説明

Fターム[3G065GA10]の内容

絞り弁の制御及び操作手段との関連機構等 (21,675) | パラメータ (7,181) | 機関回転数 (1,137)

Fターム[3G065GA10]に分類される特許

121 - 140 / 1,137


【課題】走行自動再生において、加速・減速が繰り返されたり、排気ブレーキバルブが閉じられても、PID制御による排気管噴射を的確に制御できる排ガス浄化システムを提供する。
【解決手段】ディーゼルエンジン10の排気管20にDPD25を接続し、前記DPD25を自動再生する際の排ガス温度を検知し、検出した排ガス温度と再生目標温度との偏差を求め、この偏差に基づいて、排気管噴射量をPID制御するに際して、走行自動再生時に排気ブレーキバルブ24が閉じられたときに、排気管噴射を停止し、排気ブレーキバルブ24が閉じられている間、PID制御で積分制御項の演算を継続し、排気ブレーキバルブ24が開にされたとき、継続して演算された積分制御項を初期操作量とするものである。 (もっと読む)


【課題】回転数に応じて吸気通路を閉じることで未燃焼ガスの排出を抑制することが可能な小型エンジンおよびそれを備えたエンジン作業機を提供する。
【解決手段】小型エンジンは、混合気を供給する気化器と、吸気開口と吸気ポートが形成されるシリンダブロックと、気化器とシリンダブロックとの間に設けられ、吸気ポートと気化器とを連通する吸気通路20を有するインシュレータ19とを備え、小型エンジンの回転数を検出する回転数検出部29と、吸気通路20の開閉を行うリードバルブ21と、回転数検出部29が検出した回転数に基づいて、吸気開口の開く回数に対する、吸気開口が開いている間に吸気通路20を閉じる回数が所定値となるよう、リードバルブ21を制御する制御装置28と、を備える。 (もっと読む)


【課題】コンパクトで単純な構造の装置により、クランク室に流入する混合気量を調整可能な小型エンジンおよびそれを備えたエンジン作業機を提供する。
【解決手段】小型エンジン1は、気化器4と、吸気開口13と吸気ポート14が形成されるシリンダブロック8と、気化器4とシリンダブロック8との間に設けられ、吸気ポート14と気化器4とを連通する吸気通路20が形成され、通電により磁束を発生させるコイル26を有するインシュレータ19と、磁性体を有し吸気通路20に設けられコイル26への通電時に磁性体に作用する電磁力により吸気通路20を閉鎖するよう駆動されるリードバルブ21とを備える。 (もっと読む)


【課題】エンジンから排出される排気の浄化を適正に実施する。
【解決手段】本車両制御システムは、エンジン10とモータ28とを動力源とするハイブリッド車両に適用される。モータ28は、エンジン10の始動装置としても機能する。ハイブリッドECU60は、エンジン停止に伴うエンジン10の燃焼停止状態においてエンジン出力軸25が回転した状態となるエンジン空回し状態になるための空回し条件が成立したか否かを判定し、空回し条件が成立したと判定された場合に、エンジン10から触媒22への空気の供給を制限する供給制限手段としてのEGR弁24を、エンジン空回し状態において空気供給制限の状態に制御する。 (もっと読む)


【課題】変速時にブリッピング制御を行う変速機を備えた車両に対し、多重変速の実行時における変速の応答性を高めることが可能な車両の制御装置を提供する。
【解決手段】第1の目標変速段(3rd)への変速途中に第2の目標変速段(2nd)への変速要求がなされた多重変速時、第1の目標変速段の成立時に係合し且つ第2の目標変速段の成立時に解放されるクラッチが完全に解放されるまでの期間、タービン回転数NTをモニタし、このタービン回転数NTが第1の目標変速段の同期回転数に達することのない範囲で、できるだけ高い回転数になるようにエンジンの吸入空気量を調整する。上記クラッチが完全に解放された後に、第2の目標変速段を成立させるためのブリッピング制御を実行し、この第2の目標変速段への変速動作を開始させる。 (もっと読む)


【課題】走行自動再生から停止時の自動アイドル再生の制御を的確に行え、しかも自動アイドル再生から走行自動再生に移行しても排ガス温度がオーバシュートすることがない排ガス浄化システムを提供する。
【解決手段】ディーゼルエンジン10の排気管20に排気ガス中のPMを捕集するDPD25を接続し、前記DPD25のPM量が一定量以上になったとき、ポスト噴射を行ってディーゼルエンジン10の排ガス温度を上昇させてDPDを自動再生する排ガス浄化システムにおいて、自動再生する際のDPD再生の排ガス温度を検知し、検出した排ガス温度と再生目標温度との偏差を求め、この偏差に基づいて、ポスト噴射量をPID制御するに際して、走行自動再生から停車によるアイドル自動再生に移行したとき、PID制御での積分制御項をゼロにリセットしてポスト噴射量を制御するものである。 (もっと読む)


【課題】本発明は、運転性を阻害することなく、要求トルクの切り替えを行うことのできる車両の出力制御装置を提供する。
【解決手段】トルク制限要求を行う外部システム要素からの外部要求が解除された場合には、アクセル要求Piaに徐々に移行するように一次遅れ処理し目標Piを算出し、更に、アクセル要求Piaから目標Piを減算した絶対値が所定偏差以下になると、アクセル要求Piaを目標Piとする(S16〜S20)。 (もっと読む)


【課題】電子ガバナシステムについて、故障の発生を的確に検知してシステムにおける安全性を充分に確保できるようにする。
【解決手段】スロットル位置センサ14を有した電子制御スロットル30と、クランク角度センサ12と、スロットル位置信号及びエンジン回転数信号を検知しながらスロットルバルブ32を開閉操作して目標エンジン回転数を維持する電子制御ユニット10Aとを備えた電子ガバナシステム1Aにおいて、その電子制御ユニット10Aが、スロットル位置データとスロットル制御目標値の偏差の絶対値が所定のしきい値を所定時間以上継続して超えた場合にスロットル制御系の故障が発生したと判定する第1の故障判定方法を実施し、エンジン回転数が所定の回転数を所定時間以上連続して超えた場合にシステムに深刻な故障が発生したと判定する第2の故障判定方法を実施して、各判定結果に応じた所定の動作を行うものとした。 (もっと読む)


【課題】本発明は、ECUのメモリ容量を増大することなく内燃機関の出力可能なトルクを算出することのできる車両の出力制御装置を提供する。
【解決手段】エアフローセンサクリップ値設定フ゛ロック(B110a)においてエンジン回転速度Neにおける電子制御スロットルバルブ゛が全開域での脈動による吸入空気流量の変動に対し最大値を制限するクリップ値が設定され、クリップ値に基づいてEGR率設定ブロック(B110b)おいてEGR率が、A/F値設定ブロック(B110c)おいてA/F値がそれぞれ設定され、EGR率やA/F値より当量比算出ブロック(B110d)において当量比が算出され、クリップ値や当量比や点火時期補正値より最大Pi算出ブロック(B110d)にて最大Piを算出する。 (もっと読む)


【課題】安定した濃度の蒸発燃料をエンジンに供給可能な蒸発燃料供給装置を提供する。
【解決手段】吸気管2は、エンジン10に吸気を導く吸気通路21を形成している。スロットル弁3は、吸気管2の内側に設けられ、吸気通路21を開閉することで吸気の量を調節可能である。気流制御弁4は、スロットル弁3の下流側に設けられ、吸気の流れを制御可能である。突出部5は吸気管2の内壁から突出するよう気流制御弁4の上流側に設けられている。突出部5は、気流制御弁4の開度が全閉から所定の開度となるまでの範囲において、気流制御弁4の外縁端部42の軌跡に沿うようにして形成される壁面52を有している。蒸発燃料供給管6は吸気管2の突出部5の下流側に開口する供給口24と燃料タンク16内部とを連通する供給通路61を形成している。ECU7はエンジン10の運転状態に応じてスロットル弁3および気流制御弁4の開度を制御可能である。 (もっと読む)


【課題】 内燃機関が燃料の供給を伴う減速運転状態にあるときに、燃料噴射量が燃料噴射弁の最小燃料供給量を下回らないように吸入空気量を適切に制御でき、空燃比を精度良く制御できる内燃機関の空気量制御装置を提供する。
【解決手段】 本発明の内燃機関3の吸入空気量制御装置1は、内燃機関3が、燃料噴射弁6から燃料が供給されている所定の減速運転状態にあると判定されているときに、燃料噴射弁6から噴射すべき燃料噴射量QINJを、燃料噴射弁6の最小燃料供給量QMINを下回らないように制限するために、吸入空気量GAIRを、大気圧PAおよびエンジン回転数NEに応じて、増大側に制御する(図9のステップ23〜26)。 (もっと読む)


【課題】二重フェールセーフによる干渉を防止し、ドライバビリティの悪化を防止することができる車両の制御装置を提供する。
【解決手段】クランク角センサの異常が検出され(ステップS11でYESと判定)、電子スロットル制御装置に対するフェールセーフ中である(ステップS12でNOと判定)場合には、クランク角センサに対するフェールセーフの実行を禁止し(ステップS14)、F/S用クランクカウンタを生成しないので、クランク角センサに対するフェールセーフ機能によって、スロットル制御装置に対するフェールセーフ機能により行われているエンジンの点火時期の補正に影響を与えることがないため、点火時期タイミングがずれず、狙い通りの点火時期制御を行うことができ、二重フェールセーフによる干渉を防止し、ドライバビリティの悪化を防止することができる。 (もっと読む)


【課題】 ターボ過給器のタービンをバイパスしたことに伴う燃焼悪化を抑制する内燃機関を提供することを目的とする。
【解決手段】 内燃機関本体50と、内燃機関本体50に接続された排気管側にタービン42が設けられたターボ過給機40と、タービン42の下流に配置された三元触媒22と、タービン42をバイパスし、排気を三元触媒22へ直接流入させるバイパス通路43aと、バイパス通路43aを開閉する開閉バルブ43と、バイパス通路43aが開閉バルブ43によって開かれ、排気を三元触媒22へ直接流入させるときに、筒内圧を上昇させるECU1Aと、を有する。 (もっと読む)


【課題】運転者の加速要求から逸脱しないように発電機の過回転を抑制する。
【解決手段】モータトルク指令Tm1*が下限トルクTm1limに一致する状態に至ったときには、そのときのエンジン回転数Neにおいてスロットル開度を調節することによりエンジントルクを実質的に変更可能なスロットル開度範囲の上限開度より若干小さい開度に対応するエンジントルクを制限トルクTelimとして設定し、エンジントルクを制限トルクTelimによって制限する(S340)。これにより、実質的にスロットルバルブを閉じてエンジントルクを小さくし、エンジン回転数の上昇をモータトルクで押さえることができるようにして、モータが過回転するのを抑制することができる。この結果、モータを破損から保護する必要からエンジンの燃料カットを抑制し、運転者の加速要求から大きく逸脱するのを回避することができる。 (もっと読む)


【課題】静粛性を高めるとともに加速性能を高めることのできる多気筒エンジンシステムを提供する。
【解決手段】各排気ポート18にそれぞれ接続される独立排気通路53と、独立排気通路53の流路面積を変更可能な流路面積可変バルブ58と、流路面積可変バルブ駆動手段58bとを設け、低速領域M1において、吸気バルブ19と排気バルブ20のオーバーラップ期間中に排気バルブ20を開弁させ、かつ、高速側通路53の流路面積を絞るとともに、加速時において高エンジントルク領域M10では、エンジントルクの上昇に伴ってエンジン回転数が低下するように自動変速機102の変速比を低下させる。 (もっと読む)


【課題】ターボ過給機を備えたエンジンの発進・加速性能を向上させる。
【解決手段】エンジンの過給装置は、車両に搭載されたエンジン1と、エンジン1の吸気通路30においてスロットル弁36よりも上流側に配設された小型コンプレッサ62aを含む小型ターボ過給機62と、スロットル弁36を制御してエンジン1への吸気を制御するPCM10とを備えている。PCM10は、車両停止状態において発進要求があったときに、スロットル弁36を一時的に絞る絞り制御を行うことによって小型コンプレッサ62aの回転速度を上げる。 (もっと読む)


【課題】エゼクタ効果を利用してエンジン出力を高めることができるとともに、触媒をより早期に活性させることができる多気筒エンジンの排気装置を提供する。
【解決手段】各排気ポート18にそれぞれ接続される独立排気通路53と、独立排気通路53の流路面積を変更可能な流路面積可変バルブ58と、流路面積可変バルブ駆動手段58bとを設け、低速領域R1において、吸気バルブ19と排気バルブ20のオーバーラップ期間中に排気バルブ20を開弁させ、かつ、高速側通路53の流路面積を絞るとともに、この低速領域R1において触媒の未活性時は吸気が気筒12を通過して排気ポート18に吹き抜けるように吸気バルブ19と排気バルブ20とをオーバーラップさせる一方、触媒の活性時はこの未活性時よりもオーバーラップ期間を小さくする。 (もっと読む)


【課題】異常が発生して、スロットル弁が全閉位置に戻された状態で再度エンジンを始動する場合の始動性の低下を防止するエンジン制御装置を提供する。
【解決手段】エンジン制御装置は、スロットル系センサ(第1、第2スロットル弁開度センサ168、170)の出力に基づきスロットル系センサの異常を判別する異常判別部204と、スロットルモータ166の駆動を制御するスロットルモータ駆動部206と、始動時燃料噴射マップを用いてエンジン22の始動時における燃料の噴射量を制御する燃料噴射制御部210とを有し、スロットルモータ駆動部206は、スロットル系センサが異常と判断されるとスロットルモータ166の駆動を停止させ、燃料噴射制御部210は、スロットル系センサが異常と判断された状態でエンジン22を停止した後、再度エンジン22の始動を行う際に、正常時の始動時燃料噴射マップから異常時の始動時燃料噴射マップに切り替える。 (もっと読む)


【課題】容易に調整スイッチよるエンジン回転速度の設定制御(増減制御)からアクセルレバーによるエンジン回転速度の設定制御(アクセル制御)へと移行可能な作業車輌を提供する。
【解決手段】アップ・ダウンスイッチのアップスイッチが押操作されると(ステップS93)、その押時間に応じてエンジン回転速度が所定量増加し(ステップS97)、ダウンスイッチが押操作されると(ステップS98)、その押時間に応じてエンジン回転速度が所定量低減する(ステップS101)。そして、アクセルレバーが操作されて、このアップ・ダウンスイッチの操作によって変更された後のエンジン回転速度と、アクセルレバーの設定によるエンジン回転速度とが一致すると(ステップS110、S111)、増減制御が解除される。 (もっと読む)


【課題】エンジン出力を迅速に高めることが行いにくくなる低燃費走行を可能にする制御下での走行時に突発的にエンジン出力を迅速に高める必要性が生じた状況において、より適切にエンジン出力を迅速に高めることを可能にする。
【解決手段】エコドライブECU2がエコドライブモードに切り替えている場合に、ナビ側制御装置48で取得した自車両の各種センサからの情報に基づいて、自車両のエンジン出力を迅速に高めることが必要な状況にあるか否かを判断し、自車両のエンジン出力を迅速に高めることが必要な状況にあると判断した場合には、エコドライブモードから通常モードに切り替えさせる信号をナビ側制御装置48がエコドライブECU2に出力する。 (もっと読む)


121 - 140 / 1,137