説明

Fターム[3G301MA18]の内容

内燃機関に供給する空気・燃料の電気的制御 (170,689) | 制御量(燃料噴射) (15,919) | 燃料噴射時期 (2,831)

Fターム[3G301MA18]の下位に属するFターム

Fターム[3G301MA18]に分類される特許

141 - 160 / 1,663


【課題】筒内噴射式内燃機関において、分割噴射時に要求噴射量が変化したときに、PM排出量およびオイル希釈量の増加を抑制する燃料噴射制御装置を提供する。
【解決手段】内燃機関の燃焼室内へ燃料を噴射する燃料噴射弁と、前記燃料噴射弁に燃料を圧送する燃料ポンプと、前記燃料噴射弁に供給する燃料を貯蔵する燃料蓄圧室とを備え、1サイクル中に複数回の燃料噴射を実行する分割噴射制御を実施する内燃機関の制御装置であって、1サイクル中あたりの供給燃料の変化要求が発生した場合、噴射時期に応じて燃料噴射の噴射量変化量を変える。 (もっと読む)


【課題】加熱手段への電気負荷を軽減させて耐久性を図りつつも安定した始動後の燃焼を確保することができる内燃機関の加熱制御装置を提供する。
【解決手段】内燃機関1の各気筒1A〜1Dに配置され、通電されることで発熱するグロープラグ4A〜4Dによって、内燃機関の始動前及び始動後に各気筒を加熱可能な内燃機関の加熱制御装置であって、各気筒の燃焼状態を検出する燃焼状態検出手段15A〜15Dと、燃焼状態検出手段により検出された各気筒の燃焼状態に基づいて各気筒のロープラグ4A〜4Dによる加熱量を制御する加熱制御手段20と、グロープラグへの制御によって変動する内燃機関の出力変動を補正する出力補正手段30を有する。 (もっと読む)


【課題】エンジンの制御装置において、使用する燃料としての重油の性状をオンラインで検出して不具合の発生を未然に防止する。
【解決手段】第1燃料タンク23に貯留された燃料としての重油を燃料供給管25から燃焼室15に供給可能な燃料供給系24を設け、燃料供給管25を流れる重油の燃焼性を検出する重油燃焼性検出装置として制御装置28を設け、この制御装置28の検出結果に基づいてエンジンを制御する。このとき、制御装置28は、重油の密度等を検出して重油の燃焼性を検出している。 (もっと読む)


【課題】昇圧回路で発生する熱量を抑制することによって、放熱構造の小型化と製造コストの削減を図ることができるとともに、昇圧電圧の変更にかかわらず、燃料を適切なタイミングで噴射することができる内燃機関の燃料噴射制御装置を提供する。
【解決手段】この内燃機関3の燃料噴射制御装置では、昇圧回路20により昇圧された昇圧電圧VCをコイル6bに印加することにより、燃料噴射弁4を開弁させる。また、検出された内燃機関の回転数NEが高いほど、昇圧電圧VCをより小さな値に設定するとともに、昇圧電圧VCが小さいほど、燃料噴射弁4の開弁タイミングをより早いタイミングに設定する。 (もっと読む)


【課題】燃料粘度が変化すると、点火プラグの火花放電部と燃料噴霧のプラグ間距離が変化して、燃焼状態の悪化を招く不具合があった。
【解決手段】火花点火内燃機関1は、燃料噴射弁4に供給される燃料粘度を検出する手段として燃圧センサ3を備え、燃料噴射弁4の作動時における燃料圧力の変化により燃料粘度を検出する。そして、ECU5は、スプレーガイド方式の成層燃焼の場合、検出した燃料粘度の上昇に応じて、燃料噴射弁4の燃料噴射開始時期を進角側へ変更する。これにより、燃料粘度が大きい場合(アルコール含有ガソリンの場合や、極寒地などで燃料温度が低い場合など)であっても、点火時期における火花放電部2a近傍の混合気形成を良好にでき、燃料粘度が上昇しても燃焼状態を良好に保つことができる。 (もっと読む)


【課題】PCCI燃焼の安定運転領域の広い内燃機関システムを提供する。
【解決手段】軽油を燃焼するディーゼルエンジン10と、軽油を供給する燃料インジェクタ43と、水素を添加する水素含有ガス添加手段(水素インジェクタ53)と、ディーゼルエンジン10の排気ガスをEGRガスとして吸気系に添加するEGRガス添加手段(EGR弁61)と、ディーゼルエンジン10のブローバイガスを吸気系に添加するブローバイガス添加手段(ブローバイガス弁71)と、ディーゼルエンジン10の実測筒内圧を検出する筒内圧センサ21と、ディーゼルエンジン10の目標筒内圧を算出する目標筒内圧算出手段(ECU90)と、実測筒内圧と目標筒内圧との偏差が0となるように、燃料噴射手段、水素含有ガス添加手段、前記EGRガス添加手段を制御してPCCI燃焼を制御するPCCI燃焼制御手段(ECU90)と、を備える内燃機関システム1である。 (もっと読む)


【課題】この発明は、EGR装置に加え、WGVをアクティブに制御可能なターボチャージャを備えた内燃機関において、無過給領域で加速要求がある場合であっても、失火やトルク低下を抑制しつつ、総EGR率を適合値に合わせることのできる内燃機関の制御装置を提供することを目的とする。
【解決手段】外部EGR通路を開閉可能なEGR弁と、排気通路に設けられたターボチャージャのタービンと、タービンの上流側と下流側の排気通路をバイパスするバイパス通路のバイパス弁とを備える。運転領域が過給領域よりも機関回転数及び負荷が低い無過給領域である場合、かつ、所定値を超える要求トルクが入力された場合に、バイパス弁を閉じる。バイパス弁が閉じられた後、内燃機関の外部EGR率と内部EGR率との合計が適合値以上である場合に、EGR弁の開度を低減する。 (もっと読む)


【課題】より実際的なセタン価による着火遅れ時間の評価が可能な着火遅れ時間評価装置を提供する。
【解決手段】燃料噴射時期と実際の着火時期との差から着火遅れ時間を実測する着火遅れ時間実測部2と、着火遅れ要因となるエンジンパラメータを用いて着火遅れ時間を予測する着火遅れ時間予測部3と、着火遅れ時間の実測値と予測値との差をセタン価変動に起因する着火遅れ時間として評価するセタン価評価部4と、セタン価変動に起因する着火遅れ時間に応じて燃料噴射時期を補正する燃料噴射時期補正部5とを備えた。 (もっと読む)


【課題】ディーゼルエンジンの空気過剰率、吸気酸素濃度を使って着火遅れを予測し、燃料噴射タイミングを補正することで、負荷変動過渡期における有害排ガスの排出と、不安定燃焼を回避する燃焼制御装置及び方法を提供。
【解決手段】EGR装置と、運転情報に基づきディーゼルエンジン1を制御する制御装置41と、ターボチャージャー7の吸気量を測定するエアフローメータと、回転数センサと、給気マニホールド15内の吸気温度と給気圧力を検知する温度センサ44及び、圧力センサ46と、負荷を検知するアクセル開度センサ35と、を備え、制御装置41は、空気過剰率と吸気酸素濃度を用いて実着火遅れを演算する実着火遅れ演算手段が演算した値と、エンジン回転数、燃料噴射量から基準運転時の着火遅れを算出するマップを有した基準着火遅れ演算手段で演算した値とを比較して、その差に基づいて燃料噴射タイミングの補正を行う。 (もっと読む)


【課題】冷気始動時のファストアイドルにおける,ピストン付着抑制による粒子状物質の低減と,点火プラグ周りへの混合気成層化による点火リタード燃料の両立。
【解決手段】点火プラグへ成層化させるための燃料をピストン下死点近傍で噴射することでピストン付着を低減しつつ,吸気弁の閉時期をピストン移動速度が最大となる圧縮行程中期に設定し,圧縮行程のピストン上昇によって燃焼室から吸気管に流出することで生成される上昇流によって混合気を点火プラグ周りに成層化させる。 (もっと読む)


【課題】内燃機関の低温始動時における未燃分(HC)の発生を効果的に抑制する。
【解決手段】内燃機関(100)の制御装置(114)は、冷却水温度が予め設定された第1の温度以下である場合に燃料噴射タイミングを冷却水温度に応じて設定された補正量で補正し、冷却水温度が第2の温度に達した際に冷却水のラジエータ(103)による冷却を開始する。特に、制御装置は冷却水の温度変化に基づいて暖気完了タイミングを推定し、前記第1温度を推定された暖気完了タイミングに近づけるように変更する。 (もっと読む)


【課題】エンジン温度が低いときに、NOxを抑制しつつHCCI燃焼を行って、エンジン温度を早期に上昇させる。
【解決手段】エンジン未暖機時には、圧縮上死点前に前段のHCCI燃焼を行うための前段燃料噴射が行われると共に、圧縮上死点後に、後段のHCCI燃焼を行うための後段燃料噴射が行われる。エンジンの幾何学的圧縮比が15以上とされ、かつ後段燃料噴射量が前段燃料噴射量以上とされる。 (もっと読む)


【課題】高い圧力をかけずにシリンダの内部に燃料を直噴できる2サイクルエンジンの提供。
【解決手段】シリンダ2の上部において開閉する排気ポート6と、シリンダ2の下部において開閉する掃気ポート9と、排気ポート6と掃気ポート9との間においてシリンダ2の内部に燃料ガスを噴射する燃料噴射ポート13とを有するユニフロー型2サイクルガスエンジンにおいて、排気ポート6及び掃気ポート9の少なくともいずれか一方が開放された状態で、上記燃料ガスの噴射を開始させるという構成を採用する。 (もっと読む)


【課題】排ガス流量が減少した後に、排ガス流量が少ない状態が継続する場合においても、DPF入口温度を目標温度に安定的に制御できる内燃機関の排ガス浄化装置を提供することを目的とする。
【解決手段】フィードフォワード制御手段47と、DPF7の目標温度に対する補正操作量を指令するフィードバック制御手段49と、フィードフォワード手段47からの基本操作量とフィードバック制御手段49からの補正操作量とを加算して操作量を算出する操作量加算手段51とを有し、排ガス流量が急減少したときにフィードバック制御手段49を構成する積分器の積分値をリセットする積分器リセット手段55、または排ガス流量に基づく信号によってフィードフォワード制御手段の基本操作量を算出する基本操作量算出手段の少なくとも一方を備えることを特徴とする。 (もっと読む)


【課題】高負荷域においてHCCI燃焼を行いつつNOx発生を抑制する。
【解決手段】少なくともガソリンを含有する燃料が、燃料噴射弁10から噴射される。燃焼室の天井面に沿うようにピストンの冠面が形成されると共に、該ピストンの上面中央部に凹部が形成され、しかも幾何学的圧縮比が15以上に設定される。エンジン高負荷域において、少なくとも吸気行程において燃料噴射されて、圧縮上死点または圧縮上死点直前に前記凹部内の燃料が圧縮自己着火されると共に、該圧縮自己着火から遅れて該凹部以外の燃料の着火が行われることにより、トルクを生成する燃焼の熱発生割合の最初のピークが膨張行程のピストン下降時期となり、その後一旦熱発生割合が増加しない期間を経過した後に再び熱発生割合が増加する燃焼形態とされる、 (もっと読む)


【課題】高負荷域において、HCCI燃焼を行いつつNOx発生を抑制できるようにする。
【解決手段】少なくともガソリンを含有する燃料が、燃料噴射弁10から噴射される。高負荷域では、圧縮上死点前に、HCCI燃焼用の前段燃料噴射が実行されると共に、圧縮上死点後に後段燃料噴射が行われる。前段燃料噴射は、HCCI燃焼用の初回噴射とHCCI燃焼の着火源用となる2回目噴射との分割噴射とされ、しかも2回目噴射の噴射量が初回噴射の噴射量よりも少なくされる。後段燃料噴射の噴射時期が、HCCI燃焼の終了から間隔をあけて後段燃料噴射による燃焼が開始されるように設定される。 (もっと読む)


【課題】第1センサ部の出力信号が所定レベルから変化しなくなる異常が生じている場合であれ、回転体の回転角度の変化量を的確に把握することができる。
【解決手段】クランクポジションセンサ42はクランクシャフト31が所定角度回転する毎にパルス状の信号を出力するメインセンサ61、サブセンサ62を有し、これらは互いに位相のずれた信号を出力する。サブ信号がハイレベルであり且つメイン信号が変化したとの条件が成立したときにこのときのメイン信号の変化方向に応じて異なるパルス幅のクランク信号を出力する。ECU41は、サブ信号がハイレベルから変化しなくなる異常が生じているか否かを判定し、同異常が生じている旨判定された場合にクランク信号のパルス幅と機関回転速度と上記異常時に出力されるクランク信号数との対応関係に基づき当該出力されるクランク信号数を正常時におけるクランク信号数に換算する。 (もっと読む)


【課題】高負荷域において、HCCI燃焼を行いつつNOx発生を抑制できるようにする。
【解決手段】少なくともガソリンを含有する燃料が、燃料噴射弁10から噴射される。少なくとも高負荷域では、圧縮上死点前に、予混合圧縮着火用の前段燃料噴射が実行されると共に、圧縮上死点後でかつ予混合圧縮着火の燃焼開始後に、拡散燃焼用となる後段燃料噴射が行われる。燃料噴射量が多いときは、後段燃料噴射が複数回に分けて行われる。 (もっと読む)


【課題】ドライバのクラッチペダル36の操作態様によっては、エンジン10の再始動時におけるクランキングが行われる期間にクラッチ装置30の操作状態が動力遮断状態からクラッチミート状態とされることで、車両が動き出したり、スタータ22の信頼性が低下したりする等の不都合が発生するおそれがあること。
【解決手段】エンジン回転速度が、エンジン10の燃焼室に供給された燃料の燃焼により生成されるトルクのみによってクランク軸18の正回転を継続可能な回転速度(自立駆動可能速度)以上になると判断される前にクラッチ装置30の操作状態がクラッチミート状態に移行すると判断された場合、スタータ22の駆動と、燃料噴射弁12による燃料噴射制御処理及び点火装置14による点火制御処理を含む燃焼制御処理との双方を強制的に停止させる強制停止処理を行う。 (もっと読む)


【課題】この発明は、シリンダ内に流入する吸気の流れが強い場合であっても、シリンダ内壁への燃料付着を抑制することのできる内燃機関の燃料噴射制御装置を提供することを目的とする。
【解決手段】2つの吸気ポートから流入する吸気により、シリンダ内に強吸気流領域と、前記強吸気流領域よりも吸気流の弱い弱吸気流領域とが形成される内燃機関の燃料噴射制御装置であって、前記2つの吸気ポートそれぞれに設けられ、前記強吸気流領域に向かう方向(以下、強吸気流方向という。)と前記弱吸気流領域に向かう方向(以下、弱吸気流方向という。)とに燃料を吹き分けて噴射可能なインジェクタを備える。運転状態が高負荷である場合に、前記インジェクタによる前記弱吸気流方向への噴射量を、前記強吸気流方向への噴射量よりも多くする。 (もっと読む)


141 - 160 / 1,663