説明

Fターム[3G384FA40]の内容

内燃機関の複合的制御 (199,785) | 入力パラメータ、センサ (66,899) | 排気成分 (4,043) | O2センサ (3,417)

Fターム[3G384FA40]の下位に属するFターム

Fターム[3G384FA40]に分類される特許

161 - 180 / 2,444


【課題】多段噴射の前噴射に伴って発生する次噴射の実噴射量の変化を抑制して、安定した噴射精度を得る。
【解決手段】燃料噴射管4aを通じて供給される燃料を燃焼室18に噴射供給する燃料噴射弁4と、燃料噴射弁から一燃焼サイクル中に複数回燃料噴射を実行させる制御手段30を備えた内燃機関1の燃料噴射制御装置において、制御手段30は、内燃機関の定常運転時であって、燃料噴射弁による前噴射と次噴射の噴射期間を一定状態としたまま、前噴射と次噴射の噴射間隔αのみを強制的に変化させた次噴射間隔変動後の前記内燃機関の運転状態の変化に基づき前記燃料噴射管内の圧力変動を推定し、当該推定値に基づいて前記次噴射の噴射期間を変更する。 (もっと読む)


【課題】酸素センサのヒータ制御装置において、酸素センサを所定温度に精度良く調整することにより、酸素センサの検出精度を上げることにある。
【解決手段】酸素濃度を検出する素子とこの素子を加熱するヒータとを有する酸素センサを設け、素子が所定温度になるようにヒータに供給する電力を制御するヒータ制御手段が備えられた制御手段を設け、ヒータ制御手段は、ヒータ抵抗値に基づいてヒータに供給する電力を補正する。 (もっと読む)


【課題】空燃比センサに含まれる個々の特性の異常を好適に診断する。
【解決手段】内燃機関の排気通路に配置された空燃比センサの異常診断装置において、燃料噴射量を増減して入力空燃比をリッチ/リーンに切り替え、このときの入力空燃比と空燃比センサからの出力空燃比に基づき、一次遅れモデルにおけるパラメータを同定する。同定されたパラメータに基づき空燃比センサの所定の特性の異常を判定する。空燃比センサの個々の特性の異常を好適に診断できる。同定終了タイミングを決定すべく、パラメータ同定値の収束を検出する。同定終了タイミングを適切に定めることができ、同定精度の悪化等を未然に防止できる。 (もっと読む)


【課題】 高負荷低回転運転状態に限定されることなく燃料噴射弁の異常判定を高い精度で行うことができる内燃機関の空燃比制御装置を提供する。
【解決手段】 空燃比センサにより検出される空燃比が目標空燃比と一致するように、空燃比補正係数KAFが算出される。各気筒の空燃比を理論空燃比よりリッチ側の空燃比とリーン側の空燃比とに変動させるパータベーション制御が実行され(S22)、パータベーション制御を実行していない状態で算出される空燃比補正係数KAFの記憶値KAFMEMと、パータベーション制御を実行している状態で算出される空燃比補正係数値(パータベーション係数値)KAFPTとの差DKAFが、判定閾値DKAFTH以下であるときに、燃料噴射弁の何れかが異常であると判定される(S26〜S28)。 (もっと読む)


【課題】内燃機関の回転変動や空燃比変動を招いたり燃費悪化や低圧燃料ポンプの寿命低下を招いたりすることなく、的確でタイムリーな燃料圧力変更により燃料ベーパの発生を有効に抑制できる低コストの内燃機関の燃料供給装置を提供する。
【解決手段】内燃機関の燃料を給送可能なフィードポンプ22と、フィードポンプ22からの燃料を加圧する高圧燃料ポンプ31と、加圧された高圧燃料を内燃機関に選択的に供給する第2インジェクタ37A,37Bとを備える内燃機関の燃料供給装置であって、ECU50は、フィードポンプ22から高圧燃料ポンプ31へのフィード燃圧の脈動幅を検出する脈動幅検出部101と、脈動幅検出部101で検出される脈動幅が予め設定された閾値変動幅まで急低下したとき、高圧燃料ポンプ31に給送される燃料中に燃料ベーパを発生させる状態変化が生じたと判定する給送状態判定部102とを含んでいる。 (もっと読む)


【課題】燃焼変動より排気ガスの吹き返し量が変化しても、噴射燃料を安定的に気化させ、燃焼変動を抑制する。
【解決手段】エンジンの各気筒は、吸気ポート20A,20B、排気ポート22A,22B、燃料噴射弁を備える。ECUは、排気行程中において、排気ガスの吹き返しにより吸気ポート20Aを加熱した後に、過給機36を利用して吹き返しを掃気する掃気動作を実行する。そして、掃気動作を開始してから吸気ポート20A内に燃料を噴射する。これにより、吸気ポート20A内や吸気バルブ28Aに付着した燃料を速やかに気化させつつ、排気ガスの吹き返しに曝される燃料の量を低減することができる。従って、燃焼変動により排気圧(吹き返しの量)が変化した場合でも、燃料の気化状態を安定させ、更なる燃焼変動を抑制することができる。 (もっと読む)


【課題】燃料噴射弁の特性変化に対応でき、ドリフトがなく、マルチ噴射でも効果的な補正ができる燃料噴射制御装置を提供する。
【解決手段】筒内圧力データ列を基にして熱発生率を演算し、積分することによりパイロット噴射による熱発生量を演算し、パイロット噴射による目標熱発生量を設定し、各気筒における熱発生量と目標熱発生量との差が小さくなるように各気筒のパイロット噴射の燃料噴射量をそれぞれ補正し、筒内圧力データ列を基にして図示平均有効圧力を演算し、全気筒で平均して図示平均有効圧力平均値を演算し、各気筒における図示平均有効圧力と全気筒の図示平均有効圧力平均値との差が小さくなるように各気筒のメイン噴射の燃料噴射量をそれぞれ補正する。 (もっと読む)


【課題】内燃機関の制御装置に関し、エミッションの低減、特に冷間時におけるエミッションの低減を図る。
【解決手段】吸気ポート内に燃料を噴射するポートインジェクタと、気筒内に燃料を噴射する筒内インジェクタと、ポートインジェクタと筒内インジェクタとの双方から所定の噴射量割合で燃料を噴射し、且つ冷間時と温間時とで噴射量割合が異なる運転領域において、燃料噴射量を補正するための学習値を取得する学習を行う学習手段とを備える。学習手段は、温間時に学習を行うに際して、ポートインジェクタと筒内インジェクタとの噴射量割合を一時的に冷間用の噴射量割合に切り替えた上で冷間用の学習を実行し、該冷間用の学習が完了した場合には、ポートインジェクタと筒内インジェクタとの噴射量割合を温間用の噴射量割合に戻した上で温間用の学習を実行する。 (もっと読む)


【課題】異常を判定する機会を確保する。
【解決手段】ECUは、大気圧が第1の値であり、かつエンジン回転数NEおよび負荷のうちの少なくともいずれか一方により表される運転状態が予め定められた領域内にある場合、エンジンの異常を判定する。また、ECUは、大気圧が第1の値よりも低い第2の値であり、かつ運転状態が予め定められた領域外にある場合、エンジンの異常を判定する。 (もっと読む)


【課題】ドライバビリティを損なうことなく、指令噴射量に対するインジェクタ通電時間の設定のずれによって生じる指令噴射量と実噴射量との誤差(τQ誤差)を学習できるようにする。
【解決手段】燃料の噴射時期とトルク感度との関係を示すトルク感度データを予め記憶しておく。τQ誤差の学習を行う場合には、燃料噴射を前段と後段に分けて等噴射量ずつ実行する。その際、目標空燃比に基づいて各段の指令噴射量を決定するとともに、目標のトルクが得られるように各段の噴射時期をトルク感度データに基づいて決定する。そして、決定された指令噴射量と噴射時期とに従って各段の燃料噴射を実行し、そのときの実空燃比を空燃比センサにより計測する。そして、目標空燃比と実空燃比とのずれに基づいてτQ誤差を学習する。 (もっと読む)


【課題】多段噴射時の燃料圧力の脈動によって生じる燃料噴射量の誤差であるうねり誤差と、指令噴射量に対するインジェクタ通電時間の設定のずれによって生じる燃料噴射量の誤差であるτQ誤差とを切り分けて学習可能にすることで、うねり誤差とτQ誤差の両方を高い精度で学習できるようにする。
【解決手段】最初にうねり誤差を学習する。そして、うねり誤差の学習の完了後、τQ誤差を学習する。 (もっと読む)


【課題】軸トルクに基づいて点火時期制御を実施する場合に、比較的簡単な構成によって、しかも正確にかつ迅速に点火時期を最適値で制御する。
【解決手段】ECU40は、エンジン10の回転軸で生じる軸トルクを、気筒毎に定めたトルク検出区間で検出するとともに、検出した軸トルクに基づいて、燃焼トルクのピークが現れた時のエンジン回転位置を実ピーク位置として算出する。また、ECU40は、トルク最大となる点火時期での燃焼により生成される燃焼トルクのピークが現れるエンジン回転位置として予め定めたトルク最大位置を記憶する。そして、実ピーク位置と、予め記憶してあるトルク最大位置とに基づいて、点火装置による点火時期を制御する。 (もっと読む)


【課題】非燃焼液体の気化膨張力を増大させて燃費向上の促進を図った非燃焼液体の噴射制御装置を提供する。
【解決手段】内燃機関10の燃焼室10aで燃焼させる燃料を噴射する燃料噴射弁20と、燃焼室へ水(非燃焼液体)を噴射する水噴射弁30(液体噴射弁)と、を備える内燃機関システムに適用されることを前提とし、燃焼室10aで燃料が燃焼している最中に水を噴射するよう、水噴射弁30の作動を制御する。これによれば、噴射された水は燃焼火炎から直接受熱(熱回収)して気化することとなる。よって、シリンダ壁面から熱回収する従来装置に比べて熱回収量を増大させることができるので、気化膨張力を増大でき、ひいては燃費向上の促進を図ることができる。 (もっと読む)


【課題】筒内の排気側壁面に噴射燃料が付着するのを抑制し、HCの排出量を低減する。
【解決手段】吸気ポート18の上側壁面18Aには、燃料噴射弁24とTCV32とを設け、TCV32は、燃料噴射弁24と吸気バルブ28との間に配置する。ECU50は、冷間始動が行われる場合に、燃料噴射量に基いて制御を切換える。即ち、燃料噴射量が所定の判定値以下である場合には、TCV32を閉弁側に駆動してから、燃料の吸気同期噴射を実行する。一方、燃料噴射量が前記判定値よりも多い場合には、燃料の吸気非同期噴射を実行してから、TCV32を閉弁側に駆動する。これにより、冷間始動時には、個々の状況に応じて筒内の排気側壁面14Bに付着する燃料の量を低減し、HCの排出量を抑制することができる。 (もっと読む)


【課題】障害が識別されるだけではなく、有効信号に対する影響ができる限り小さくなるように障害を弱め且つ最少化し、障害を受けていない有効信号のダイナミクスができるだけ維持されるように拡張する、直接制御量の障害を弱めるための方法を提供する。
【解決手段】操作量が有効信号であるときに、閉制御回路内の直接制御量の障害を弱めるための方法において、直接制御量がそれぞれ相連続する二つの走査時点で連続的に測定され、直接制御量の値が差し引かれ、この差の大きさが予め定められている基準値だけずれている場合に、少なくとも一つの制御パラメータが、障害に対する操作量の反応が最少化されるように変化される。 (もっと読む)


【課題】アイドリング状態における酸素濃度センサの活性を得難いエンジンであっても、アイドリングを安定可能なエンジンの空燃比制御装置およびエンジンの空燃比制御方法を提案する。
【解決手段】エンジン18の空燃比制御装置31は、スロットルバルブ32が全閉状態か否かを検知するスロットルセンサ33と、エンジン回転数センサ35と、スロットルバルブ32の全閉状態およびエンジン18の回転数からエンジン18がアイドリング状態か否かを判断するアイドリング判断部36と、エンジン18の排気ガスの酸素濃度を測定する酸素濃度センサ37と、酸素濃度センサ37を加熱するヒータ38と、アイドリング状態のとき、時系列における補正係数の変化が予め定める所定の範囲に収束すると補正係数の代表値を維持して燃料供給量の制御を行うとともにヒータ38への給電を継続的または断続的に停止するECU43と、を備える。 (もっと読む)


【課題】本排ガスに含まれている窒素酸化物の量を正確に予測することができる窒素酸化物の量を予測する方法およびこれを用いた排気装置を提供する。
【解決手段】吸入空気中の酸素(O2)量を検出するステップS300と、エンジンの運転条件により吸入空気中の基準O2量を計算するステップS310と、エンジンの運転条件により排ガスに含まれている基準窒素酸化物(NOx)の量を計算するステップS320と、検出された吸入空気中のO2量およびエンジンの運転条件による吸入空気中の基準O2量により基準NOx量を1次的に補正するステップS330により窒素酸化物の量を予測する。吸入空気中のO2量は、エンジン燃焼室に投入される総空気量、EGR率、エンジン回転数、酸素センサーのラムダ値および総燃料噴射量に基づいて検出された排ガス中のO2量および空気に含まれているO2量により算出されることを特徴とする。 (もっと読む)


【課題】内燃機関の始動後に吸気温を検出する吸気温検出センサと冷却水温を検出する冷却水温検出センサとの異常診断を行なうものにおいて、この異常診断をより適正に行なう。
【解決手段】エンジンを運転停止してモータからの動力だけで走行可能で、エンジンを始動した後(エンジンの運転中)に吸気温センサからの吸気温Tinと水温センサからの冷却水温Twとの比較によって両センサの異常診断を行なうものにおいて、イグニッションオンされてからエンジンの始動条件が初めて成立するまではエアフローメータの熱線への通電を行なわず(S220〜S240)、エンジンの始動条件が初めて成立したときに熱線への通電を開始する(S250)。 (もっと読む)


【課題】 本発明は、燃費の低減、CO排出量の削減、HC排出量の削減、車両の走行性および操縦性などの改善が図れる内燃機関を提供する。
【解決手段】 内燃機関10のECU50は、吸気管内噴射インジェクタ用負荷−回転数学習域65と吸気管内噴射インジェクタ用燃料量−回転数学習域80とで、吸気管内噴射インジェクタ36の燃料噴射量を補正する燃料噴射量補正係数を学習する。ECU50は、筒内噴射インジェクタ用負荷−回転数学習域66において、吸気管内噴射インジェクタ36の燃料噴射量を、吸気管内噴射インジェクタ用燃料量−回転数学習域80の対応する領域に記憶される燃料噴射量補正係数を用いて補正し、かつ、筒内噴射インジェクタ用負荷―回転数学習域66を複数に分割した分割領域において、筒内噴射インジェクタ35の燃料噴射量補正係数を学習して記憶する。 (もっと読む)


【課題】内燃機関において、周波数信号を出力とするエアフローセンサを採用する場合、コントロールユニットでエアフローセンサの出力信号を検出する際にノイズが混入していると、算出される空気流量に誤差が発生し、排気エミッションや燃費の悪化の要因となる。
【解決手段】エアフローセンサから出力される信号に基づいて、その信号の計測タイミングや演算方法の異なる演算手段で複数の空気流量演算値を算出し、それらの複数の空気流量演算値から最適な空気流量演算値を選択する。また、それら複数の空気流量演算値を比較し、その差が所定値よりも大きい場合には、エアフローセンサから出力される信号の異常を検出すると共に、その信号にノイズが混入している場合には、相対的に短い周期または相対的に高い周波数が計測されることに着目し、ノイズ等の影響の少ない空気流量演算値を燃料噴射パルス幅演算等に使用する。 (もっと読む)


161 - 180 / 2,444