説明

Fターム[3G301PA11]の内容

Fターム[3G301PA11]の下位に属するFターム

Fターム[3G301PA11]に分類される特許

161 - 180 / 3,562


【課題】空燃比が気筒間で異なる異常を精度よく判定する。
【解決手段】複数の気筒間で空燃比が異なるか否かを判定する際、点火時期を遅角する、排気ガスを気筒に戻す、もしくは各気筒における空燃比をリーン化する等により内燃機関の出力軸回転速度の変動量を大きくする。大きくされた変動量に基づいて、気筒間で空燃比が異なるか否かを判定する。出力軸回転速度の変動量がしきい値以上であることによって、気筒間の空燃比が異なる異常を検出する。 (もっと読む)


【課題】 クラッチ締結動作中において、運転者が意図しない機関出力制御が行われること、及び機関回転数の吹け上がりを適切に防止する。
【解決手段】 車両の発進時においてエンジン回転数NEが低下すると、クラッチ締結フィードバック制御が開始される。アクセルペダルが踏み込まれ、かつエンジン回転数NEが目標回転数NOBJ以下であるときは、フィードバック制御の比例項CLFBP、積分項CLFBI、及び微分項CLFBDが算出され、これらを加算することによりクラッチ締結フィードバック制御開度THCLFBが算出される。エンジン回転数NEが目標回転数NOBJを超えるとクラッチ締結フィードバック制御開度THCLFBが前回値THCLFBBに維持される。 (もっと読む)


【課題】運転者に対して違和感を与えることを抑制しつつ、潤滑油の燃料希釈に起因して燃料噴射システムにリッチ異常が生じている旨の誤診断がなされることを抑制することのできる。
【解決手段】電子制御装置60は、機関駆動式のオルタネータ70を備える内燃機関10に適用され、混合気の空燃比を過度なリッチ状態とするリッチ異常が燃料噴射システムに生じているか否かを空燃比フィードバック制御の空燃比補正量に基づいて診断する。また、オルタネータ70により発電された電力が充電されるバッテリ80についてその充電状態が所定の高充電状態である場合にオルタネータ70による発電電圧を通常の発電電圧よりも低く設定する充電制御を行なう。また、バッテリ80の充電状態が上記所定の高充電状態であるとき、内燃機関10の潤滑油の燃料希釈度合が所定度合以上である場合には当該充電制御の実行を禁止する。 (もっと読む)


【課題】排気タービン駆動式過給機を備えたエンジンにおいて、過給圧の上昇によるエンジンの故障を防止できるようにする。
【解決手段】各気筒の2つの燃料噴射弁21のうちの一方の燃料噴射弁21の異常が検出された場合(つまり燃焼状態が悪化して排気温度が上昇して吸入空気の過給圧が上昇し過ぎる可能性がある場合)に、吸入空気の過給圧を低下させる過給圧低下制御(例えばウェイストゲートバルブを開弁させる制御)を実行することで、過給圧を低下させて過給圧の上昇し過ぎを防止する。更に、各気筒の2つの燃料噴射弁21のうちの一方の燃料噴射弁21の異常が検出された場合(つまり燃焼状態が悪化して排気温度が上昇し過ぎる可能性がある場合)に、目標空燃比をリッチ方向(例えばストイキよりもリッチ)に変更する空燃比リッチ制御を実行することで、燃焼温度を低下させて排気温度を低下させる。 (もっと読む)


【課題】 気筒毎の空燃比がばらついているインバランス故障の判定実行頻度を高めるとともに、比較的短時間で正確な判定を行うことができる空燃比制御装置を提供する。
【解決手段】 空燃比フィードバック制御実行中において、排気通路に設けられるO2センサ16の出力信号に含まれる0.5次周波数成分の強度MHLFNEが算出され、0.5次周波数成分強度MHLFNEに基づいてインバランス故障の判定が行われる。0.5次周波数成分は機関回転数に対応する周波数の1/2に対応する周波数成分であり、センサ出力SVO2が、理論空燃比よりリーン側の空燃比に対応する所定下側閾値SVO2Lから理論空燃比よりリッチ側の空燃比に対応する所定上側閾値SVO2Hまでの範囲を通過するときに得られる検出値を用いて、高速フーリエ変換演算により算出される。 (もっと読む)


【課題】アイドル自動停止再始動時のプリイグニッションを防止する。
【解決手段】吸気温センサ1、水温センサ2、給油センサ3、ノックセンサ4の検出信号に基づき、燃料のオクタン価を推定するオクタン価推定部214と、推定されたオクタン価等に基づき、プリイグニッション発生指標を演算するプリイグニッション発生指標演算部216と、プリイグニッション発生指標を、プリイグニッションがより発生し易い側へ補正するプリイグニッション発生指標補正部218と、プリイグニッション発生指標に基づき、アイドル自動停止禁止を判定するアイドル自動停止禁止判定部219の判定とエアコンの動作信号、操舵情報に基づき、アイドル自動停止を判定するアイドル自動停止判定部222と、アイドル自動停止判定に基づき、燃料噴射弁113を制御する燃料噴射制御部223とを設けた。 (もっと読む)


【課題】エンジンの各気筒の2つの燃料噴射弁のうちの一方の燃料噴射弁の噴射割合を増加させる制御を実行する場合に排気エミッションの悪化を防止できるようにする。
【解決手段】各気筒の2つの吸気ポート31に、それぞれ燃料噴射弁21(A,B)を配置したエンジン11において、一方の燃料噴射弁Aの噴射割合を増加させる制御を実行する際に、一方の燃料噴射弁Aの噴射期間が吸気バルブ33の開弁期間内になるように一方の燃料噴射弁Aの噴射時期を補正する。尚、一方の燃料噴射弁Aの噴射期間が吸気バルブ33の開弁期間よりも長い場合には、一方の燃料噴射弁Aの噴射期間が吸気バルブ33の開弁期間よりも短くなるように一方の燃料噴射弁Aの噴射割合を減少補正して他方の燃料噴射弁Bの噴射割合を増加補正した後、一方の燃料噴射弁Aの噴射期間が吸気バルブ33の開弁期間内になるように一方の燃料噴射弁Aの噴射時期を補正する。 (もっと読む)


【課題】燃料カットを伴う減速運転状態では、燃料カット後のエンジン再始動時の燃焼安定性を確保しつつ、エンジン回転速度に応じて目標圧縮比を低く抑制することで、圧縮圧力を抑えて燃費性能の向上を図る。
【解決手段】機関圧縮比を変更可能な可変圧縮比装置20と、吸気ポートへ燃料を噴射供給する燃料噴射弁10と、を備え、制御部11は、車両運転状態に応じて目標圧縮比を設定し、この目標圧縮比へ向けて機関圧縮比を駆動制御する。燃料噴射が行われる通常の運転状態と、燃料噴射を停止する燃料カット運転状態とで、目標圧縮比を切り換えており、燃料カット運転状態では、エンジン回転速度が高くなるほど、目標圧縮比を低く設定する。 (もっと読む)


【課題】触媒を備えた内燃機関に適用され、空燃比制御と排ガス温度制御を行う。
【解決手段】制御装置は、混合気の空燃比を目標空燃比に一致させるように定められる第1変更量に従って機関に供給される燃料の量を変更する空燃比制御手段と、排ガスの温度を低下させるように定められる第2変更量に従って内燃機関に供給される燃料の量を変更する排ガス温度制御手段と、を備える。制御装置において、第1時点にて空燃比の制御が行われており、かつ、第1時点または第1時点よりも後の第2時点から第2時点よりもの第3時点までの期間である触媒温度制御期間中に空燃比の制御および排ガスの温度の制御のうちの少なくとも排ガスの温度の制御が行われる場合、触媒温度制御期間中の第4時点における第1変更量と第2変更量との合計が第1時点における第1変更量以上であるように、第4時点における第1変更量および第2変更量が定められる。 (もっと読む)


【課題】電子スロットルシステムの故障時における補助機構の作動異常の発生の有無を適正に判定することのできる吸気量調節システムの異常判定装置を提供する。
【解決手段】この装置は、スロットルバルブ13に連結されたスロットルモータ14の作動制御を通じてスロットル開度を制御する電子スロットルシステムと、電子スロットルシステムの故障時にスロットルバルブ13を付勢してスロットル開度を所定開度で保持する補助機構40と、内燃機関11の吸入空気量を検出するためのエアフロメータ34とを備える。電子スロットルシステムの故障時に、内燃機関11の出力トルクの指標値としての車両10の加速度を加速度センサ35により検出するとともに、同加速度に基づいて補助機構40の作動異常の発生の有無を判定する。 (もっと読む)


【課題】ツインインジェクタを適用したエンジンの運転状態が急変したときに燃焼室に供給される燃料量が不足するのを抑制する。
【解決手段】装置100が、運転状態とインジェクタ41,42の噴射割合との間の対応関係を決めるマップ71を記憶した記憶手段62と、マップ71を参照してインジェクタ41,42の噴射割合を第1設定値INJ1_RSET及び第2設定値INJ2_RSETとして逐次設定する噴射割合設定手段63と、マップ71から逐次読み出される第2インジェクタ42の噴射割合が所定の判断基準よりも大きく増加したとの条件が成立したときに、第1設定値INJ1_RSETをマップ71から求まる第1インジェクタ41の噴射割合(1−INJ2_RMAP)よりも増やすように補正する噴射割合補正手段64と、を備える。 (もっと読む)


【課題】触媒の酸素吸蔵量が0又は最大酸素吸蔵量に到達してしまう可能性を低減して、エミッションの悪化を防止すること。
【解決手段】制御装置70は、触媒43の酸素吸蔵状態が酸素過剰状態であると判定されている場合に目標空燃比を理論空燃比よりも小さいリッチ空燃比に設定し、酸素吸蔵状態が酸素不足状態であると判定されている場合に目標空燃比を理論空燃比よりも大きいリーン空燃比に設定する。更に、パージ実行要求条件が不成立である状態から成立した状態へと変化した場合であっても、目標空燃比がリッチ空燃比からリーン空燃比へと又はその逆へと変更された時点から所定時間が経過するまでの期間、蒸発燃料パージの実行を開始しないように構成する。 (もっと読む)


【課題】プリイグニッションの性質に応じた有効な対策を選択的に講じることにより、適正かつ確実にプリイグニッションを抑制する。
【解決手段】混合気が過早に自着火する現象であるプリイグニッションが検出され、かつエンジン回転速度Neが所定値Nex未満であることが確認された場合には、可変機構(15)を用いて有効圧縮比を低下させる制御を含む第1プリイグ回避制御を実行する。一方、上記プリイグニッションが検出され、かつエンジン回転速度Neが所定値Nex以上であることが確認された場合には、インジェクタ18からの燃料噴射の態様を変更することにより筒内の燃焼熱量を低下させる制御を含む第2プリイグ回避制御を実行する。 (もっと読む)


【課題】外部負荷が変化した場合であっても、機関回転速度の低下速度を適切にフィードバック制御することのできる内燃機関の制御装置を提供する。
【解決手段】本願発明に係る内燃機関の制御装置である電子制御装置100は、機関回転速度の低下速度を目標の低下速度に一致させるように内燃機関10のトルクを制御する低下速度フィードバック制御を実行する。電子制御装置100は、機関回転速度を一定の回転速度に維持するために必要なトルクである要求トルクを算出し、算出された要求トルクが大きいときほど低下速度フィードバック制御におけるフィードバックゲインを大きくする。 (もっと読む)


【課題】車両の走行中に、パーキングブレーキのスイッチ操作により制動動作が開始された場合に、その制動動作が運転者により意図されたものでなければ、パーキングブレーキスイッチの解除操作が行われずとも、制動動作を円滑に終了させる。
【解決手段】電動パーキングブレーキスイッチ102の操作に応じて、パーキングブレーキ及び液圧ブレーキを作動させ、車両の減速が開始されたにも係らず、車両の運転者がアクセルペダルの踏込操作を行なっていることが検出されたときには、パーキングブレーキスイッチが誤って操作されたものとみなす。この場合、電動パーキングブレーキスイッチ102の解除操作が行なわれずとも、パーキングブレーキ及び液圧ブレーキの作動を停止させる走行中解除処理を実行する。これにより、パーキングブレーキスイッチが誤操作された場合に、パーキングブレーキ及び液圧ブレーキによる制動動作を円滑に終了させることができる。 (もっと読む)


【課題】アイドル制御の異常判定をより精度よく行うことのできる内燃機関の回転速度制御装置を提供する。
【解決手段】制御装置25は、機関回転速度が目標アイドル回転速度となるようにアイドル制御を実行する。そして、アイドル制御の実行中において、吸気通路3に設けられた吸気圧センサ50により検出される吸気圧が所定値以下であり且つ機関回転速度が所定値以下である状態が所定時間継続したときには、アイドル制御に異常有りと判定する。 (もっと読む)


【課題】フューエルカットからの復帰時にショックが生じることを抑制することができる車両制御装置を提供すること。
【解決手段】圧縮比を可変に制御可能なエンジンを備え、車両の走行中にエンジンに対する燃料の供給を停止するフューエルカットの実行中に、アクセルオンが予測される走行環境(S21肯定)に基づいて、圧縮比の高圧縮側への変化を規制する(S23)。エンジンの回転数の低下に基づくフューエルカットからの復帰前に圧縮比を所定圧縮比から高圧縮側に変化させる復帰前圧縮比制御を実行する場合、アクセルオンが予測される走行環境に基づいて、復帰前圧縮比制御による圧縮比の高圧縮側への変化を規制することが好ましい。 (もっと読む)


【課題】過給機付き内燃機関において筒内空気量を精度良く推定する。
【解決手段】吸気弁の閉時点にて確定する筒内空気量を同時点よりも所定の先読み時間だけ先行する時点にて予測する。そのために、まず、測定した吸気管圧力Pmactを用いて現在の吸気弁流量Mcactを計算する。次に、吸気弁流量の変化に対するタービン流量の変化の遅れ時間と先読み時間との差分だけ吸気弁流量Mcactを遅らせることで先読み時間だけ将来のタービン流量Mtbfwdを得る。そして、将来タービン流量Mtbfwdを用いて先読み時間だけ将来のターボ回転数Ntbfwdを計算する。次に、将来ターボ回転数Ntbfwdを用いて先読み時間だけ将来の吸気管圧Pmfwdを計算し、さらに、将来吸気管圧Pmfwdを用いて先読み時間だけ将来の吸気弁流量Mcfwdを計算する。そして、将来吸気弁流量Mcfwdを用いて吸気弁閉時点における筒内空気量を計算する。 (もっと読む)


【課題】この発明は、吸気ポートに付着したオイル起因のプレイグニションの発生を防止することのできる過給機付き内燃機関の制御装置を提供することを目的とする。
【解決手段】吸気バルブの閉弁タイミングを変更可能な可変動弁機構と、吸気下死点近傍における吸気管圧を取得する手段を備える。フューエルカットを伴う減速中において、前記吸気管圧が設定負圧よりも低い状態が設定サイクル数以上継続した場合に判定条件が成立すると判定する。前記判定条件が成立する場合に、前記可変動弁機構により、少なくとも吸気行程の下死点から圧縮行程の上死点までの間は前記吸気バルブを閉弁させる。また、前記判定条件が成立する場合に、排気行程において排気バルブを開弁させる。 (もっと読む)


【課題】上死点の燃焼室容積を変化させて機械圧縮比を可変とする可変圧縮比機構を備える内燃機関であって、燃焼室内の空燃比を理論空燃比よりリーンにして運転する場合にも、所望の燃焼空燃比を実現可能とする。
【解決手段】前回サイクルの燃焼室内新気量Q(k-1)と前回サイクルの排気行程における機械圧縮比E(k-1)と前回サイクルの燃焼空燃比AF(k-1)とに基づいて前回サイクルの燃焼後に排気上死点の燃焼室に残留する残留新気量QR(k)を算出し(ステップ104)、今回サイクルの吸気弁開弁から吸気弁閉弁までに燃焼室へ新たに供給される供給新気量QS(k)に残留新気量を加えて今回サイクルの燃焼室内新気量Q(k)とし(ステップ105)、今回サイクルの燃焼室内新気量に対して今回サイクルの燃焼空燃比AF(k)を実現するための必要燃料量F(k)を決定する(ステップ109)。 (もっと読む)


161 - 180 / 3,562