説明

Fターム[3G384CA08]の内容

内燃機関の複合的制御 (199,785) | 機関の運転状態 (12,498) | 負荷の領域 (3,299) | 補機負荷駆動(ON、OFF時) (102)

Fターム[3G384CA08]に分類される特許

1 - 20 / 102



【課題】発電機による発電量を十分に確保しつつ耐ストール性にも優れた発電機の制御装置を提供する。
【解決手段】本実施形態に係る発電機たるオルタネータ110の制御装置であるECU4は、エンジン回転数を検出し、運転者の操作によるエンジン回転数の低下を検出するとともに検出されたエンジン回転数が所定のエンジン回転数以下であるか否かを判定するものであり、運転者の操作によるエンジン回転数の低下が検出されず且つ検出されたエンジン回転数が所定の回転数以下と判定された場合に、前記オルタネータ110の発電量を減じるようにしている。 (もっと読む)


【課題】燃費およびポンプ効率の向上を図りつつ、発電機によるエンジンのアシスト作用によって作業機の応答性を十分に確保すること。
【解決手段】目標マッチング回転数np1と現在のエンジン回転数nとの偏差Δnが所定値以上となった場合にアシストが必要であると判定し、アシストが必要であると判定された時点t1後、所定期間T1の間、目標アシスト回転数ANを、目標マッチング回転数np1よりも大きい高回転目標マッチング回転数nANに設定し、その後漸次目標マッチング回転数np1に近づく目標アシスト回転数ANに設定し、エンジン回転数nが目標アシスト回転数ANとなるようにエンジンの出力をアシストする発電機にアシストトルク指令値を出力してエンジン回転数nを制御する。 (もっと読む)


【課題】発電機の発電オン/オフによる発電機出力が不連続に変動してもエンジン回転数の変動を抑えること。
【解決手段】発電機が用いられる作業機械の運転状態を検出する検出手段と、前記運転状態をもとに、発電機の発電がオフの場合に設定されるエンジン目標回転数とオンの場合に設定されるエンジン目標回転数とを同一の目標マッチング回転数npa’とするエンジン目標回転数設定手段と、発電機の発電がオフの場合に最大限出力することができる発電オフ時のエンジン目標出力ELaを演算し、発電機の発電がオンとなる場合に、前記エンジン目標出力に発電機による発電量相当の発電出力Pmを加えたエンジン目標出力ELbを演算するエンジン目標出力演算手段と、を備える。 (もっと読む)


【課題】燃料の供給を遮断してエンジンを停止させるときに、バッテリの劣化を抑制しながら、エンジンを迅速に停止させることが可能なハイブリッド車両の駆動制御装置を提供することである。
【解決手段】駆動制御装置30は、排気管24内に設けられた排気ガスを浄化する触媒コンバータ16,17と、排気ガスの空燃比を検知するサブO2センサ26とを備えたハイブリッド車両10に搭載され、燃料の供給を遮断してエンジン11を停止させるときに、エンジン11に対してMG1の発電負荷を加えてエンジン11の回転数を下げる引き下げ手段31と、排気ガスの空燃比がリーン状態となるまで、エンジン11に対するMG1の発電負荷の付与を制限又は禁止する引き下げ制限手段32とを有する。 (もっと読む)


【課題】内燃機関で生成される有害物質の排出量の一層の低減を図る。
【解決手段】排出ガスの空燃比を検出する空燃比センサ53と、空燃比センサ53で検出される排出ガスの空燃比の振幅と目標振幅との差、及び空燃比の変動の周期と目標周期との差の双方を減少させるようにフィードバック制御を行う空燃比制御部4とを具備する内燃機関100の空燃比制御装置を構成した。 (もっと読む)


【課題】再生禁止時でもDPF破損を防止するとともに、作業時間を確保できる排気ガス浄化システムを提供する。
【解決手段】車体コントローラ41は、再生禁止が指令され、非操作状態にあり、排気ガス温度が250℃未満であると、昇温制御を開始する(S21→S22→S23→S24)。具体的には、エンジン1の目標回転数をエンジンコントロールダイヤル2が指示する目標回転数からやや高めの回転数に切り換える。エンジン回転数上昇によりエンジン1に負荷が掛かり、排気ガス温度は上昇する。これにより、自己再生がおこなわれると、堆積したPMの一部は燃焼除去され、PMは継続して堆積するものの、PM堆積進行を緩和することができる。その結果、PM堆積量が限界値に達するまでの時間を延長でき、作業時間を確保できる。オペレータは、作業時間内に作業を完了させ、再生可能場所にて強制再生を行い、DPF破損を防止する。 (もっと読む)


【課題】エンジンの排気エネルギーを回収して総合熱効率を向上させる。
【解決手段】本発明は、エンジン1及びモータ13を駆動源として走行可能なハイブリッド車両であって、エンジン1の排気によって回転駆動される排気タービン6と、排気タービン6によって回転駆動されることで発電する発電機2と、発電機2によって発電された電力をモータ13へと供給する電力供給手段10と、を備える。 (もっと読む)


【課題】内燃機関の制御装置において、新たに検出手段(センサ)を追加することなく、また、内燃機関や検出手段のばらつきに影響されずに、マスターバックの作動を精度良く判定することにある。
【解決手段】制御手段(59)は、吸気管圧力を推定する吸気管圧力推定手段(59A)と、吸気管圧力検出手段(54)により検出された吸気管圧力と吸気管圧力推定手段(59A)により推定された吸気管圧力との差の微分値を算出してこの算出された微分値が予め設定された閾値以上の時にはマスターバック(64)が作動中と判定するマスターバック作動判定手段(59B)とを備える。 (もっと読む)


【課題】本発明は、燃費を向上させる技術を提供することを目的とする。
【解決手段】本発明は、内燃機関20によって駆動される発電機を制御する発電制御装置を提供する。本発電制御装置は、内燃機関20が所定の回転速度で作動しているときの各サイクルにおけるクランク角毎の回転速度を表す波形である第1回転速度波形と、所定の回転速度よりも低い回転速度で内燃機関20が作動しているときの各サイクルにおけるクランク角毎の回転速度を表す波形である第2回転速度波形と、を検出する波形検出部と、第2回転速度波形が第1回転速度波形の波形に近づくように発電機に接続されている電気的負荷を操作する負荷操作部と、を備える。 (もっと読む)


【課題】この発明は、精度の高いアイドル回転数制御を実施するのに不可欠である学習制御を行う上で重要な学習値の更新の頻度を増加させることを目的とする。
【解決手段】この発明は、アイドル回転速度制御手段を備えた車両用制御装置において、アイドル回転速度制御手段は、エンジンのアイドル回転速度制御の学習値を学習制御する学習制御手段を備え、エンジンのアイドル運転時で、かつ車速検出手段により車速がゼロであることを検出した時点におけるエンジン回転速度の値と、目標エンジン回転速度に一定値を加えた値とのどちらの値が大きいかどうかを判定する判定手段を備え、判定手段の判定結果に応じて、学習制御手段に用いる学習値を更新する更新手段を備えていることを特徴とする。 (もっと読む)


【課題】車載エアコンディショナにおいて、エンジン回転数が降下している状態でコンプレッサをエンジンに接続すると、所定時間内にコンプレッサを駆動するのに十分なエンジン回転数を確保できない場合が生じ、エンジン回転数が急激に降下したりして、エンジン回転数が不安定になる場合がある。
【解決手段】内燃機関を動力源とする車両に搭載され、内燃機関により駆動されるエアコンディショナのコンプレッサを作動させるための操作がなされた場合、その操作から所定期間後に前記コンプレッサを内燃機関により駆動する車載エアコンディショナの運転制御方法であって、内燃機関の機関回転数の変化量に基づいて機関回転数の上昇及び降下を検知し、機関回転数の上昇を検知した場合は前記所定期間を短く設定し、機関回転数の降下を検知した場合は前記所定期間を長く設定する。 (もっと読む)


【課題】燃料消費率を通常の消費率よりも低下させた低燃費のエンジン出力カーブを選択している状態において、エンジン回転数を維持しようとする制御を行う場合、エンジンストールしやすいという問題を解決することを課題とする。
【解決手段】トラクタが走行するときにはエンジン回転数変動制御モードAに切換え、モード選択手段134で標準のエンジン出力カーブNの選択と、トラクタに装着した作業機を駆動するPTO駆動手段151の入り状態が共に有効にされることで、エンジン回転数維持制御モードBに切換える構成とし、モード選択手段134で低燃費のエンジン出力カーブSの選択と、作業機を駆動するPTO駆動手段151の入り状態が共に有効にされることで、エンジン回転数変動制御モードAに切換えるように構成たことを特徴とするトラクタのエンジン制御装置の構成とする。 (もっと読む)


【課題】補機負荷が生じている場合であってもフューエルカット制御を、補機負荷がない場合と同様に長期に亘って継続する。
【解決手段】補機が連結されている内燃機関の出力側に変速機が連結され、その内燃機関に対する駆動要求がない状態でその内燃機関に対する燃料の供給の再開を判断するための復帰判断用回転数が予め定めた復帰回転数以上の場合にフューエルカット制御を行う制御装置であって、前記復帰判断用回転数の所定時間後の回転数を予測する回転数予測手段(ステップS5)と、その予測された前記復帰判断用回転数が燃料の供給を再開するべき回転数として予め定めた復帰回転数以下となることが判断された場合に前記補機による負荷を停止した状態で前記変速機の変速比を増大させるダウンシフトを実行するダウンシフト指示手段(ステップS6,S8)とを備えている。 (もっと読む)


【課題】バッテリと共にエンジンを搭載した作業機械において、小型のエンジンを用いて、稼働時における環境汚染および騒音を最小限に抑制し、かつ燃費の低減を図る。
【解決手段】下部走行体1の走行モータ11,12と、ブームシリンダ13,アームシリンダ14及びバケットシリンダ15からなるアクチュエータを駆動するために油圧ポンプ21を設け、この油圧ポンプ21を電動モータ22で駆動するようになし、この電動モータ22と旋回用電動モータ10とをバッテリ24で駆動するが、さらにエンジン27及び発電機29,電力蓄電制御手段30からなる給電装置26を搭載して、エンジン27を回転速度及び出力トルクが一定となるように駆動して発電を行い、制御されたエンジン27と、このエンジンにより駆動される発電機29とを備え、発電機29で発生した電力は電力蓄電制御手段30を介してバッテリ24に蓄電される。 (もっと読む)


【課題】 エンジンの始動の失敗を抑制する。
【解決手段】 エンジン24の燃焼室36に燃料を供給する燃料噴射装置34と、該エンジン24に駆動されて発電するジェネレータ18と、エンジン始動時に吸気量と燃料噴射装置34の燃料の始動時噴射期間とを制御するエンジン制御手段50と、ジェネレータ18の発電量を制御するジェネレータ制御手段50とを備える自動車のエンジン制御装置であって、エンジン始動時に、始動時噴射期間内における無効噴射期間を拡大する異常の有無を判定する異常判定手段50を有し、エンジン制御手段50は、異常判定手段50が異常ありと判定したときに、吸気量を増加補正するとともに始動時噴射期間を延長補正してエンジン24を始動する制御を実行し、ジェネレータ制御手段50は、吸気量および始動時噴射期間の補正によるエンジン回転数の増加を抑制するように、ジェネレータ18の発電量を増加させる制御を実行する。 (もっと読む)


【課題】内燃機関のトルクを吸気量調整弁の弁開度と点火時期とによって制御することができる内燃機関の制御装置に関し、トルクの制御性の向上と燃費の向上とを高い次元で両立する。
【解決手段】いわゆるトルクリザーブ制御を行う内燃機関の制御装置において、要求トルクの変化量を取得し、当該変化量が大きいほどリザーブトルクを大きな値に補正する。また、目標回転数の変化、補機負荷の変化、或いはシフトチェンジによって、要求トルクが大きく変化する場合には、リザーブトルクの補正を禁止する。また、好ましくは、リザーブトルクの履歴を学習し、リザーブトルクの次回の補正値に反映させる。好ましくは、内燃機関の水温別、目標回転数別、補機類の可動状態別、或いはシフト状態別にモードを設定し、各モード毎に学習を行う。 (もっと読む)


【課題】エンジンの冷却性能が不足する場合にドライバの意図を反映したエンジン出力及び空調性能の制限を行うエンジン及びエアコンディショナの統合制御装置を提供する。
【解決手段】ラジエータ13及びインタークーラ12を有するエンジン10と、ラジエータを通過する走行風によって冷媒を冷却するコンデンサ22を有するエアコンディショナ20とを統合制御する統合制御装置30を、エンジンの冷却水温の上昇に応じてエンジン出力制限制御及び空調性能制限制御を行うとともに、エンジン出力制限制御と空調性能制限制御との重み付けが異なった複数の制御モードを有し、複数の制御モードを選択する選択手段32を有する構成とする。 (もっと読む)


【課題】停車している状態でエンジンを負荷運転する際に、内燃機関のノッキングを運転者に感じさせるのを抑制する。
【解決手段】エンジンの回転数Neと体積効率KLとEGRがオンかオフかとに基づいて基本占有率Rtmpを設定し(S120)、停車中でないときにエンジンを負荷運転する際には基本占有率Rtmpが設定された占有率Rが小さいほど点火時期を遅くする側に大きくなる補正量Δtfrだけ基本点火時期tftmpよりも遅い時期を目標点火時期tf*に設定してエンジンを制御し(S130〜S170)、停車中にエンジンを負荷運転する際には基本占有率Rtmpから所定値ΔRを減じて設定された占有率Rが小さいほど点火時期を遅くする側に大きくなる補正量Δtfrだけ基本点火時期tftmpよりも遅い時期を目標点火時期tf*に設定してエンジンを制御する(S130,S180,S150〜S170)。 (もっと読む)


【課題】エンジンの回転数に基づいて遅角制御を中止させることができ、触媒暖機制御による車両の走行状態の乱れを防止するエンジンの制御装置を提供すること。
【解決手段】ECUのCPUは、シフトレバーの切替状態が、NレンジまたはPレンジではないと判定し(ステップS12でNO)、エンジン回転数変Neの変動幅FNeを算出する(ステップS19)。上記変動幅FNeが、予め定められたエンジン回転数Neの変動幅FNe1よりも大きいと判定した場合には(ステップS20でNO)、エンジンの点火時期遅角制御を実行することを禁止することによって(ステップS21)、触媒暖機制御による車両の走行状態の乱れを防止する。 (もっと読む)


1 - 20 / 102