説明

Fターム[2H147AB05]の内容

光集積回路 (45,729) | 光集積回路中の光学的機能 (4,741) | 光強度 (2,633) | 受光素子 (963)

Fターム[2H147AB05]の下位に属するFターム

Fターム[2H147AB05]に分類される特許

881 - 896 / 896


半導体電界吸収変調器/レーザー(EML)またはクーラーレス光送信フォトニック集積回路(TxPIC)のようなクーラーレスフォトニック集積回路(PIC)は、周囲の冷却または密閉包装を必要とせずに、室温よりも高い温度の広い温度範囲で動作する。TxPIC上には、N個の光送信信号のWDMチャネルの大規模集積回路があるので、斬新な検出スキームおよび適応型アルゴリズムを有する新しいDWDMシステムは、PICの能力を最適化し、DWDMシステム内の光送受信モジュールが冷却せずに動作できるようにするために、PICの高機能な制御を提供する。さらに、オンチップチャネルのレーザーソースの波長グリッドは、レーザーソースの個々の放出波長が、標準化された波長グリッドに従って波長のピークで発射されないWDM波長帯域内に熱的に浮動することが可能であるが、むしろ周囲温度の変化とともに周囲を移動することが可能である。
(もっと読む)


フレキシブル能動信号ケーブル(100、200)は、フレキシブル・プリント回路基板(105)、2つの電気コネクタ(110)、少なくとも2つの金属導体(115)、少なくとも1つのフレキシブル光導波路(120)、光送信機(125)、および光受信機(130)を含む。いくつかの実施形態では、フレキシブル能動信号ケーブルは、0.5メートル未満の長さであり、5ミリメートル直径の軸に10,000回巻きつけて解くことが、試験温度における低い故障確率で可能であり、一方で25メガビット/秒よりも大きなデータ転送速度を保障する。
(もっと読む)


本発明は、第1および第2スラブ導波路領域を分離する同一の焦点線を共有する1対の対向する凹面反射型回折格子を含むプレーナ光波回路に関する。回折格子の一方または両方によって誘導された光を送出し、受け取るために、入力および出力導波路の端部が、焦点線に沿って配置される。本発明により、一定の波長範囲内の光を入力導波路から送出し、単一の回折格子で誘導し、すべて単一のスラブ導波路領域内にある導波路に出力することが可能となり、別の波長範囲内の光は、ある回折格子から別の回折格子に向けて送られ、異なるスラブ導波路領域内の導波路に出力される。
(もっと読む)


本発明は、光学活性構成部品が少なくとも部分的に内部に埋め込まれる回路基板、ならびに光学活性構成部品を回路基板内に埋め込む方法に関する。少なくとも部分的に回路基板内に埋め込まれる構成部品は、構成部品の光学活性領域が回路基板の平面と本質的に直角であるように、回路基板内の光信号と光学活性接触をする。
(もっと読む)


モノリシック集積光ネットワークデバイスは、シリコン基板に形成され、光子を放出するようにアバランシェ状態にバイアス可能なバイポーラトランジスタ、及びバイポーラトランジスタによって発生された光子に対する光導波路として機能するようにバイポーラトランジスタとモノリシックに集積されたフォトニック・バンドギャップ(PBG)構造を有する。
(もっと読む)


シームレスに集積されたハイブリッド光ネットワーク素子。素子は:シリコン基板(11)中のキャビティに設けられている半導体光源(10)及び、半導体光源(10)によって放出される光子の光導波路として機能する、シームレスに半導体光源(10)と集積されたフォトニックバンドギャップ(PBG)構造(22)を有する。半導体光源(10)は非シリコン材料で作製され、PGB構造(22)はシリコン基板を直接エッチングすることで形成される。
(もっと読む)


光導波路および埋め込まれた光電子エレメントを備えるプリント回路基板エレメントを開示する。

(もっと読む)


本発明は、少なくとも1つの基板層(2)と少なくとも1つの光チャネル(3)とを有する回路基板(1)に関する。回路基板(1)の少なくとも1つの基板層(2)はプラスチックから成る。基板層(2)を形成するためにモールドが用いられている。基板層(2)は光チャネル(3)の形状に実質的に対応する形状を備えている。光チャネル(3)は、前記基板層に形成された形状に形成される。本発明はまた、回路基板(1)を製造する方法ならびに連続加工で回路基板を製造する方法に関する。
(もっと読む)


光学コネクタアダプタ(10)は光学信号伝送用の光導波路(20)を有する基板(12)を有する。光学コネクタアダプタ(10)はパッシブアライメント技術を行うことで、光学ポンプ源(74)を光導波路に接続するためのものである。基板(12)は、光伝送方向に垂直な端面(14)、光導波路(20)に対して整合する上部参照面(16)及び側部参照面(18)を有する。各キャリアブラケット(22)は基板(12)の各端面(14)で受け渡される。基板整合基準マーク(24)の各々は基板(12)に対してキャリアブラケット(22)を整合させる。基板キャリア(28)は基板(12)及びキャリアブラケット(22)を受け取る。光カプラ(64)は基板キャリア(28)で受け渡される。光カプラ(64)が光導波路(20)に対して整合するように、カプラ整合基準マーク(66)は基板(12)に対して光カプラ(64)を整合させる。
(もっと読む)


フォトニック結晶の周期的要素(12)の少数の列を有する少なくとも1つの長手方向のエッジを備えた導波管(14)が中に形成されているフォトニック結晶構造からなる構成要素(10)を有し、この導波管(14)とフォトニック結晶の外側との間に、特に、この導波管(14)の幅により並びに/もしくはフォトニック結晶要素(12)の空間的な周期により決定されている結合周波数での結合領域を形成するものとした周波数選択光結合器−光分岐器装置。
(もっと読む)


微小球共振器(312)および平面微小共振器(612)などの微小共振器が、光の入力および出力のための導波路(304、604)に光学的に結合される。高いキャビティQを維持し、かつ光ビームの発射および抽出を容易にしながら、前記微小共振器と前記導波路との相対的位置が安定に維持されることが重要である。構造(308、608)が、前記導波路に対する前記微小共振器の位置を維持するために有用である基材上に設けられる。前記構造が、前記導波路と前記微小共振器との間の垂直または水平結合を提供する。
(もっと読む)


フォトニック相互接続システム(300)は、光信号を用いてデバイス間でデータを通信することにより、高いキャパシタンスの電気相互接続を避ける。そのシステムは、論理アドレスを周波数帯域にマッピングすることにより、超並列情報出力を与えることができ、結果として、選択された周波数帯域の変調により、論理アドレスに対応する特定の場所のための情報を符号化することができる。フォトニック相互接続システムのための波長特有の方向性結合器(600)、変調器(660)及び検出器(650)は、フォトニックバンドギャップ結晶内の欠陥において効率的に製作され得る。 (もっと読む)


閃亜鉛鉱型結晶構造の半導体からなるコア層及びガイド層がこの順で積層されたメサ形状の多モード導波路と、該多モード導波路のメサ側壁を埋め込む埋め込み層とを有する導波路型光デバイスにおいて、該多モード導波路のメサ側面における該埋め込み層の異常成長を抑制して、光損失の少ない高効率の導波路型光デバイスを得るために、該多モード導波路は、(1)(100)面と等価な面、または、(2)(100)面と等価な面に対し、該コア層及び該ガイド層の積層方向に対する傾斜角、及び/または、該コア層及び該ガイド層の面内方向における7度以内のオフ角を有する面により構成された側面を含むようにした。 (もっと読む)


回折格子結合導波路の検知領域における生物学的物質(例えば、細胞、薬物、化合物)の存在を検出するために用いることができる回折格子結合導波路(100)及び方法が説明される。回折格子結合導波路は、基板(112)、回折格子(108)及び屈折率が1.5以下の基板より高い屈折率を有する導波路膜(106)を有する。比較的低屈折率の基板が、導波路モードを導波路膜上の検知領域にある生物学的物質に向けてシフトさせ、よってその領域におけるモードのエバネッセントテールの電場強度を高めることにより、回折格子結合導波路の感度を実効的に高める。一実施形態において、回折格子導波路のアレイがマイクロプレートのウエル内に組み込まれる。

(もっと読む)


光学信号を運ぶために自身内部に形成された導波路を含んだ半導体基板と、導波路内で直列に長手方向に沿って配置された複数の検出器とを含む光学信号分配ネットワークであって、それぞれの検出器は、それらを通して光学信号を検出することが可能であって、光学信号を複数の検出器のすべてに到達させることができるほどにその光学信号に対して十分に透明で、また複数の検出器のすべてによって検出できる。
(もっと読む)


本発明は、回路基板(1)における信号伝送方法に関する。少なくとも1つの光チャネル(2)は回路基板(1)に形成され、該光チャネルに光信号は光送信器(4)によって入力され、光チャネル(2)に入力された光信号は少なくとも1つの光受信器(6)によって受信される。光チャネル(2)は、少なくとも2つの焦点(3.1,3.2)が形成されるように設計される。光送信器(4)は一方の焦点(3.1,3.2)に実質的に関連して配置され、光受信器(6)は他方の焦点(3.1,3.2)に実質的に関連して配置される。

(もっと読む)


881 - 896 / 896