。高温プラズマ領域490において室内の水素は、例えば、原子状水素H、陽子H、電子e、水素陰イオンHのいずれかの成分に分解される。
【0052】
第3のステージにおいては、高温プラズマ領域490は、磁場又は磁場障壁430によって、低温プラズマ領域又は区域492から少なくとも部分的に分離される。高エネルギーの電子は、磁場障壁430を通過するのを制限される。この方法において、磁場障壁430は、陰イオン源における区域A及び区域Bの間のフィルタの役割を果たす。好ましくは、中央の磁性材料410は、例えば、高温プラズマ領域490の中央の軸に沿って、高温プラズマ領域490の内部に配置される。好ましくは、第1の電極422及び第2の電極424は、鉄などの磁性材料で構成される。好ましくは、高温プラズマ領域の円筒状の壁などの外壁450は、永久磁石、第二鉄、若しくは鉄を使用した材料、又はフェライト誘電体の環状磁石などの磁性材料によって構成される。この方法において、中央の磁性材料410、第1の電極422、外壁450、第2の電極424、及び磁場障壁430によって、磁場ループが生成される。繰り返すと、磁場障壁430は、高エネルギーの電子が磁場障壁430を通過するのを制限する。低エネルギーの電子は、原子状水素Hと相互に作用して、低温プラズマ領域492の中で水素陰イオンHを生成する。
【0053】
第4のステージにおいては、第2の高電圧パルス又は抽出パルスが、第3の電極426に印加される。第2の高電圧パルスは、第1の高電圧パルスの後半の期間に選択的に印加される。例えば、約25kVの抽出パルスが、約20μSの第1の生成パルスの最後の約5μSの間に印加される。第3の電極426と第2の電極424との間の約20kVの電位差が、低温プラズマ領域492から陰イオンHを抽出して、陰イオン・ビームを区域Bから区域Cに入力する。
【0054】
磁場障壁430は、いくつかの方法で任意に生成される。例えば、コイルによって磁場障壁430を生成することができる。この実施例において、図4に関して上述した要素は、種々の変形例を含んでいる。第1に、磁場はコイルによって生成される。絶縁材料は、好ましくは、第1の電極422と円筒状の壁450との間にも、第2の電極424と円筒状の壁450との間にも、同様に設けられる。中央材料410及び又は円筒状の壁450は、任意の金属である。この方法において、コイルは、第1の電極422、絶縁材料、外壁450、第2の電極424、磁場障壁430、及び中央の材料410を通る磁場ループを生成する。基本的には、コイルは、磁性材料410による磁場の生成の代わりに磁場を発生する。磁場障壁430は、上述したように動作する。一般的には、高温プラズマ領域490と低温プラズマ領域492との間に磁場障壁430を生成するいかなる方法であっても、イオン・ビーム抽出システム400に対して機能的に適用できる。
【0055】
(イオン・ビーム・フォーカス・システム)
図5を参照して、イオン・ビーム・フォーカス・システム350についてさらに説明する。この実施例においては、3つの電極が使用される。この実施例において、第1の電極510及び第3の電極530は共に負に帯電され、各電極は陰イオン・ビーム経路319をひとまわりして囲むか又は少なくとも部分的に囲む環状電極である。第2の電極520は正に帯電され、同じく陰イオン・ビーム経路をひとまわりして囲む環状電極である。さらに、第2の電極は、陰イオン・ビーム経路319の中に延びる1つ以上の導電路372を有する。例えば、その導電路は、第2の電極の全体にわたって延びるワイヤ・メッシュ、導電格子、又は実質的に平行なラインの連続である。使用中は、電場線が、陰イオン・ビーム経路319の中で正に帯電された導電路から負に帯電された導電路まで延びる。例えば、使用中は、電場線540が、陰イオン・ビーム経路319における導電路372から負に帯電された電極510、530まで延びる。フォーカス力を説明するために、陰イオン・ビーム経路の2本の描線550、560を使用する。第1の描線550において、陰イオン・ビームは、第1の電場線とM点で交差する。陰イオン・ビーム550の中の負に帯電されたイオンは、電場線571まで延びるx軸成分のベクトル572で示される力と交差する。x軸成分のベクトル572は、第1の描線の軌道を内側にフォーカスされたベクトル552に変え、そのベクトル552は第2の電場線とN点で交差する。繰り返すと、陰イオン・ビーム552は、x軸成分のベクトル574によって内に向かう力ベクトルを有するものとして示されており、電場線573まで延びる力と交差し、その力は内側にフォーカスされたベクトル552をさらに内側にフォーカスされたベクトル554に変える。同様に、第2の描線560において、陰イオン・ビームは、第1の電場線とO点で交差する。陰イオン・ビームのうち負に帯電されたイオンは、x軸成分の力576によって内に向かう力ベクトルを有するものとして示されて電場線575まで延びる力と交差する。その内に向かう力ベクトルは、第2の描線560の軌道を内側にフォーカスされたベクトル562に変え、そのベクトル562は第2の電場線とP点で交差する。繰り返すと、陰イオン・ビームは、x軸成分のベクトル578によって内に向かう力を有するものとして示されて電場線577まで延びる力と交差し、その力は内側にフォーカスされたベクトル562をさらに内側にフォーカスされたベクトル564に変える。最終的な結果は、陰イオン・ビームに対するフォーカス効果である。力ベクトル572、574、576、及び578の各々は、陰イオン・ビーム経路の3次元フォーカスをもたらすx力ベクトル成分及び又はy力ベクトル成分を任意に有する。もちろん、その力ベクトルは基本的な説明のためのものであり、多数の電場線が交差され、フォーカス効果は統合されたフォーカスを生じる各交差で見られる。この実施例は、フォーカス効果を説明するために用いられる。
【0056】
図5において、2、3、4、5、6、7、8、又は9個など、任意の数の電極が使用されて、所定のフォーカス部において、すべての他の電極が正又は負のいずれかに帯電されるところで陰イオン・ビームをフォーカスする。例えば、3つのフォーカス部が任意に使用される。第1のイオン・フォーカス部360においては、一対の電極が使用されて、陰イオン・ビーム経路に沿って交差された第1の電極が負に帯電され、第2の電極が正に帯電されて、その結果、陰イオン・ビーム経路のフォーカスを生じる。第2のイオン・フォーカス部370においては、二対の電極が使用されて、陰イオン・ビーム経路319を通す導電メッシュを有し、共に正に帯電された電極が使用される。したがって、第2のイオン・フォーカス部370においては、陰イオン・ビーム経路に沿って交差された第1の電極が負に帯電され、第2の電極が正に帯電されて、その結果、陰イオン・ビーム経路のフォーカスを生じる。さらに、陰イオン・ビーム経路に沿って移動する第2のイオン・フォーカス部においては、第2のフォーカス効果は、正に帯電された第2の電極と負に帯電された第3の電極との間に見られる。この実施例においては、再び3つの電極を有する第3のイオン・フォーカス部380が使用され、上述したように、第2のイオン・フォーカス部と同じ態様で動作する。
【0057】
図6を参照して、イオン・ビーム・フォーカス・システム350における電極の中央領域についてさらに説明する。図5(A)において、負に帯電された環状電極510の中央領域は、好ましくは、導電部材の穴である。図6(B)乃至(D)において、正に帯電された環状電極520の中央領域は、好ましくは、導電路372を有する。好ましくは、導電路372又は正に帯電された電極環520を持つ導電部材は、陰イオン・ビーム経路319の断面領域の約1、2、5、又は10%の領域を遮蔽し、好ましくは、約5%の領域を遮蔽する。図6(B)を参照すると、第1の選択肢は導電メッシュ610である。図6(C)を参照すると、第2の選択肢は、陰イオン・ビーム経路319の一部を囲む正に帯電された電極環520の両端におおむね平行に延びる一連の導線620である。図6(D)を参照すると、第3の選択肢は、金属に開けられた孔で陰イオン・ビーム経路の断面のすべてを覆う箔630又は金属の薄膜を有するものであり、その孔は箔の領域の約90乃至99%であり、好ましくは、約95%である。さらに一般的には、上述したように、一対の電極は、陰イオン・ビームに力ベクトルを与えてフォーカスする電場線を供給するように構成され、陰イオン・ビーム経路におけるイオンがその電場線の中を移動する。
【0058】
第1の断面直径dを有する2電極の陰ビーム・イオン・フォーカス・システムの一実施例において、陰イオンは2電極のシステムによって第2の断面直径dにフォーカスされる。この場合、d>dである。同様に、第1の断面直径dを有する3電極の陰イオン・ビーム・フォーカス・システムが提供される一実施例において、陰イオンは3電極のシステムによって第3の断面直径dにフォーカスされる。この場合、d>dである。電極にかかる電位については、3電極のシステムは、2電極のシステムに比べてより厳しく又はより強くフォーカスし、d<dとなる。
【0059】
上述した多電極のイオン・ビーム・フォーカス・システムの実施例においては、電極は環状である。さらに一般的には、上述したように電極は、陰イオン・ビーム経路の中のイオンが移動するときにその電場線を通るときに、陰イオン・ビームにフォーカス力のベクトルを与える電場線を供給するに十分であればいかなる形状でもよい。例えば、1つの陰極の環状電極は、負に帯電された複数の電極によって任意に置き換えられ、例えば、陰イオン・ビーム・プルーブの断面領域の外側のまわりに、約2、3、4、6、8、10個、以上の電極が配置される。一般的には、さらに多くの電極が要求されて、より速い又はより高エネルギーのビームを収束又は発散する。
【0060】
他の実施形態においては、上記実施例における電極の極性を反転することによって、陰イオン・ビームが発散される。したがって、陰イオン・ビーム経路は、複数の電極対の組合せによって任意にフォーカス及び膨張される。例えば、陰イオン・ビーム経路にわたってメッシュを有する電極が負にされた場合には、陰イオン・ビーム経路はデフォーカスされる。したがって、複数の電極対の組合せは、陰イオン・ビーム経路をフォーカス及びデフォーカスするために用いられ、例えばその場合には、第1の電極対がフォーカスのために正に帯電されたメッシュを有すると共に、第2の電極対がデフォーカスのために負に帯電されたメッシュを有する。
【0061】
(2連型加速器)
図7(A)を参照して、2連型加速器390についてさらに説明する。2連型加速器は、一組の電極710、711、712、713、714、715によってイオンを加速する。例えば、陰イオン・ビーム経路内のHなどの陰イオンは、抽出電極426すなわち陰イオン・ビーム源310の第3の電極426に比べて次第に高くなっている電圧を有する一組の電極によって加速される。具体的には、2連型加速器390は、抽出電極426の25kVから2連型加速器390における箔395の近傍で約525kVまで広がる範囲を持つ電極を任意に備えている。陰イオンHは、箔を通過すると、式1に従って、陽子Hに応じて2個の電子を失う。
→H+2e (1)
陽子は、さらに多数の電極713、714、715における適切な電圧によってさらに加速される。次に、陽子は、上述したように、シンクロトロン130の中に入射される。
【0062】
図7を参照して、2連型加速器390内の箔395についてさらに説明する。箔395は、好ましくは、厚さが約30乃至200オングストロームの非常に薄いカーボン・フィルムである。箔の厚さは、(1)イオン・ビームを遮蔽せず、且つ、(2)陽子に応じた電子の移動で陽子ビーム経路262を形成できるように設計される。箔395は、好ましくは、支持格子などの支持層720にほぼ接触している。支持層720は、箔395に機械的強度を与えて、真空遮蔽素子725を形成するように結合する。箔395は、窒素ガス、二酸化炭素ガス、水素ガス、及びその他のガスの通過を遮蔽するので、真空障壁の役割を果たしている。一実施形態においては、箔395は、陰イオン・ビーム経路319を有する箔319の側にかけるべき約10−5トール等の高圧、及び、陽子ビーム経路262を有する箔319の側にかけるべき約10−7トール等の低圧を提供する真空管320の端に、直接的又は間接的に封止されることが好ましい。真空室320を物理的に2つの圧力領域に分離する箔395を備えることにより、より少数及び又はより小型のポンプを有する真空システムが、入力水素としてシンクロトロン130の中の低圧システムを維持することができ、また、その残留物が、第1の部分真空システム330によって、分割した密閉され且つ分離された空間の中に抽出される。箔395及び支持層720は、好ましくは、2連型加速器390又は真空管320の構造体750に固定されて、取付ネジ740で壁に押し付けられた金属、樹脂、又はセラミックの環材730などの任意の機械的手段によって圧力障壁を形成する。箔によって2つの真空室側に分割し且つ密閉するための任意の機械的手段は、このシステムと同様に適用できる。図7(B)を参照すると、支持構造体720及び箔395は、x面、y面のそれぞれに示されている。
【0063】
図8においては、荷電粒子ビーム・システム100を使用する他の実施例が示されている。主制御部110又は1つ若しくはそれ以上の副制御部は、患者の腫瘍に陽子を正確且つ精密に配送するために、1つ以上のサブシステムを制御する。例えば、主制御部110は、患者にメッセージを送信して呼吸をいつするか又はどのようにするかを指示する。主制御部110は、治療対象が呼吸を繰り返している状態を示す熱呼吸センサ又は力呼吸センサの読取など、患者インターフェース・モジュールからのセンサの読取を取得する。主制御部は、画像システム170から体及び又は腫瘍の位置などの画像を収集する。また、主制御部110は、患者インターフェース・モジュール150から位置情報及び又はタイミング情報を取得する。次に、主制御部110は、入射システム120を任意に制御して、陰イオン・ビーム源310の中に水素ガスを入射し、陰イオン・ビーム源310からの陰イオンの抽出のタイミングを制御する。主制御部は、イオン・ビーム・フォーカス・レンズ・システム350、2連型加速器390による陽子ビームの加速、及び又は、シンクロトロン130の中への陽子の入射によって、イオン・ビーム・フォーカスを任意に制御する。シンクロトロンは、通常、少なくとも加速器システム132及び抽出システム134を備えている。シンクロトロンは、1つ以上の方向転換磁石、エッジ・フォーカス磁石、磁場収束磁石、巻線磁石及び補正磁石、及び平坦磁場入力面を有することが好ましく、それらのいくつかは主制御部110によって制御される要素を含んでいる。主制御部は、例えば、陽子ビームの速度、軌道、及び又はタイミングを制御することによって、加速器システム内の陽子ビームを制御することが好ましい。次に、主制御部は、抽出システム134によって加速器からの陽子ビームの抽出を制御する。例えば、制御部は、抽出されたビームのタイミング、エネルギー、及び又は強度を制御する。また、主制御部110は、目標/配送システム140によって患者インターフェース・モジュール150への陽子ビームの目標を制御することが好ましい。患者インターフェース・モジュール150の1つ以上の要素、例えば、患者の垂直位置、患者の回転位置、及び患者の椅子の位置/安定/制御部品は、主制御部110によって制御されることが好ましい。さらに、表示システム160の表示要素は、主制御部110を介して制御されることが好ましい。表示スクリーンなどの表示装置は、一般的には一人以上のオペレータ及び又は一人以上の患者に提供される。一実施形態においては、主制御部110は、すべてのシステムからの陽子ビームの配送の時間を調整するので、陽子は最適な治療方法で患者に配送される。
【0064】
(周回システム)
シンクロトロン130は、直線部910及びイオン・ビームの方向転換部920を備えることが好ましい。したがって、陽子の周回経路は、シンクロトロンの中の円というよりも、むしろ角が丸い多角形である。
【0065】
一実施形態においては、シンクロトロン130は、加速器システムと同じものを意味することもあり、4個の直線部及び4個の方向転換部を有する。直線部910の実施例は、予備加速器240、加速器270、抽出システム290、及び偏向器292を備えている。4個の直線部に加えてイオン・ビーム方向転換部920があり、それは磁石部又は方向変換部を意味することもある。偏向部についてはさらに後述する。
【0066】
図9を参照して、シンクロトロンの例について説明する。この実施例においては、最初の陽子ビーム経路に沿って配送された陽子は、周回ビーム経路の中で予備加速器240によって予備加速されて、加速後は偏向器292を介してビーム搬送路268に抽出される。この実施例においては、シンクロトロン130は、4個の直線部910及び4個の曲げ部又は方向転換部920を備え、4個の方向転換部920の各々は、1つ以上の磁石を使用して陽子ビームを約90度偏向する。さらに後で説明するように、方向変更部の間隔を小さくできること及び陽子ビームを効率的に偏向できることで、より短い直線部が実現する。直線部を短くすることで、シンクロトロンの周回経路内にフォーカス4極磁石を使用せずに、シンクロトロンの設計をすることができる。周回陽子ビーム経路からフォーカス4極磁石を取り除く結果、さらに小型の設計ができる。この実施例においては、図示されたシンクロトロンは、周回経路内にフォーカス4極磁石を使用しているシステムが8メートルの直径及び大きな断面直径を持っているのに対して、約5メートルの直径を持っている。
【0067】
参照する図10においては、第1の方向曲げ部又は方向転換部920のさらに詳細な図が示されている。各方向変更部は、約2、4、6、8、10、又は12個の磁石のように多数の磁石を有することが好ましい。この実施例において、第1の方向変更部20における4個の方向転換磁石1010、1020、1030、1040は、基本的な原理を示すのに使用されており、各方向転換部920における磁石の使用個数は同じである。方向転換磁石1010は、主要な偏向磁石又は周回用磁石250の特定のタイプである。
【0068】
物理学においては、ローレンツ力は、電磁場の作用で点荷電に働く力である。ローレンツの力は、電場の用語を含まずに磁場の用語で式2によって与えられる。
F=q(v×B) (2)
式2において、Fは力で単位はニュートン、Bは磁場で単位はテスラ、vは瞬間速度で単位はメートル/秒である。
【0069】
図11においては、単一磁石偏向又は方向転換部1010の一実施例が拡大して示されている。方向転換部は、陽子が周回する中にギャップ1110を有する。ギャップ1110は、そこにかかる磁場が均一、平坦、強力になるように、平らなギャップであることが好ましい。磁場は磁場入射面を通ってギャップ1110に入り、磁場出力面を通って出る。ギャップ1110は、半分の2つの磁石の間の真空管の中に延びている。ギャップ1110は、少なくとも2つのパラメータ、すなわち、(1)陽子の損失を最小にするためギャップ1110ができるだけ大きく保たれるパラメータ、及び(2)磁石サイズ及び関連する物のサイズ及び磁石に供給する必要電力を最小にするためギャップ1110ができるだけ小さく保たれるパラメータ、によって規制される。ギャップ1110の平らな性質によって、ギャップ1110を横断する磁場を圧縮されたより均一なものにできる。ギャップの一実施例は、大きさが約2cmの垂直ビームので、大きさが約5乃至6cmの水平ビームを収容する寸法になっている。
【0070】
上述したように、ギャップサイズが大きいほど、より大きな電力供給が必要になる。具体的には、ギャップ1110の垂直のサイズが2倍になると、必要な電力供給は約4倍に増加する。ギャップ1110の平坦さも重要である。例えば、ギャップ1110の平らな性質は、抽出された陽子のエネルギーが約250から330MeVまで増加できる。特に、ギャップ1110が極めて平らな表面を持つならば、鉄の磁石の磁場は限界に達し得る。ギャップ1110の表面を極めて高精度にする一実施例では、約5ミクロンより小さく、好ましくは、約1乃至3ミクロンに研磨する。表面が不均一の場合には、供給される磁場に不具合が生じる。研磨された平らな表面は、供給される磁場の不均一を緩和する。
【0071】
図11において、荷電粒子ビームは、ギャップ1110を通って瞬間速度vで移動する。第1の磁気コイル1120及び第2の磁気コイル1130は、それぞれギャップ1110の上側及び下側に延びている。電流がコイル1120、1130の中を流れると、単一磁石方向転換部1010を通って延びる磁場Bを発生する。この実施例においては、磁場Bは上方に延びて、荷電粒子ビームをシンクロトロンの内側の中央点に向けて押す力Fを発生して、荷電粒子ビームを円弧の形に偏向する。
【0072】
さらに、図11には、別の第2の磁石偏向又は方向転換部1020の一部が示されている。コイル1120、1130は、通常、第1の磁石方向転換部1010の端などの1つの磁石の端に、折り返し部分1140、1150又は屈曲部を有する。屈曲部1140、1150は空間を必要とする。その空間は、方向転換磁石によって覆われるシンクロトロンの1つの軌道のまわりの経路の割合を低下させる。このことは、陽子が偏向又はフォーカスされない周回経路の部分をもたらし、陽子経路がデフォーカスする周回経路の部分を生じることになる。このため、その空間は大きなシンクロトロンを生じる結果になる。したがって、磁石方向転換部1160の間の空間は、小さくすることが好ましい。2、3、4、5、6個、以上の磁石などの複数の磁石に沿って任意に延びるコイル1120、1130を説明するために、第2の方向転換磁石が示されている。多数の方向転換部磁石にわたって延びるコイル1120、1130によって、方向転換部の立体構造の制約を取り除き、空間的に互いに接近して2つの方向転換部磁石を配置できるので、2つの方向転換部磁石の間の空間1160を低減化及び又は最少化できる。
【0073】
図12及び図13には、単一磁石偏向又は方向転換部1010の断面を90度回転した2つの図が示されている。磁石アセンブリは、第1の磁石1210及び第2の磁石1220を有する。後述するように、コイルによって誘発された磁場は、ギャップ1110を横断して第1の磁石1210と第2の磁石1220との間に延びる。戻りの磁場は、第1のヨーク1212及び第2のヨーク1222の中を延びる。戻りヨークの組み合わされた断面領域は、第1の磁石1210又は第2の磁石1220の断面領域とほぼ同じである。荷電粒子ビームは、ギャップ1110における真空管を通って進む。すでに説明したように、図12において、陽子はギャップ1110及び磁場の中を通って進み、ベクトルBは陽子に力Fを与えて、シンクロトロンの中央に向かって陽子を押し出すが、これは図12において右側の頁の外になっている。磁場は、巻線によって生成される。第1の巻線コイル1250を構成する第1のコイルは、図12において点線で示されて、個々の巻線についての線の断面を代表的に表し、図13において個々の巻線として示されている。第2の巻線コイル1260を構成する線の第2のコイルも、同様に図面で表されている。空気のギャップなどの、分離用又は収束用ギャップ1230、1240は、鉄基材のヨークをギャップ1110から分離する。ギャップ1110は、上述したように、ギャップ1110にわたって均一な磁場を発生させるために、ほぼ平らになっている。
【0074】
図13において、単一偏向又は方向転換磁石の両端は、面取りがされていることが好ましい。方向転換磁石1010のほぼ直角のエッジは、破線1374、1384によって表されている。破線1374、1384は、シンクロトロンの中心280を過ぎて点1390で交差する。方向転換磁石のエッジは、角度アルファα及び角度ベータβで面取りされていることが好ましく、角度アルファ及び角度ベータは、方向転換磁石1010及び中心280から延びる第1の線1372、1382、及び、同じ方向転換磁石のエッジ及び交差点1390から延びる第2の線1374、1384によって形成される。角度アルファはその効果を記述するために用いられ、角度アルファの記述は角度ベータに適用するが、角度アルファは角度ベータとは異なる任意の角度でもよい。角度アルファは、エッジ・フォーカス効果を実現する。方向転換磁石1010のエッジを角度アルファで面取りすることで、陽子ビームをフォーカスする。
【0075】
多数の方向転換磁石は、シンクロトロン130において各々がエッジ・フォーカス効果を有する多数の磁石エッジを実現する。方向転換磁石が1つだけ使用された場合には、ビームは角度アルファで1回又は角度アルファ及び角度ベータで2回だけフォーカスされる。しかしながら、より小さな方向転換磁石を用いることによって、さらに多くの方向転換磁石がシンクロトロン130の方向転換部920の中に収まる。例えば、4個の磁石がシンクロトロンの方向転換部920の中に使用された場合には、単一の方向転換部において、1個の磁石に対して2つのエッジにより、8個のエッジ・フォーカス効果面が可能になる。8個のフォーカス面は、より小さな断面ビームサイズをもたらす。このことは、より小さなギャップ1110の使用を可能にする。
【0076】
方向転換磁石においてマルチ・エッジ・フォーカス効果を使用することにより、より小さなギャップ1110を実現するだけでなく、より小さな磁石及びより小さな電力供給も実現できる。各方向転換部が4個の方向転換磁石を有し、且つ、各方向転換磁石が2つのフォーカス・エッジを有する方向転換部920を4個備えたシンクロトロン130においては、シンクロトロン130の周回経路の中の陽子の各軌道に対して、合計32のフォーカス・エッジが存在する。同様に、2、6、又は8個の磁石が所定の方向転換部に使用され、又は、2、3、5、若しくは6個の磁石が使用された場合には、エッジ・フォーカス面の数は、次の式3に応じて拡大又は縮小する。
TFE=NTS*(M/NTS)*(FE/M) (3)
ここで、TFEはフォーカス・エッジの数、NTSは方向転換部の数、Mは磁石の数、FEはフォーカス・エッジの数である。もちろん、すべての磁石が面取りされる必要はなく、いくつかの磁石は1つのエッジだけを任意に面取りをしてもよい。
【0077】
発明者らは、多数のより小さな磁石が、少数のより大きな磁石よりも利益があることを突き止めた。例えば、4個の大きな磁石を使用した場合には8フォーカス・エッジしかもたらさないのに対して、16個の小さな磁石を使用した場合には32フォーカス・エッジをもたらす。さらに多くのフォーカス・エッジを有するシンクロトロンは、フォーカス4極磁石を使用しなくても、シンクロトロンの周回経路をつくることができる。従来技術のすべてのシンクロトロンは、シンクロトロンの周回経路に4極磁石を使用している。さらに、周回経路において4極磁石を使用した場合には、シンクロトロンの周回経路に直線部を追加する必要がある。このため、シンクロトロンの周回経路に4極磁石を使用することは、その結果、より大きな直径、周回ビーム経路長、及び又はより大きな円周を有するシンクロトロンになってしまう。
【0078】
この実施形態に記載されたシステムの種々の実施形態において、シンクロトロンは以下の任意の組合せを備えている。
・4つの方向転換部を有するシンクロトロンにおける荷電粒子ビームの90度の偏向ごとに少なくとも4個、好ましくは6、8、10個、以上のエッジのフォーカス・エッジ、
・シンクロトロンにおける荷電粒子ビームの軌道ごとに少なくとも約16個、好ましくは24、32個、以上のエッジのフォーカス・エッジ、
・少なくとも4個、好ましくは8個のエッジのフォーカス・エッジを各方向転換部が有する4個だけの方向転換部、
・同数の直線部及び方向転換部、
・正確に4個の方向転換部、
・方向転換部ごとに少なくとも4個のエッジのフォーカス・エッジ、
・4極磁石を有しないシンクロトロンの周回経路、
・丸い角の多角形の構造、
・60メートル未満の円周、
・60メートル未満の円周及び32個のフォーカス・エッジ面、及び
・シンクロトロンの各周回経路においてフォーカス・エッジのエッジを有する4極磁石からなる約8、16、24、又は32個の4極磁石を持たない構造。
【0079】
図12を参照して、第1の磁石1210の入射磁場面1270についてさらに説明する。図12は、目盛りがなく、基本的なものを示している。入射面1270の最後の質の局部的な不具合又は不均一は、ギャップ1110に加えられる磁場に不均質又は不具合を生じる結果となる。入射面1270は、好ましくは、平らであり、例えば、約0から3ミクロンの最終研磨の範囲内、あるいは10ミクロンの最終研磨の範囲内であることが好ましい。
【0080】
図14を参照して、図12において断面図で表された磁石に追加される磁石要素について説明する。第1の磁石1210は、鉄基材コアの第1の断面距離1410を有することが好ましい。磁場の外周は、磁石1210、1220及びヨーク1212、1222によって共有されている。鉄基材コアは、第2の断面距離1420に向かって次第に狭くなっている。磁石内の磁場は、ギャップ1230、1240に対向するように、鉄基材コア内に偏った状態で存在している。断面距離が第1の断面距離1410から第2の断面距離1420へと小さくなっているので、磁場は集束する。磁石の形状が長い距離1410から短い距離1420に変化することで、増幅器として働くことになる。磁場の集束は、第1の断面距離1410における磁場ベクトル1430の第1の密度から、第2の断面距離1420における磁場ベクトルの高い密度1440に至ることで表現されている。磁場の収束は、方向転換磁石の形状で決まるので、巻線コイル1250、1260の数をより少なくすることが要求され、コイルに対する電力供給も小さくすることが要求される。
【0081】
<実施例I>
一実施例においては、最初の断面距離1410は、約15cmであり、最後の断面距離1420は、約10cmである。その与えられた数値を用いると、磁場の集束は、ギャップ1110の入射面1270において約15/10又は1.5倍であるが、その関係はリニアではない。テーパー1460は、約20、40、又は60度の傾斜を持っている。例えば1.5倍の磁場の集束は、その分だけ磁石に必要な電力消費の減少を実現する。
【0082】
図15を参照して、集束磁場に使用される磁石の形状の追加の実施例について説明する。図14に示したように、第1の磁石1210は、鉄基材コアの第1の断面距離1410を有することが好ましい。磁場の外周は、磁石1210、1220及びヨーク1212、1222によって共有されている。この実施例においては、コアは、小さい角度θで第2の断面距離1420に向かって狭くなっている。上述したように、磁石内の磁場は、ギャップ1230、1240に対向するように、鉄基材コア内に偏った状態で存在している。断面距離が第1の断面距離1410から第2の断面距離1420へと小さくなっているので、磁場は集束する。角度θが小さくなればなるほど、長い距離1410から短い距離1420に進む磁場の増幅は次第に大きくなる。磁場の集束は、第1の断面距離1410における磁場ベクトルの最初の密度から、第2の断面距離1420における磁場ベクトルの集束された密度に至ることで表現されている。磁場の収束は、方向転換磁石の形状で決まるので、巻線コイル1250、1260の数をより少なくすることが要求され、巻線コイル1250、1260に対する電力供給もより小さくすることが要求される。
【0083】
図15において、第2の距離1410の断面領域は、第1の距離1420の断面領域の約3分の2よりも小さい。
【0084】
図15において、1つ以上の方向転換磁石の強度を補正するのに使用される追加のコイル1510、1520が示されている。補正コイル1520、1530は、巻線コイル1250、1260を補うものである。補正コイル1520、1530は、巻線コイル1250、1260で使用される巻線コイルの電力供給から分離している補正コイル電力を使用する。補正コイルの電力供給は、巻線コイルの電力供給と比較すると、それに必要な電力のほんの何分の1、例えば、その電力の約1、2、3、5、7、又は10%で、約1又は2%で動作が可能であることが好ましい。補正コイル1510、1520に供給される動作電力が小さくなればなるほど、補正コイルをさらに正確及び又は精密に制御することが可能になる。補正コイルは、方向転換磁石1010、1020、1030、1040における不具合を調整するのに使用される。分離した補正コイルは、各方向転換磁石に対して任意に使用されて、各方向転換磁石に対する磁場の個々の偏向ができるので、各方向転換磁石の製造における品質要求を容易に叶えることができる。
【0085】
図16には、イオン・ビームの方向転換部920における複数の方向転換磁石1010、1020のまわりの巻線コイル1630及び補正コイル1620の一実施例が示されている。図に示すように、2つの方向転換磁石の巻線コイル1630及び補正コイルは、1つの方向転換磁石及び2つの方向転換磁石を補正するように示されている。しかしながら、巻線コイルは、1、2、又は4個の方向転換磁石など、1つ以上の方向転換磁石を任意に覆う。同様に、補正コイルは、1、2、又は4個の方向転換磁石など、1つ以上の方向転換磁石を任意に覆う。覆われる方向転換磁石の個数は、巻線コイル及び補正コイルと同じ個数であることが好ましい。1つ以上の高精密部材1830は、シンクロトロンの中に配置されて、陽子ビーム経路において又はその近傍で磁場を測定するのに使用される。例えば、磁気センサは、ギャップ1110若しくはその近傍又は磁石若しくはヨーク若しくはその近傍など、方向転換磁石の間又は方向転換磁石の内部に任意に配置される。センサは、補正コイルに対するフィードバック・システムの一部であり、主制御部によって任意に駆動する。このように、システムは、好ましくは、磁石に供給される電流を安定化するというよりむしろ、シンクロトロンの要素における磁場を適切に安定化する。磁場の安定化によって、シンクロトロンは新たなエネルギーレベルに迅速に到達できる。このことにより、システムは、オペレータ又はアルゴリズムによって、シンクロトロンの各パルス及び又は患者の各呼吸によって選択されたエネルギーレベルを制御する。方向転換磁石の近傍又は方向転換磁石の間に配置された任意の磁場センサ1650は、磁場強度を制御する制御システムへの入力として任意に使用される。
【0086】
巻線コイル及び又は補正コイルは、1、2、3、又は4個の方向転換磁石を補正し、好ましくは、2つの方向転換磁石によって発生される磁場を補正する。多数の磁石を覆う巻線コイル又は補正コイルによって、巻線コイル又は補正コイルの両端が少なくなり、両端が占有する必要な空間すなわち磁石の間の空間を小さくする。
【0087】
<実施例II>
図17は、フィードバック・ループ1700によって磁場制御を明確にして、配送時間及び又は陽子パルス配送の間隔を変更する一実施例である。ある1つ場合においては、呼吸センサ1710は、患者の呼吸の周期を感知する。呼吸センサは、通常、患者インターフェース・モジュール150を介して、及び又は、主制御部110若しくはその副制御部を介して、磁場制御部1720のアルゴリズムに情報を送信する。アルゴリズムは、患者が呼吸の周期において、呼吸の底などの特異なポイントになるときを予測及び又は測定する。磁場センサ1730は、磁場制御部への入力として使用され、シンクロトロン130の第1の方向転換磁石1010内などの所定の磁場に対する磁気電力供給1740を制御する。したがって、制御フィードバック・ループは、選択されたエネルギーレベルをシンクロトロンにダイヤルするのに使用され、また、呼吸が底の時などの選択された時点の時間内に、所望のエネルギーレベルで陽子を配信するのに使用される。特に、主制御部は、シンクロトロンの中に陽子を入射し、抽出と組み合わせた方法でその陽子を加速し、呼吸の周期における選択された時点で陽子を腫瘍に配送する。陽子ビームの強度もこの段階で主制御部によって選択可能になり、制御可能になる。補正コイルに対するフィードバック制御によって、患者の呼吸の周期に連動したシンクロトロンのエネルギーレベルの迅速な選択が可能になる。このシステムは、電流が一定の値に安定化され、且つ、固定した周期の10又は20サイクル/秒のように、1つの周期でシンクロトロンがパルスを配送するようなシステムとは、全く対照的である。
【0088】
フィードバック又は磁場の設計を補正コイルと組み合わせることで、抽出の周期を患者の呼吸の変化速度に合わせることができる。
【0089】
従来の抽出システムがこの制御をすることができないのは、正弦波の大きさ及び増幅の双方に関するメモリを磁石が持っているからである。したがって、従来のシステムにおいては、周波数を変更するために、電流の緩やかな変化を採用しなければならない。これに対して実施形態では、磁場センサを用いたフィードバックを使用することで、シンクロトロンの周波数及びエネルギーレベルを素早く調整することができる。さらに、この処理を支援することで、後述するように、抽出処理の期間中に陽子の加速ができる新しい抽出システムを使用できる。
【0090】
<実施例III>
再び図16を参照すると、4つの方向転換磁石1010、1020、1030、1040を覆う巻線コイル1630の一実施例が示されている。任意ではあるが、第1の巻線コイルは2つの磁石1030、1040を覆い、第2の巻線コイルは別の2つの磁石1010、1020を覆う。上述したように、このシステムは、方向転換部の間の空間を小さくして、方向転換の角度ごとにさらに多くの磁場を供給する。第1の補正コイル1610は、第1の方向転換磁石1010に対する磁場を補正するのに使用されることを示している。第2の補正コイル1620は、4つの方向転換磁石のまわりの巻線コイル1630に対する磁場を補正するのに使用されることを示している。各方向転換磁石に対する個々の補正コイルは、各方向転換部において最も精密な及び又は最も正確な磁場を発生させるのに好適な個々の補正コイルである。特に、個々の補正コイル1610は、所定の方向転換部の個々の磁石の不具合を補償するのに使用される。したがって、磁場監視システムにおける一連の磁場センサによれば、独立したコイルが各方向変更部に対して使用されるので、対応する磁場は一連のフィードバック・ループにおいて個々に調整できる。あるいは、他の実施例においては、多数の磁石補正コイルは、複数の方向転換磁石に対する磁場を補正するのに使用される。
【0091】
(平らなギャップ表面)
第1の方向転換磁石1010の観点からギャップ表面を説明する一方で、シンクロトロン内の方向転換磁石の各々について説明する。同様に、磁場入射表面670の観点からギャップ1110を説明する一方で、磁場励磁表面680について説明する。
【0092】
第1の磁石1210の磁場入射表面1270はほぼ平坦であることが好ましく、例えば、ほぼ0から3ミクロンの仕上げ研磨又は約10ミクロンの仕上げ研磨であることが好ましい。極めて平坦にすることによって、研磨された表面は、ギャップ1110を横断して供給される磁場の不均一性を解消する。極めて平坦な表面、例えば、ほぼ0、1、2、4、6、8、10、15、又は20ミクロンの仕上げ表面は、ギャップサイズをより小さくすること、供給される磁場をより小さくすること、供給電力をより小さくすること、及び、陽子ビームの断面面積をより厳密に制御することを可能にする。
【0093】
(陽子ビーム抽出)
図18には、シンクロトロン130からの陽子抽出処理の一実施例が示されている。明確にするために、図18では、図2に示した方向転換磁石などの要素を取り除くことで、時間の関数としての陽子ビーム経路の表現を非常に明確にすることができる。一般的には、陽子を遅くすることにより、シンクロトロン130から陽子が抽出される。上述したように、陽子は周回経路264の中で最初に加速されて、複数の主要な偏向磁石250によりその加速された陽子が維持される。周回経路は、この実施形態では最初の中心のビームライン264と呼ばれる。陽子は、シンクロトロン280の中心のまわりを繰り返し周回する。陽子経路は、高周波(RF)空洞システム1810の中で向きを変える。抽出を開始するために、RF空洞システムにおいて、第1の羽根1812及び第2の羽根1814にわたってRF磁場が供給される。第1の羽根1812及び第2の羽根1814は、この実施形態では第1の対の羽根と呼ばれる。
【0094】
陽子抽出処理においては、第1の対の羽根にわたってRF電圧が供給され、そこでは第1の対の羽根の第1の羽根1812は周回陽子ビーム経路264の一方の側にあり、第1の対の羽根の第2の羽根1814は周回陽子ビーム経路264の反対側にある。供給されたRF磁場は、周回する荷電粒子ビームに対してエネルギーを与える。供給されたRF磁場は、軌道又は周回ビーム経路をわずかに変更して、最初の中心のビームライン264から周回ビーム経路265にする。RF空洞システムの中で陽子が第2の経路に移動すると、RF磁場は、最初のビームライン264からはずれた陽子をさらに移動する。例えば、最初のビームラインが円形の経路であるとすると、変更されたビームラインはわずかに楕円形の経路になる。供給されるRF磁場はタイミングを合わせて、シンクロトロン加速器の中で周回する陽子の所定の軌道を内側又は外側に移動させる。陽子の各軌道は、最初の周回ビーム経路264と比べて少しずつさらに外れた軸になっている。RF空洞システムを通る陽子の連続する通過は、RF磁場を通る陽子ビームの連続する各通過に伴って、RF磁場の方向及び又は強度を変更することによって、最初の中心のビームライン264から次第に移動を強いられる。
【0095】
RF電圧は、1回の回転に対してシンクロトロンのまわりを周回する1つの陽子の周期にほぼ等しい周波数で周波数変調されるか、又は、シンクロトロンのまわりを周回する1つの陽子の周期の積分乗算器よりも高い周波数で周波数変調される。供給されたRF周波数変調電圧は、ベータトロン振動を励起する。例えば、その振動は陽子の正弦波の動きになっている。RF空洞システム内の所定の陽子ビームに対するRF磁場タイミングの処理は、陽子が最初の中心ビームライン264からさらにほぼ1マイクロメートル離れて動く連続する各通過で数千倍繰り返される。説明を明確にするために、RF磁場を通る陽子の所定の軌道の連続する各経路と共にほぼ1000回変化するビーム経路が、変更されたビーム経路265として図示されている。
【0096】
正弦波のベータトロンの十分な振幅があるので、変更された周回ビーム経路265は、箔又は箔のシートなどの部材1830に接触する。箔は、軽量の材料、例えば、ベリリウム、水素化リチウム、カーボン・シート、又は低い核電荷の物質であることが好ましい。低い核電荷の物質は、実質的には6個又はそれより少ない個数の陽子を持つ原子で構成された物質である。箔は、好ましくは、約10乃至150ミクロンの厚さであり、さらに好ましくは、30乃至100ミクロンの厚さであり、さらにいっそう好ましくは、40乃至60ミクロンの厚さである。一実施例では、箔は、約50ミクロンの厚さのベリリウムである。陽子が箔の中を通り抜けると、陽子のエネルギーが失われ、陽子の速度が低下される。後述するように、通常、電流も発生される。低速度で動く陽子は、最初の中央ビームライン264又は変更された周回経路265のいずれかと比べて、小さくなった曲率半径266でシンクロトロン内を移動する。小さくなった曲率半径266の路についても、ここでは、より小さい直径の軌道を有する経路又は低エネルギーの陽子を有する経路という。小さくなった曲率半径266は、通常、変更された陽子ビーム経路265に沿った陽子の最後の通過の曲率半径よりも約2ミリメートル小さい。
【0097】
部材1830の厚さは、曲率半径における変化が、例えば、陽子の最後の通過路265又は最初の曲率半径264よりも約1/2mm、1mm、2mm、3mm、又は4mm小さく形成されるように任意に調整される。より小さな曲率半径で動く陽子は、第2の対の羽根の間を移動する。第1の場合においては、第2の対の羽根は、第1の対の羽根とは物理的に別個のもの及び又は分離したものになっている。第2の場合においては、第1の対の羽根の1つが第2の対の羽根の要素にもなっている。例えば、第2の対の羽根は、RF空洞1810内の第2の羽根1814及び第3の羽根1816である。ここで、約1乃至1.5kVなどの高電圧のDC信号が第2の対の羽根の両端に印加されると、ラムバーソン抽出磁石などの抽出磁石292によって、陽子をシンクロトロンの外の輸送路268に導く。
【0098】
加速器によるシンクロトロン内の荷電粒子ビーム経路の加速の制御によって、及び又は、上述した抽出システムと組み合わされた方向転換磁石に対して供給された磁場によって、抽出された陽子の強度を制御することができる。そこでは、強度は単位時間における陽子の束又は時間の関数として抽出された陽子の数である。例えば、閾値を超えた電流が計測されたときは、RF空洞内のRF磁場変調が終了又は起動停止がなされて、陽子ビーム抽出の十分な周期を確立する。この処理は繰り返されて、シンクロトロン加速器からの陽子ビーム抽出を多く繰り返すことができる。
【0099】
抽出システムは、磁場の性質のいかなる変化にも依存していないので、シンクロトロンは加速モード又は減速モードにおける動作を継続することができる。言い換えれば、抽出処理は、シンクロトロン加速器に干渉することはない。これと極めて対照的に、従来の抽出システムは、抽出処理の期間中に、6極磁石などによる新たな磁場を採用している。特に、従来のシンクロトロンは、加速段階の期間中はオフとなる6極磁石などの磁石を備えている。抽出段階の期間中は、6極磁石の磁場がシンクロトロンの周回経路に導入される。磁場の導入は、2つの別個のモード、加速モード及び抽出モードを強いられて、2つのモードは同じ時間においては相互に排他的なものとなる。
【0100】
(荷電粒子ビームの強度制御)
高周波(RF)磁場などの磁場の制御によって、RF空洞1810内の周波数及び振幅は抽出された陽子ビームの強度制御を可能にし、その制御では、強度は単位時間に抽出された陽子の束又は時間の関数として抽出された陽子の数となる。
【0101】
さらに図18を参照する。陽子ビーム内の陽子が部材1830にぶつかると、電子が放出されて電流が発生する。発生した電流は、電圧に変換されて、イオン・ビーム強度監視システムの要素として、又は、ビーム強度制御のためのイオン・ビーム・フィードバック・ループの要素として用いられる。その電圧は、任意に測定されて、主制御部110又は制御部のサブシステムに任意に送られる。特に、荷電粒子ビーム経路内の陽子が部材1830を通過すると、いくつかの陽子はほんの何分の1のエネルギー、例えば、約10分の1の割合のエネルギーを失って、その結果2次電子が発生する。すなわち、荷電粒子ビーム内の陽子は、部材1830を通過するときに2次放出を生じるに十分なエネルギーの電子を与えることで、いくつかの電子を放出する。発生した電子の流れは、目標の部材1830を通過する陽子の数に比例する電流又は信号を発生する。発生した電流は、電圧に変換されて増幅されることが好ましい。発生した信号は、測定された強度信号と呼ばれる。
【0102】
陽子が部材1830を通過した結果得られた増幅された信号又は測定された強度信号は、抽出された陽子の強度を制御するのに使用されることが好ましい。例えば、測定された強度信号は、腫瘍面1860の照射においてあらかじめ設定される目標信号と比較される。一実施例において、腫瘍面1860は、患者のx位置、y位置、時間、及び又は回転位置の関数として、配送される陽子ビームの目標の又は対象にされたエネルギー及び強度を有する。測定された強度信号と予定された目標信号との間の差分が計算される。その差分がRF発生器に対する制御として使用される。したがって、陽子が部材1830を通過した結果生じて測定された電流の流れは、RF発生器において、ベータトロン振動を受け且つ部材1830に衝突する陽子の数の増加又は減少を制御するのに使用される。したがって、部材1830の電圧のうち差し引いて算出された電圧は、軌道経路の測定として使用され、且つ、RF空洞システムを制御するためのフィードバック制御として使用される。あるいは、他の実施例として、測定された強度信号はフィードバック制御には使用されず、抽出された陽子の強度の監視としてだけ使用される。
【0103】
上述したように、陽子が部材1830に衝突することは、シンクロトロン130から陽子を抽出する中での工程である。したがって、測定された強度信号は、抽出される単位時間に対する陽子の数を変化するのに使用され、陽子ビームの強度と呼ばれる。このため、陽子ビームの強度は、アルゴリズム制御に従うことになる。さらに、陽子ビームの強度は、シンクロトロン130における陽子の速度から分離して制御される。したがって、抽出された陽子の強度及び抽出された陽子のエネルギーは独立して変化する。
【0104】
例えば、陽子はシンクロトロン130の中で最初は平衡状態の軌道で移動する。RF磁場は、ベータトロン振動の中に陽子を励起するのに使用される。1つの場合では、陽子の軌道の周波数は約10MHzである。一実施例においては、約1ミリ秒間において又は約10,000回の軌道の後において、最初の陽子が目標の部材130の外側のエッジを叩く。その特定の周波数は、軌道の周期に依存している。陽子が部材130を叩くと、陽子は箔によって電子を放出て電流を生成する。その電流は電圧に変換されて増幅され、測定された強度信号を取得できる。測定された強度信号は、供給されるRFの大きさ、RFの周波数、又はRF磁場を制御するためのフィードバック入力として使用される。好ましくは、測定された強度信号は、目標信号と比較され、測定された強度信号と目標信号との差分の測定値は、抽出の工程で陽子の強度を制御するための抽出システムにおいてRF空洞システム1810に供給されるRF磁場を調整するのに使用される。繰り返して言及すると、陽子が部材130を叩くことによって及び又は陽子が部材130を通過することによって発生する信号は、RF磁場変調への入力として使用される。RF変調の大きさを増加するほど、その結果、陽子が箔又は部材130を叩くのが次第に遅くなる。RFを増加することによって、より多くの陽子が箔の中に放出され、その結果、シンクロトロン130から抽出される陽子の強度又は単位時間当たりの陽子の数が増加する。
【0105】
他の実施例において、シンクロトロン130の外部の検出器1850は、シンクロトロンから抽出された陽子の束を測定するのに使用され、外部の検出器からの信号は、RF空洞システム1810におけるRF磁場又はRF変調を変更するのに使用される。ここで、外部の検出器は外部信号を発生し、その信号は、前の段落において説明した測定された強度信号と同じ方法によって使用される。特に、測定された強度信号は、フィードバック強度制御部1840における照射面1860からの所望の信号と比較され、上述したように、抽出処理における第1のプレート1812及び第2のプレート1814の間のRF磁場を調整する。
【0106】
さらに他の実施例において、陽子が磁場センサを通過すること又は磁場センサを叩くことで生じる部材130からの電流が閾値を超えたことが測定されたときは、RF空洞システム内のRF磁場変調は、終了又は起動停止がなされて、陽子ビーム抽出の十分な周期が確立される。この処理は繰り返されて、シンクロトロン加速器からの陽子ビーム抽出を多く繰り返すことができる。
【0107】
さらにまた他の実施例において、抽出された陽子ビームの強度変調は、主制御部110によって制御される。主制御部110は、荷電粒子ビームの抽出のタイミング及び抽出された陽子ビームのエネルギーを任意に及び又は補足的に制御する。
【0108】
システムの利点には、多次元のスキャン・システムが含まれる。特に、システムは、(1)抽出された陽子のエネルギー、及び(2)抽出された陽子の強度に、独立性を持たせることができる。すなわち、抽出された陽子のエネルギーは、エネルギー制御システムによって制御され、抽出された陽子の強度は、強度制御システムによって制御される。エネルギー制御システム及び強度制御システムは、任意に且つ独立して制御される。好ましくは、主制御部110は、エネルギー制御システムを制御し、また、主制御部は、強度制御システムを同時に制御して、制御されたエネルギー及び制御された強度が独立して変化する中で、制御されたエネルギー及び制御された強度によって抽出される陽子ビームが得られる。このように、腫瘍をたたく照射スポットは、
・時間
・エネルギー
・強度
・患者に対する陽子ビームの水平方向の移動を表すx軸の位置、
・患者に対する陽子ビームの垂直方向の移動を表すy軸の位置
の独立した制御下におかれる。さらに、患者は、同じ時間における陽子ビームの変換軸に対して任意に且つ独立して回転される。
【0109】
(患者の位置決め)
図19において、患者は、好ましくは、患者インターフェース・モジュール150の患者位置システム1910の上又は内部に置かれる。患者位置システム1910は、後述するように、スキャン・システム140又は陽子目標システムによって陽子ビームが腫瘍をスキャンできる範囲の中に患者を移送するため及び又はその範囲の中で回転するのに使用される。実際のところ、患者位置システム1910は、患者の大きな移動を実行して陽子ビーム経路268の中心近くに腫瘍を位置させ、陽子スキャン又は目標システム140は、腫瘍1290を目標にする一時的なビーム位置269の細かい移動を実行する。説明のために、図19は、一時的な陽子ビーム位置269及び陽子スキャン又は目標システム140によってスキャンできる位置1940を示している。そこでは、スキャンできる位置1940は、患者1930の腫瘍1920の周囲になっている。この図に示すように、患者のy軸の移動は体の規模で生じ、例えば、約1、2、3、又は4フィートの調整であり、一方、陽子ビーム268のスキャンできる範囲は体の部分をカバーし、例えば、約1、2、4、6、8、10、又は12インチの領域になっている。患者位置システム及び患者の回転及び又は配送は陽子目標システムと組み合って、腫瘍に対する陽子の精密且つ正確な配送を実現する。
【0110】
図19において、患者位置システム1910は、ディスク又は載置台などの下部ユニット1912及び上部ユニット1914を任意に有する。図19(A)に示すように、患者位置ユニット1910は、好ましくは、y軸調整可能1916になっていて、陽子線治療ビーム268に対して患者の垂直の昇降が可能である。好ましくは、患者位置ユニット1910の垂直動作は、1分間に約10、20、30、又は50センチメートルである。図19(B)に示すように、患者位置システムユニット1910も、好ましくは、y軸のまわりなどの回転軸のまわりの回転1917が可能になっていて、陽子ビーム経路268に対して患者の回転制御及び位置決めが可能である。好ましくは、患者位置ユニット1910の回転動作は、1分間に約360度である。あるいは、患者位置決めユニットは、約45、90、又は180度に回転する。また、あるいは、患者位置決めユニット1910は、1分間に約45、90、180、360、720、又は1080度の速度で任意に回転する。位置決めユニットの回転1917は、2つの異なる時間t及びtについて回転軸のまわりに示されている。陽子は、腫瘍1920にn回任意に配送される。この場合において、n回の各々は、回転軸のまわりの患者1917の回転によって、患者1930を叩く入射陽子ビームの異なる方向を表している。
【0111】
以下に説明する半垂直、着座、横臥の患者位置決めのすべての実施形態は、y軸に沿って垂直に任意に配送可能であり、又は、回転若しくはy軸のまわりに任意に回転可能である。
【0112】
好ましくは、上部ユニット及び下部ユニット1912、1914は同時に移動するので、同じ速度で回転し、同じ速度で平行移動する。上部ユニット及び下部ユニット1912、1914は、y軸に沿って独立して任意に調整可能であるので、上部ユニット及び下部ユニット1912、1914の間を異なる距離にすることができる。上部ユニット及び下部ユニット1912、1914を動かすためのモータ、電源、及び機械部品は、下部ユニット1912の下側及び又は上部ユニット1914の上側など、陽子ビーム経路269の外に配置されることが好ましい。このことが好ましいのは、患者位置決めユニット1910が、360度に任意に回転可能であるので、モータ、電源、及び機械部品が、陽子ビーム経路269において位置が変化した陽子の妨げになるからである。
【0113】
(陽子ビームの位置制御)
図20には、ビーム配送及び腫瘍体積スキャンのシステムが示されている。現在、世界照射線治療界では、ペンシル・ビーム・スキャン・システムによって、線量磁場形成の方法を使用している。これと極めて対照的に、図20は、スポット・スキャン・システム又は腫瘍体積スキャン・システムを示している。腫瘍体積スキャン・システムにおいては、安価で精密なスキャン・システムによって、輸送及び分配という観点から陽子ビームが制御される。そのスキャン・システムは能動的なシステムであり、そのシステムでは、直径が約0.5、1、2、又は3ミリメートルのスポット焦点の中にビームがフォーカスされる。陽子ビームの供給エネルギーを同時に変更する期間に、焦点は2つの軸に沿って平行移動され、そのことが焦点の第3の範囲を効果的に変化させる。そのシステムは、上述した体の回転と併用して適用することが可能であり、その併用は腫瘍に対する陽子の配送の個々の瞬間に又は周期の間に起こることが好ましい。任意ではあるが、上述のシステムによる体の回転は、腫瘍に対する陽子の配送と共に連続的に且つ同時に起こる。
【0114】
例えば、図20(A)に示すように、スポットは水平に平行移動され、垂直に下に移動され、次に、水平軸に沿って戻る。この実施例においては、電流が使用されて、少なくとも1つの磁石を有する垂直スキャン・システムを制御する。供給された電流は、垂直スキャン・システムの磁場を変更して、陽子ビームの垂直な偏向を制御する。同様に、水平スキャン磁石システムは、陽子ビームの水平な偏向を制御する。各軸に沿った平行移動の程度は制御されて、所定の深さの腫瘍断面に一致する。その深さは、陽子ビームのエネルギーを変化することによって制御される。例えば、陽子ビームのエネルギーは、新たに浸透する深さを限定するように減少され、水平軸及び垂直軸に沿ってスキャン処理が繰り返され、腫瘍の新たな断面領域をカバーする。制御の3つの軸を組み合わせた場合には、癌の腫瘍の全体の体積にわたって陽子ビームの焦点のスキャン及び移動が可能になる。各スポットの時間及び各スポットに対する体内の方向が制御されて、分散エネルギーが腫瘍の外側を叩く間に、癌の体積の各部分に所望の照射線量を与えることができる。
【0115】
フォーカスされたビーム・スポットの面の大きさは、好ましくは、約0.5、1、又は2ミリメートルの直径に厳しく制御されるが、あるいは数センチメートルの直径に制御される。好ましい設計制御により、2つの方向、すなわち、(1)約100mmの垂直振幅及び200Hzまでの周波数、並びに(2)約700mmの水平振幅及び1Hzまでの周波数で、スキャンすることが可能になる。スキャン磁石システムを変更することによって、各軸においてもっと大きな振幅又はもっと小さな振幅も可能である。
【0116】
図20(A)には、ビーム・エネルギーによって制御されてz軸に沿った、水平移動がx軸に沿った、垂直方向がy軸に沿った陽子が示されている。この実施例においては、z軸に沿って組織の中に移動する陽子の距離は、陽子の運動エネルギーによって制御される。この座標システムは、決まったものではなく例示に過ぎない。陽子ビームの実際の制御は、2つのスキャン磁石システムによって3次元の空間の中で、陽子ビームの運動エネルギーを制御することによって制御される。抽出システムを使用することによって、上述したように、異なるスキャンのパターンが可能になる。特に、このシステムによれば、強力な腫瘍に対する照射においてx軸、y軸、及びz軸を同時に調整することができる。繰り返し言及すると、回転式飛程補償体(range modulation wheel :RMW)を用いた場合のように、xy面に沿ったスキャン及びその後の陽子のエネルギーの調整をする代わりに、このシステムでは、x軸又はy軸を同時に調整する間に、z軸に沿って移動することができる。したがって、腫瘍の輪切りが照射されるのでなく、腫瘍は3次元同時に任意に照射される。例えば、腫瘍は、腫瘍の外縁のまわりを3次元において照射される。次に、腫瘍は、腫瘍の内部の外縁のまわりを照射される。この処理は、腫瘍全体が照射されるまで繰り返される。外縁の照射は、例えば、垂直なy軸のまわりで、治療対象を回転するのと同時に連動して行われることが好ましい。このシステムによれば、ブラッド・ピークによって定義されているように、腫瘍に対する陽子の照射の最大の効率が可能になり、周辺の正常組織に対する陽子の配送を最少にすると共に、腫瘍自体に対する陽子の照射が可能になる。
【0117】
組み合わされた場合には、システムは小さな電力供給で小さな空間における荷電粒子ビーム・システムの多軸制御を可能にする。例えば、上述したように、システムは、シンクロトロンの各方向転換内において各磁石が少なくとも1つのエッジ・フォーカス効果を有する多数の磁石、及び又は、収束した磁場の形状を有する多数の磁石を使用する。磁石の収束形状及び上記した抽出システムと組み合わされたシンクロトロンの周回ビーム経路における多数のエッジ・フォーカス効果は、下記の構成を有するシンクロトロンを可能にする。
・例えば、約50メートルよりも小さい小型の円周のシステム、
・約2cmの垂直陽子ビームサイズのギャップ、
・低減されたギャップサイズと関連した対応する低減された必要な電源供給、
・新たに導入する磁場を必要としない抽出システム、
・抽出の期間中の陽子の加速又は減速、及び
・抽出の期間中のz軸エネルギーの制御
この結果、3次元スキャン・システム及びx軸、y軸、及びz軸の制御が可能となり、そこでは、シンクロトロンの中でz軸制御が可能であり、また、シンクロトロン内の抽出処理の期間中にz軸エネルギーが可変に制御される。
【0118】
図20(B)においては、4次元のスキャン制御により腫瘍に対して陽子を導くのに使用された陽子スキャン・システム又は目標システムの一実施例が示され、その中では、上述した強度制御を伴った、4次元のスキャン制御がx軸、y軸、及びz軸に沿っている。5番目の軸は時間である。通常、搬送路268に沿って移動する荷電粒子は、垂直制御などの第1の軸制御要素142、及び、水平制御などの第2の軸制御要素144によって、腫瘍1920の中に照射される。上述したように、抽出システムも、z軸における同時の変化を可能にする。さらに、上述したように、抽出されたビームの強度及び線量は、任意に、同時に、且つ独立に制御され、変化される。このように、腫瘍の輪切りを照射する代わりに、図20(A)に示すように、腫瘍における陽子配送の目標スポットを限定するすべての4次元が同時に変化する。陽子配送のスポットの同時の変化は、図20(B)においてスポット配送路269によって示されている。図示された場合において、陽子は最初に腫瘍の外縁のあたりに照射され、次に、腫瘍の内部の範囲に照射される。垂直軸のまわりに治療対象を回転させることと組み合わせると、体中の陽子の入力点からさらに離れた腫瘍において、まだ照射されていない腫瘍の部分が適切に照射される位置で多磁場の照射処理が使用される。このことは、ブラッド・ピークによって定義されているように、腫瘍の中への陽子配送の最大の割合を可能にし、周辺の正常組織に対する破壊が最少になる。
【0119】
(陽子のエネルギー及び強度の制御)
陽子のエネルギー及び強度の性能について説明する。陽子配送システムは、少なくとも300メガ・エレクトロン・ボルト(MeV)のエネルギー及び330MeVの最大エネルギーに達するまで、ビームを加速する能力を有する。さらに、1つの周期における変化に富んだ陽子ビームの加速及び減速が示されている。特に、最初の1秒から4秒までの第1の周期においては、ビームは、100MeVに加速され、50MeVに減速され、再び150MeVに加速されている。5秒に始まる次の周期においては、陽子エネルギーは、330MeVに急激に増加されて、そこで1秒間そのエネルギーが維持される。その維持されたエネルギーはX線断層写真を実行するために必要である。対応するビーム強度は、シンクロトロンの加速器の動作の連続する2つの周期を提供する。ほぼ1秒半から3秒半までの第2の目盛りにおいて、ビームはある照射ポイントに向けられている。必要な線量値が照射されると、抽出は中断され、ビームは次の照射ポイントに移動されて、抽出処理は5秒半から7秒半までの第2の目盛りに再開される。リアルタイムの動作においては、上述の処理の各々が、表示された割合の10倍で任意に実行される。
【0120】
(画像/X線システム)
この実施形態において、X線システムは、画像システムを説明するために用いられる。
【0121】
(タイミング)
X線は、2つの理由のために、(1)直前の又は(2)現在のいずれかの陽子線治療で患者を治療することと組み合わせることが好ましい。
【0122】
第1に、上述したように、体の移動は、体の他の構成要素に関連する体内の腫瘍の局部位置を変化させる。治療対象がX線をすでに照射されていて、治療対象が体ごと治療室に移動されている場合には、腫瘍に対して陽子ビームの正確な位置合わせは困難である。1つ以上のX線を用いた腫瘍に対する陽子ビームの位置合わせは、陽子配送の時間に、又は、陽子配送の直前の数秒若しくは数分で且つ治療できる体の位置に患者が配置された後において最善に実行される。その位置は、通常、固定された位置又は部分的な移動ができない位置である。
【0123】
第2に、位置決め後の患者が照射されるX線は、腫瘍及び又は内部の臓器の位置などの、目標にされた位置に対する陽子ビーム位置合わせの確認として使用される。
【0124】
(位置決め)
X線は、好ましくは、治療対象を治療する直前に照射され、患者の位置決めを支援する。位置決めのためには、大きな体の領域は必要ではない。一実施形態においては、局部領域だけのX線が集められる。X線を集めるときのそのX線はX線経路を保持している。陽子は陽子ビーム経路を保持している。陽子ビーム経路にX線経路を重ねることは、腫瘍に対して陽子ビームを位置合わせする1つの方法である。しかしながら、この方法は、陽子ビーム経路の中にX線装置を配置することを伴うことになり、X線を照射した後に、X線装置をビーム経路の外に移動することになる。この処理には時間がかかる。X線装置が移動する間の経過時間は、好ましくない影響を及ぼす。第1に、X線装置を移動するに必要な時間の間に、患者が動いてしまう。移動の結果、腫瘍に対する陽子ビームの実質的な位置合わせの精密さ及び又は正確さが低下する。第2に、X線装置を移動するに必要な時間は、陽子線治療システムが使用されない時間であり、そのことは、陽子線治療システムの全体的な効率を低下させる。
【0125】
(X線源の寿命)
陽子線治療システムの寿命の上では、最小限のメンテナンス又はメンテナンスの無いことを要求する要素が陽子線治療システム内にあることが望ましい。例えば、約20年の寿命などの長い寿命の光源を有するX線システムを備えた陽子線治療システムを装備することが望ましい。
【0126】
1つのシステムにおいては、後述するように、X線を生成するのに電子が使用される。電子は、寿命が温度に依存するカソードで発生される。フィラメントが平衡状態に維持される電球に似て、カソードの温度は、摂氏約200、500、又は1000度の温度で平衡状態に維持される。カソードの温度を低下させると、カソードの寿命を延ばすことができる。したがって、電子を発生するのに使用されるカソードは、できる限り低い温度に保たれることが好ましい。しかしながら、カソードの温度が低下した場合には、電子の放出も低下することになる。低い温度で多くの電子の必要性を満たすためには、大きなカソードを使用して、発生する電子を収束させることである。この処理は、電子銃において電子を圧縮することに似ているが、この実施形態では、X線管の寿命の強化に利用するために圧縮技術が適用される。
【0127】
(患者の固定)
患者の腫瘍に対する正確且つ精密な陽子ビームの配送のためには、(1)陽子ビームの位置制御、及び(2)患者の位置制御が必要である。上述したように、陽子ビームは、アルゴリズム及び磁場によって、約0.5、1、又は2ミリメートルの直径に制御される。このセクションでは、部分的な固定、固定、及び又は、患者の位置合わせに取り組んで、患者が移動した場合でも、厳しく制御された陽子ビームが効率的に目標の腫瘍を叩くと共に、周辺の正常組織を叩かないことを保証する。
【0128】
(患者の配置)
好ましくは、患者1930は、陽子ビーム経路269に精密且つ正確な方法で位置合わせされる。第1の配置システムにおいては、患者は、載置台に対して周知の位置に配置される。例えば、1つ以上の位置決め固定システムは、載置台の上の精密及び又は正確な位置に患者を位置決めする。載置台に結合され又は着脱可能に結合された配置固定の要素は、載置台に患者を位置決めするために任意に使用される。配置固定システムの要素は、手の要素、手先の要素、頭部の要素、又は胴体の要素など、患者のいかなる位置を位置決めするためにも使用される。
【0129】
(呼吸の監視)
好ましくは、患者の呼吸パターンは監視される。この実施形態では患者とも称する治療対象は、各呼吸とともに動く体の多くの部分で呼吸している。例えば、治療対象が呼吸すると、肺が動くにつれて、胃、腎臓、肝臓、胸の筋肉、皮膚、心臓、及び肺など、体の中の器官の関係する位置も動く。一般的には、胴体のほとんど又はすべての部分が呼吸と共に動く。事実、発明者らは、呼吸と一緒の胴体の動きに加えて、各呼吸と共に頭部及び脚にも様々な動きが存在することを認識した。陽子は腫瘍に特化して配送され周辺の組織には配送されないので、体への陽子線量の配送の際に動きを考慮すべきである。ビーム経路に対する腫瘍の存在位置が、動きによってあいまいになるという結果を生じる。この関係を少しでも解決するために、陽子は一連の呼吸の周期の各々における同一のポイントに選択的に配送される。
【0130】
最初に、治療対象の呼吸のリズムパターンが測定される。その周期が観察され又は測定される。例えば、陽子ビームのオペレータは、治療対象が呼吸している時又は呼吸と呼吸との間を観察できるので、陽子の配送を各呼吸の所定の周期に合わせることができる。あるいは他の実施例として、治療対象は息を吸うこと、息を吐くこと、及び又は息を止めることを指示され、その指示された時間の間に陽子が配送される。
【0131】
好ましくは、1つ以上のセンサが個人個人の呼吸の周期を測定するのに使用される。呼吸監視システムの2つの実施例、(1)温度監視システム、(2)力監視システムが提供される。
【0132】
(呼吸の制御)
治療対象の呼吸のリズムパターンが測定された後は、信号が治療対象に送られて、呼吸の周波数をさらに正確に制御する。例えば、表示画面が治療対象の前に配置されて、呼吸を止める時及び呼吸する時を治療対象に指示する。通常、呼吸制御モジュールは、1つ以上の呼吸センサからの入力を使用する。例えば、その入力は、次の呼吸の吐息がいつ完了するかを測定するのに使用される。呼吸の底において、制御モジュールは、例えば、モニタ上で、音声信号を介して、デジタル化され且つ自動的に発生された音声指令、又は、可視制御信号を介して、呼吸止め信号を患者に提示する。好ましくは、表示モニタは治療対象の前に配置され、また、表示モニタは少なくとも呼吸の指令を治療対象に表示する。通常、治療対象は、約1.5、1、2、又は3秒などの短い時間の間、呼吸を止めることを指示される。治療対象が要求される呼吸を止める時間は10秒よりも短い。呼吸が止められる時間は、好ましくは、腫瘍に対する陽子ビームの配送時間に同期しており、その時間は約1.5、1、2、又は3秒である。呼吸の底において陽子を配送することが好ましいとはいえ、陽子は呼吸の周期の任意の点、例えば、最大吸入時に配送されてもよい。呼吸の頂点、又は、呼吸制御モジュールによって患者が息を深く吸い込んで、呼吸を止めることを指示された時の配送は、胸の空洞が最大になって、且つ、ある腫瘍にとって腫瘍と周辺の組織との間の距離が最大であるか、又は増加した体積の結果として周辺の組織が持ち上げられた呼吸の頂点において実行してもよい。したがって、周辺の組織を叩く陽子は最小になる。呼吸を止めることを要求する指示に対して、それを実行する作業を治療対象に気付かせるために、表示画面は、3、2、1秒のカウントダウンなどにより、治療対象に対して呼吸を止めることを要求する時を告げるようにしてもよい。
【0133】
(呼吸と同期した陽子線治療)
陽子配送制御アルゴリズムは、対象が呼吸を止めている呼吸の頂点又は底など、各呼吸の所定の期間内に、腫瘍に対する陽子の配送に同期させるのに使用される。陽子配送制御アルゴリズムは、好ましくは、呼吸制御モジュールと統合される。このため、陽子配送制御アルゴリズムは、患者が呼吸をしている時、呼吸の周期における患者の現在位置、及び又は患者が呼吸を止めている時を認識する。陽子配送制御アルゴリズムは、陽子がシンクロトロンの中に入射され及び又は予備的に加速される時、上述したように発振器を励起するためにRF信号が供給される時、及び、上述したようにシンクロトロンから陽子を抽出するためにDC電圧が供給される時を制御する。通常、陽子配送制御アルゴリズムは、治療対象が呼吸を止めることを指示される前に、又は、陽子配送時間のために選択された呼吸の周期における特定された期間の前に、陽子の予備加速及びそれに続くRF励起発振を初期化する。この方法において、陽子配送制御アルゴリズムは、上述したように、第2の一対のプレートに高いDC電圧を同時に又はほぼ同時に配送することによって、選択された呼吸の周期の期間に陽子を配送することができる。その結果、シンクロトロンからの陽子の抽出ができると共に、それに続く患者に対する陽子の配送を選択された時点にすることができる。シンクロトロンにおける陽子の加速の期間は一定であるか又は陽子ビームの所望のエネルギーレベルに対して周知であるので、陽子配送制御アルゴリズムは、患者の呼吸の周期又は所望の呼吸の周期に対して整合するAC RF信号を設定するのに使用される。
【0134】
(多磁場照射)
陽子スポット焦点の3次元スキャン・システムは、上述したように、好ましくは、回転/レーザ方法と組み合わされる。その方法は、多くの方向からの階層的な腫瘍照射を含んでいる。所定の照射の輪切りの期間において、陽子ビーム・エネルギーは、腫瘍の前の組織の密度に応じて連続的に変化するので、その結果、ブラッグ・ピークによって定義されるビーム停止点を、常に腫瘍の内部及び照射の輪切りの内部にもたらすことができる。その新しい方法によれば、この実施形態においては多磁場照射と称する、多くの方向からの照射が最大の効果的な線量を腫瘍レベルに与え、その一方で、同時に周辺の正常組織に対する横の影響の可能性を、従来の方法に比べて大きく低減することができる。基本的には、多磁場照射システムは、まだ腫瘍に達しない組織の深さでは線量配送を分散させる。
【0135】
当業者は、この明細書に記載され且つ示唆された特定の実施形態の他にも様々な形態を想到することは明らかである。本発明の精神及び範囲を逸脱することなく、形態及び詳細上の変形や修正をすることができる。したがって、本発明は、本願に添付された特許請求の範囲によってのみ限定されることになる。
【0136】
(関連出願の相互参照)
本出願は、
米国仮特許出願61/055,395(2008年5月22日出願)、
米国仮特許出願61/137,574(2008年8月1日出願)、
米国仮特許出願61/192,245(2008年9月17日出願)、
米国仮特許出願61/055,409(2008年5月22日出願)、
米国仮特許出願61/203,308(2008年12月22日出願)、
米国仮特許出願61/188,407(2008年8月11日出願)、
米国仮特許出願61/209,529(2009年3月9日出願)、
米国仮特許出願61/188,406(2008年8月11日出願)、
米国仮特許出願61/189,815(2008年8月25日出願)、
米国仮特許出願61/208,182(2009年2月23日出願)、
米国仮特許出願61/201,731(2008年12月15日出願)、
米国仮特許出願61/208,971(2009年3月3日出願)、
米国仮特許出願61/205,362(2009年1月12日出願)、
米国仮特許出願61/134,717(2008年7月14日出願)、
米国仮特許出願61/134,707(2008年7月14日出願)、
米国仮特許出願61/201,732(2008年12月15日出願)、
米国仮特許出願61/198,509(2008年11月7日出願)、
米国仮特許出願61/134,718(2008年7月14日出願)、
米国仮特許出願61/190,613(2008年9月2日出願)、
米国仮特許出願61/191,043(2008年9月8日出願)、
米国仮特許出願61/192,237(2008年9月17日出願)、
米国仮特許出願61/201,728(2008年12月15日出願)、
米国仮特許出願61/190,546(2008年9月2日出願)、
米国仮特許出願61/189,017(2008年8月15日出願)、
米国仮特許出願61/198,248(2008年11月5日出願)、
米国仮特許出願61/198,508(2008年11月7日出願)、
米国仮特許出願61/197,971(2008年11月3日出願)、
米国仮特許出願61/199,405(2008年11月17日出願)、
米国仮特許出願61/199,403(2008年11月17日出願)、
米国仮特許出願61/199,404(2008年11月17日出願)、
の利益を主張し、及び
国際特許出願PCT/RU2009/00015「Multi-Field Charged Particle Cancer Therapy Method and Apparatus:マルチフィールド荷電粒子の癌治療の方法及び装置(2009年3月4日出願)」
について優先権を主張する。
これらのすべては、これらの開示内容を引用することにより、その全部がこの出願に組み込まれている。


【特許請求の範囲】
【請求項1】
丸い角の多角形の加速器によって加速された荷電粒子によって腫瘍を治療する腫瘍治療装置であって、前記加速器が、
中心と、
前記中心のまわり、
複数の直線部の中、及び、
複数の方向転換部の中に、
延びる荷電粒子周回ビーム経路と、を備えた腫瘍治療装置であって、
前記方向転換部の各々が複数の偏向磁石を有し、
前記周回ビーム経路が60メートルよりも短い長さを有し、
前記直線部の数が前記方向転換部の数と等しい、構成とした
ことを特徴とする腫瘍治療装置。
【請求項2】
第1のフォーカス・エッジ、第2のフォーカス・エッジ、第3のフォーカス・エッジ、及び第4のフォーカス・エッジをさらに備えた腫瘍治療装置であって、
第1の前記方向転換部は、第1の偏向磁石及び第2の偏向磁石を有し、
前記第1の偏向磁石は、前記第1のフォーカス・エッジ及び第2のフォーカス・エッジによって対向する両端側を終端し、
前記第1のフォーカス・エッジによって確立された第1の平面が、前記シンクロトロンの前記中心を過ぎて前記第2のフォーカス・エッジによって確立された平面と交差し、
前記第2の偏向磁石は、前記第3のフォーカス・エッジ及び第4のフォーカス・エッジによって対向する両端側を終端し、
前記第3のフォーカス・エッジによって確立された第2の平面が、前記シンクロトロンの前記中心を過ぎて前記第4のフォーカス・エッジによって確立された平面と交差し、
前記第1のフォーカス・エッジ、前記第2のフォーカス・エッジ、前記第3のフォーカス・エッジ、及び前記第4のフォーカス・エッジのすべてが、荷電粒子ビームを前記シンクロトロンの前記中心に向けて偏向する、構成とした
ことを特徴とする請求項1に記載の腫瘍治療装置。
【請求項3】
少なくとも2つの前記複数の偏向磁石は、磁場フォーカス部をさらに備え、前記フォーカス部は、
第1の断面領域から第2の断面領域に向かってテーパー形状を有し、前記第2の断面領域が前記第1の断面領域の3分の2よりも小さく、前記第2の断面領域が荷電粒子周回ビーム経路に近似している、構成とした
ことを特徴とする請求項2に記載の腫瘍治療装置。
【請求項4】
前記形状は、使用中に磁場を保持し、その磁場は前記第1の断面領域から前記第2の断面領域に向かって密度が収束する、構成とした
ことを特徴とする請求項3に記載の腫瘍治療装置。
【請求項5】
前記第2の断面領域は、約0乃至3ミクロンに研磨された平坦な表面を有する、
ことを特徴とする請求項4に記載の腫瘍治療装置。
【請求項6】
前記方向転換部の各々は少なくとも4個の偏向磁石を備え、前記4個の偏向磁石は少なくとも8個のエッジ・フォーカス表面を有し、前記8個のエッジ・フォーカス表面の形状が、前記荷電粒子周回ビーム経路において荷電粒子をフォーカスする、構成とした
ことを特徴とする請求項1に記載の腫瘍治療装置。
【請求項7】
前記方向転換部の各々は、荷電粒子の方向を約90度転換する、構成とした
ことを特徴とする請求項1に記載の腫瘍治療装置。
【請求項8】
前記方向転換部の各々は、少なくとも4個のフォーカス・エッジを有し、前記フォーカス・エッジの形状が、荷電粒子に対してエッジ・フォーカス効果を与える、構成とした
ことを特徴とする請求項7に記載の腫瘍治療装置。
【請求項9】
前記偏向磁石は、第1の断面距離及び第2の断面距離を有し、第1の断面距離が第2の断面距離よりも少なくとも1.5倍の長さであるテーパー状のコアを有し、前記第2の断面距離が、約10ミクロンよりも細かい表面研磨のギャップに近似し、前記荷電粒子周回ビーム経路が前記ギャップの中を通る、構成とした
ことを特徴とする請求項8に記載の腫瘍治療装置。
【請求項10】
前記方向転換部の数は正確に4個の方向変換部であり、前記4個の方向転換部が、荷電粒子周回ビーム経路の方向を約90度転換し、前記シンクロトロンは、荷電粒子を少なくとも300MeVに加速することができる、構成とした
ことを特徴とする請求項1に記載の腫瘍治療装置。
【請求項11】
前記4個の方向転換部は、少なくとも32個の荷電粒子用のエッジ・フォーカス表面を有する
ことを特徴とする請求項10に記載の腫瘍治療装置。
【請求項12】
前記方向転換部は、少なくとも8個の偏向磁石を有し、前記荷電粒子周回ビーム経路は、動作中の4極磁石のいずれをも通過しない構成とした
ことを特徴とする請求項1に記載の腫瘍治療装置。
【請求項13】
前記偏向磁石の各々は、
前記荷電粒子周回ビーム経路が通過するギャップと、
約10ミクロンよりも細かい最終仕上げの表面をもって前記ギャップにおいて終端するコアと、を有する
ことを特徴とする請求項1に記載の腫瘍治療装置。
【請求項14】
前記コアのまわりに巻かれた巻線コイルと、
前記コアのまわりに巻かれた補正コイルであって、前記巻線コイルに供給される電力の3パーセント未満の電力で作動する補正コイルと、をさらに備えた
ことを特徴とする請求項13に記載の腫瘍治療装置。
【請求項15】
抽出制御アルゴリズムをさらに備えた腫瘍治療装置であって、前記抽出制御アルゴリズムは、前記荷電粒子周回ビーム経路に近接する抽出箔に流れる電流によって発生される入力を受信し、前記抽出制御アルゴリズムは、照射面に対するフィードバック入力を治療方針と比較し、前記抽出制御アルゴリズムは、高周波空洞システムにおいて高周波磁場を調整する、構成とした
ことを特徴とする請求項14に記載の腫瘍治療装置。
【請求項16】
前記方向転換磁石の少なくとも1つが、
前記荷電粒子周回ビーム経路が中を通るギャップと、
前記ギャップに接近する磁場を収束する増幅形状と、をさらに備えた
ことを特徴とする請求項1に記載の腫瘍治療装置。
【請求項17】
前記方向転換磁石の少なくとも2つのまわりに巻かれたコイルを有する磁石巻線と、
前記方向転換磁石の少なくとも2つのまわりに巻かれた補正コイルを有する補正巻線と、をさらに備えた腫瘍治療装置であって、前記補正巻線が、前記磁石巻線に供給される電力の3パーセント未満の電力で作動する構成とした
ことを特徴とする請求項16に記載の腫瘍治療装置。
【請求項18】
巻線コイルをさらに備えた腫瘍治療装置であって、前記巻線コイルの折り返し部分が、前記方向転換磁石の少なくとも2つに巻かれ、前記折り返し部分が、前記偏向磁石の前記少なくとも2つの間の空間を直接には占有しない、構成とした
ことを特徴とする請求項1に記載の腫瘍治療装置。
【請求項19】
前記少なくとも2つの方向転換磁石のまわりに巻かれた補正コイルをさらに備えた腫瘍治療装置であって、前記補正コイルは、前記偏向磁石の前記少なくとも2つの間の空間を直接には占有しない折り返し部を有し、前記補正コイルは、前記巻線コイルに供給される電力の3パーセント未満の電力で作動する、構成とした
ことを特徴とする請求項18に記載の腫瘍治療装置。
【請求項20】
陰イオン・ビームの陰イオンを生成する陰イオン源と、
陰イオン・ビームをフォーカスするイオン・ビーム・フォーカス・レンズと、
陰イオンを荷電粒子に変換する変換箔と、をさらに備えた
ことを特徴とする請求項1に記載の腫瘍治療装置。
【請求項21】
前記レンズは、真空システムにおいて、陰イオン・ビームの中に延びて陰イオン・ビームをフォーカスする磁場線を提供し、前記イオン・ビーム・フォーカス・レンズが、
陰イオン・ビームを円周状に取り囲む第1のフォーカス電極と、
少なくとも部分的に陰イオン・ビームを遮蔽する金属導電路を有する第2のフォーカス電極と、をさらに備えた腫瘍治療装置であって、
第1の電場線が、前記第1のフォーカス電極及び前記第2のフォーカス電極の間に延びて、
陰イオンが、陰イオン・ビームをフォーカスする第1の電場線まで延びる第1の力ベクトルと交差する、構成とした
ことを特徴とする請求項20に記載の腫瘍治療装置。
【請求項22】
前記金属導電路が、
陰イオン・ビームを横切って実質的に平行に延びる一連の導電線、
陰イオン・ビームと交差する導電格子、及び
陰イオン・ビームの断面領域の少なくとも90パーセントの断面領域に合わせられた孔を備えて、陰イオン・ビームと交差するフォーカス箔、
のうち任意のものを有する構成とした
ことを特徴とする請求項21に記載の腫瘍治療装置。
【請求項23】
前記変換箔が、陰イオンを荷電粒子に変換し、前記変換箔が、前記陰イオン源及び前記荷電粒子周回ビーム経路の間に真空障壁を設ける、構成とした
ことを特徴とする請求項20に記載の腫瘍治療装置。
【請求項24】
前記変換箔は、前記イオン・ビーム・フォーカス・レンズ及び前記方向転換部の間に圧力封止を設け、第1のポンプ・システムが、前記イオン・ビーム・フォーカス・レンズ内に第1の真空を維持するように動作し、第2のポンプ・システムが、前記荷電粒子周回ビーム経路内に第2の真空を維持するように動作する、構成とした
ことを特徴とする請求項20に記載の腫瘍治療装置。
【請求項25】
前記陰イオン源は、低温プラズマ領域から高エネルギー・プラズマ領域を分離する磁気障壁をさらに有する
ことを特徴とする請求項20に記載の腫瘍治療装置。
【請求項26】
前記変換箔は、
前記陰イオン源及び前記複数の偏向磁石の間に、真空障壁を形成する約30乃至200ミクロンの厚さのベリリウム・カーボン・フィルムを有する
ことを特徴とする請求項20に記載の腫瘍治療装置。
【請求項27】
前記シンクロトロンが、
抽出部材と、
一対の抽出羽根にわたって印加される少なくとも1kVの直流電場と、
偏向器と、をさらに備えた腫瘍治療装置であって、
荷電粒子ビームが、前記抽出部材を通過することにより低下したエネルギーの荷電粒子ビームを生じ、
低下したエネルギーの荷電粒子ビームが、前記一対の抽出羽根の間を通過し、
直流電場が、低下したエネルギーの荷電粒子ビームを前記偏向器によって前記シンクロトロンの外に転送し、
前記偏向器が、抽出された荷電粒子ビームを生じる、構成とした
ことを特徴とする請求項1に記載の腫瘍治療装置。
【請求項28】
抽出された荷電粒子の強度をフィードバック制御によって制御する強度制御部をさらに備えた
ことを特徴とする請求項27に記載の腫瘍治療装置。
【請求項29】
誘電電流は、荷電粒子が前記抽出部材を通過することに起因して発生し、その誘導電流が、前記強度制御部に対するフィードバック入力を含む、構成とした
ことを特徴とする請求項28に記載の腫瘍治療装置。
【請求項30】
丸い角の多角形の加速器によって加速された粒子によって腫瘍を治療する腫瘍治療方法であって、前記腫瘍治療方法は、
前記シンクロトロンの中心のまわりに延びる荷電粒子周回ビーム経路において荷電粒子を加速する工程を有し、前記荷電粒子周回ビーム経路が、
複数の直線部と、
複数の方向転換部と、を備え
前記方向転換部の各々が複数の偏向磁石を有し、
前記周回ビーム経路が60メートルよりも短い長さを有し、
前記直線部の数が前記方向転換部の数と等しい、ように構成する工程を有する
ことを特徴とする腫瘍治療方法。
【請求項31】
第1のフォーカス・エッジ、第2のフォーカス・エッジ、第3のフォーカス・エッジ、及び第4のフォーカス・エッジのすべてによって前記シンクロトロンの前記中心に向けて荷電粒子を偏向する工程をさらに有する腫瘍治療方法であって、
第1の前記方向転換部は、第1の偏向磁石及び第2の偏向磁石を有し、
前記第1の偏向磁石は、前記第1のフォーカス・エッジ及び第2のフォーカス・エッジによって対向する両端側を終端し、
前記第1のフォーカス・エッジによって確立された第1の平面が、前記シンクロトロンの前記中心を過ぎて前記第2のフォーカス・エッジによって確立された平面と交差し、
前記第2の偏向磁石は、前記第3のフォーカス・エッジ及び第4のフォーカス・エッジによって対向する両端側を終端し、
前記第3のフォーカス・エッジによって確立された第2の平面が、前記シンクロトロンの前記中心を過ぎて前記第4のフォーカス・エッジによって確立された平面と交差する、ように構成する工程を有する
ことを特徴とする請求項1に記載の腫瘍治療方法。
【請求項32】
磁場フォーカス部をさらに有する少なくとも2つの前記複数の偏向磁石によって荷電粒子をフォーカスする工程をさらに有する腫瘍治療方法であって、前記フォーカス部が、
第1の断面領域から第2の断面領域に向かってテーパー形状を有し、前記第2の断面領域が前記第1の断面領域の3分の2よりも小さく、前記第2の断面領域が荷電粒子周回ビーム経路に近似し、前記形状が、使用中に磁場を保持し、その磁場が前記第1の断面領域から前記第2の断面領域に向かって密度を収束する、ように構成する工程を有する
ことを特徴とする請求項31に記載の腫瘍治療方法。
【請求項33】
前記第2の断面領域が約0乃至3ミクロンに研磨された平坦な表面を有するように構成する工程を有する
ことを特徴とする請求項32に記載の腫瘍治療方法。
【請求項34】
フォーカス形状を有するエッジ・フォーカス表面によって、使用中に前記荷電粒子周回ビーム経路において荷電粒子をフォーカスする工程をさらに有し、前記方向転換部の各々が少なくとも4つの偏向磁石を備え、前記4つの偏向電磁が前記フォーカス形状を有する少なくとも8個の表面を有する、ように構成する工程を有する
ことを特徴とする請求項30に記載の腫瘍治療方法。
【請求項35】
前記方向転換部の各々によって荷電粒子を約90度方向転換する工程をさらに有する
ことを特徴とする請求項30に記載の腫瘍治療方法。
【請求項36】
前記方向転換部の各々が有する少なくとも4個のフォーカス・エッジを有し、前記フォーカス・エッジの形状が、荷電粒子にエッジ・フォーカス効果を与える工程を有する
ことを特徴とする請求項35に記載の腫瘍治療方法。
【請求項37】
前記偏向磁石がテーパー状のコアを有し、前記テーパー状のコアが第2の断面距離よりも少なくとも1.5倍の長さの第1の断面距離を有し、前記第2の断面距離がギャップに近接し、前記ギャップが約10ミクロンよりも細かい表面研磨を有し、前記荷電粒子周回ビーム経路が前記ギャップの中を通る、ように構成する工程を有する
ことを特徴とする請求項9に記載の腫瘍治療方法。
【請求項38】
前記シンクロトロンによって荷電粒子を少なくとも300MeVに加速する工程と、
正確に4個の方向変換部によって荷電粒子周回ビーム経路の方向を約90度転換する工程と、をさらに有する
ことを特徴とする請求項30に記載の腫瘍治療方法。
【請求項39】
前記4つの方向転換部が、少なくとも32個の荷電粒子のエッジ・フォーカス表面を有する、ように構成する工程を有する
ことを特徴とする請求項38に記載の腫瘍治療方法。
【請求項40】
前記方向転換部が少なくとも8個の偏向磁石を有し、前記荷電粒子周回ビーム経路が動作中の4極磁石のいずれをも通過しない、ように構成する工程を有する
ことを特徴とする請求項30に記載の腫瘍治療方法。
【請求項41】
前記荷電粒子周回ビーム経路がギャップを通過する工程をさらに有し、前記ギャップが前記方向転換磁石の各々を通過し、前記ギャップが約10ミクロン研磨よりも細かい最終仕上げの表面を有し、前記方向転換磁石の各々が前記ギャップにおいて終端するコアを有する、ように構成する工程を有する
ことを特徴とする請求項30に記載の腫瘍治療方法。
【請求項42】
巻線コイルの電力の3パーセント未満の電力で補正コイルを作動させる工程をさらに有し、前記巻線コイルが前記コアのまわりを通り、前記補正コイルが前記コアのまわりに巻かれている、ように構成する工程を有する
ことを特徴とする請求項41に記載の腫瘍治療方法。
【請求項43】
抽出アルゴリズムが、入力を照射方針と比較する工程と、
前記抽出アルゴリズムが、高周波空洞システムの高周波を調整する工程と、をさらに有し、前記入力が、前記荷電粒子周回ビーム経路において荷電粒子が抽出箔を通過するときに、前記抽出箔を流れる電流を有する、ように構成する工程を有する
ことを特徴とする請求項42に記載の腫瘍治療方法。
【請求項44】
テーパー形状のコアによって、ギャップに対して磁場を接近させるように収束する工程をさらに有し、前記荷電粒子周回ビーム経路が前記ギャップを通過し、前記ギャップが前記偏向磁石内に存在する、ように構成する工程を有する
ことを特徴とする請求項30に記載の腫瘍治療方法。
【請求項45】
巻線コイルの電力の3パーセント未満の電力で補正コイルを作動させる工程をさらに有し、前記巻線コイルが少なくとも2つの前記方向転換磁石のまわりに巻かれた単一の巻線を有し、前記補正コイルが前記少なくとも2つの前記方向転換磁石のまわりに巻かれた単一の巻線を有する、ように構成する工程を有する
ことを特徴とする請求項44に記載の腫瘍治療方法。
【請求項46】
陰イオン源によって陰イオン・ビームを発生する工程と、
イオン・ビーム・フォーカス・レンズによって陰イオン・ビームをフォーカスする工程と、
変換箔において陰イオン・ビームを荷電粒子に変換する工程と、をさらに有する
ことを特徴とする請求項30に記載の腫瘍治療方法。
【請求項47】
前記レンズが、陰イオン・ビームの中に延び磁場線を有し、その磁場線が前記陰イオン・ビームをフォーカスし、前記イオン・ビーム・フォーカス・レンズが、
陰イオン・ビームを円周状に取り囲む第1のフォーカス電極と、
少なくとも部分的に陰イオン・ビームを遮蔽する金属導電路を有する第2のフォーカス電極と、をさらに備えるように構成する工程を有する腫瘍治療方法であって、
第1の電場線が、前記第1のフォーカス電極及び前記第2のフォーカス電極の間に延びて、
陰イオンが、陰イオン・ビームをフォーカスする第1の電場線まで延びる第1の力ベクトルと交差する、ように構成する工程を、有する
ことを特徴とする請求項46に記載の腫瘍治療方法。
【請求項48】
前記変換箔によって前記陰イオン源及び前記荷電粒子周回ビーム経路の間に真空障壁を設ける工程をさらに有する
ことを特徴とする請求項46に記載の腫瘍治療方法。
【請求項49】
前記変換箔によって前記イオン・ビーム・フォーカス・レンズ及び前記方向転換部の間に圧力封止を設ける工程と、
前記イオン・ビーム・フォーカス・レンズ内に第1の真空を維持する工程と、
前記荷電粒子周回ビーム経路内に、前記第1の真空よりも強力な第2の真空を維持する工程と、をさらに有する
ことを特徴とする請求項46に記載の腫瘍治療方法。
【請求項50】
陰イオン源において、高エネルギーのプラズマ領域及び低温プラズマ領域の間に磁場障壁を維持する工程をさらに有する
ことを特徴とする請求項46に記載の腫瘍治療方法。
【請求項51】
前記変換箔によって前記陰イオン源及び前記荷電粒子周回ビーム経路の間に真空障壁を設ける工程を、さらに有する腫瘍治療方法であって、
前記変換箔が基本的に6個以下の陽子を含む原子を有し、
前記薄膜が約30乃至200ミクロンの厚さを有する、ように構成する工程を有する
ことを特徴とする請求項46に記載の腫瘍治療方法。
【請求項52】
荷電粒子ビームを前記抽出部材に通過させて低下したエネルギーの荷電粒子ビームを生じる工程と、
少なくとも1kVの直流電場を一対の抽出羽根の両端に印加する工程と、をさらに有する腫瘍治療方法であって、
低下したエネルギーの荷電粒子ビームが、前記一対の抽出羽根の間に通過し、
直流電場が、低下したエネルギーの荷電粒子ビームを偏向器によって前記シンクロトロンの外に転送して抽出された荷電粒子ビームを生じる、ように構成する工程を、
有することを特徴とする請求項30に記載の腫瘍治療方法。
【請求項53】
強度制御部及びフィードバック制御によって抽出された荷電粒子の強度を制御する工程をさらに有する
ことを特徴とする請求項52に記載の腫瘍治療方法。
【請求項54】
前記フィードバック制御は、荷電粒子が前記抽出部材を通過する工程によって得られる誘導電流の入力を含む、ように構成する工程を有する
ことを特徴とする請求項53に記載の腫瘍治療方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate


【公表番号】特表2011−521425(P2011−521425A)
【公表日】平成23年7月21日(2011.7.21)
【国際特許分類】
【出願番号】特願2011−510454(P2011−510454)
【出願日】平成21年5月21日(2009.5.21)
【国際出願番号】PCT/RU2009/000249
【国際公開番号】WO2009/142547
【国際公開日】平成21年11月26日(2009.11.26)
【出願人】(510308920)
【Fターム(参考)】