説明

Fターム[4D028CC01]の内容

活性汚泥処理 (8,774) | 検出(測定)対象 (542) | 流入廃水部 (119)

Fターム[4D028CC01]の下位に属するFターム

有機物 (40)

Fターム[4D028CC01]に分類される特許

1 - 20 / 79



【課題】実排水処理槽における有機物の処理状態を精度良く連続的に把握し得る排水処理方法及び排水処理装置を提供する。
【解決手段】有機性排水を生物学的に処理する活性汚泥法による排水処理方法を用いた排水処理装置1では、ミニチュア反応槽21に、実排水処理槽12への実排水と実排水処理槽12から排出された実汚泥とを連続的に供給した上で曝気を行い、ミニチュア反応槽21内の有機物分解反応に伴い大気中に排出された炭酸ガス(CO)濃度を測定する。 (もっと読む)


【課題】N2Oが低濃度の場合でもガスを全量処理するため、処理効率が低下する恐れがあるため、N2O濃度の高い排ガスを選択的に回収することで、N2O処理効率を向上できる下水処理方法を提供する。
【解決手段】活性汚泥により廃水を処理する生物反応槽1に設置された溶存酸素計8と、生物反応槽1にエアレーションされたガスを回収するための排ガス回収手段5と、排ガス回収手段5に設けられた制御弁6を開閉制御する制御手段7を備え、制御手段7は溶存酸素計8の計測値の少なくとも6時間以上の平均値を、溶存酸素計8の計測値の現状値が超えた場合に、制御弁6を開閉制御してエアレーションされたガスを回収するものであり、生物反応槽の溶存酸素からN2O発生量を予測し、排ガス中のN2O濃度が高い場合に排ガスを処理する。 (もっと読む)


【課題】下水処理設備に設けられる水処理システムにおいて、好気槽の曝気風量の適正化を図る。
【解決手段】水処理システム(1)は、曝気装置9が設けられた好気槽5を備えて活性汚泥法に基づいて水処理を行う一連の生物反応槽10と、好気槽5の活性汚泥混合液のアンモニア態窒素濃度を計測する第1のアンモニア計(32)と、一連の生物反応槽10において処理された後の処理水のアンモニア態窒素濃度を計測する第2のアンモニア計(33)と、曝気装置9の目標操作量を生成する曝気風量演算部41と、目標操作量に基づいて曝気装置9の曝気風量を制御する曝気風量制御部91とを備える。曝気風量演算部41は、好気槽5の活性汚泥混合液のアンモニア態窒素濃度と、処理水のアンモニア態窒素濃度に対応して補正された好気槽5の活性汚泥混合液のアンモニア態窒素濃度設定値との偏差に基づいて目標操作量信号を生成する。 (もっと読む)


【課題】下水流入量が計画最大流入量を超過する場合であっても下水を効率的に処理すること。
【解決手段】本発明の一実施形態である下水処理方法では、下水流入量が計画最大流入量を超過する場合、制御装置4が、流路L5に設けられた開閉バルブBの開度を調整することによって、生物反応槽1内の活性汚泥混合液を活性汚泥濃縮装置3に供給することにより、生物反応槽1及び最終沈殿池2内の活性汚泥混合液の水位を所定値以下に低下させる。これにより、下水流入量が計画最大流入量を超過する場合であっても下水を効率的に処理することができる。 (もっと読む)


【課題】良好な処理水質を安定的に保つとともに、曝気風量を削減することができる下水処理場の運転支援装置及び運転支援方法を提供する。
【解決手段】下水が流入する水路に流量計41と、COD濃度計42と、アンモニア性窒素濃度計43を、反応タンク12にMLSS濃度計45と、硝酸性窒素濃度計46と、アンモニア性窒素濃度計47を設け、前記流量計及び濃度計の計測値に基づいて、反応タンク12に流入する下水に含まれる有機物と窒素を除去するために必要な酸素量を算出する手段と、前記酸素量と散気装置17の性能曲線とに基づいて曝気風量を算出する手段とを有する曝気風量演算部22と、前記曝気風量を表示する曝気風量表示部23を設ける。 (もっと読む)


【課題】排水の目標加熱温度を安定的に維持することができる生物処理方式による排水処理設備用ヒートポンプシステムを提供する。
【解決手段】汚濁物質を微生物によって処理する生物処理槽5に流入する排水を加熱する加熱用熱交換器3と、生物処理槽5にて処理された後に放流される放流水から熱回収する熱回収用熱交換器11と、加熱用熱交換器3に対して温熱を供給するとともに、熱回収用熱交換器11にて吸熱して熱回収するヒートポンプ13とを備えている。ヒートポンプ13の熱回収側には、放流水とは別の冷熱負荷33から熱回収するように接続された別熱回収系統35,45が設けられ、加熱する排水の目標加熱温度を得るための加熱量から決まる熱回収量となるように、熱回収用熱交換器11の熱回収量および冷熱負荷33の熱回収量を決定する制御部30を備えている。 (もっと読む)


【課題】生物反応槽に設置されるスクリーン等によって発生する圧力損失分を解消して、複数の各系列への汚水の供給量を均等かつ高精度に調整することができるようにした最初沈殿池から生物反応槽への汚水の供給装置を提供すること。
【解決手段】最初沈殿池1の流出側の水路7と、最初沈殿池1の下流側に設置される生物反応槽5の流入側の水路10とを、同じ高さ位置に設定し、最初沈殿池1の流出側の水路7に、空気式揚水装置Aの流入口8aを、生物反応槽5の流入側の水路10に、空気式揚水装置Aの流入口8aと、下降部8b及び上昇部8cを備えた導水管8を介して接続される空気式揚水装置Aの流出口8dを設け、最初沈殿池1の流出側の水路7の汚水を、導水管8を介して空気式揚水装置Aにより揚水して、生物反応槽5の流入側の水路10に供給する。 (もっと読む)


【課題】油脂含有排水から分離した油脂を十分に分解することができる生物学的排水処理装置及び生物学的排水処理方法を提供する。
【解決手段】油脂濃縮分離装置1により、油脂含有排水を低濃度油脂排水と高濃度油脂排水とに分離し、低濃度油脂排水をメタン発酵装置2に導入し、微生物汚泥を用いてメタン発酵処理を行い、高濃度油脂排水を油脂分解装置3に導入し、攪拌装置11によって攪拌し、油脂状態取得手段10によって高濃度油脂排水中の油脂の状態を取得し、油脂の状態に応じ攪拌装置11の攪拌状態を変化させることで、油脂の塊の形成を抑制し、微生物汚泥を用いて高濃度油脂排水中の油脂を確実に分解する。 (もっと読む)


【課題】水処理システムにおいて、好気槽のアンモニア態窒素濃度の変動に対するアンモニア分解能力の追従性を高めることにより、曝気風量を総じて低減する。
【解決手段】再生水製造システム1は、嫌気槽3、無酸素槽4および好気槽5から成る一連の生物反応槽10と、原水のアンモニア態窒素濃度を計測する第1のアンモニア計31と、目標操作量を生成する曝気風量演算部41と、目標操作量に基づいて曝気装置9の曝気風量を制御する曝気風量制御部91とを備える。曝気風量演算部41は、原水アンモニア態窒素濃度に基づいて目標操作量先行信号を生成するFF操作量関数F(x)要素71と、目標操作量先行信号に対して原水が好気槽5に流入するまでに要する時間を補正する無駄時間要素75とを含むフィードフォワード制御系48と、好気槽アンモニア態窒素濃度に基づいてフィードバック制御を行うフィードバック制御系49とを有する。 (もっと読む)


【課題】生物反応槽の有機物負荷量増大時に、酸素供給のために使用する消費電力を低減化できる廃水処理装置及びその酸素供給量制御方法を提供することにある。
【解決手段】生物反応槽11に酸素を含む気体を導入し廃水に酸素を溶解させるための散気管13と、散気管13に外部から取り入れた気体を送風するための送風手段20と、送風手段20によって送風すべき風量を制御する制御手段17と、気体中の酸素濃度を高めるための酸素富化ガス発生装置31と、気体の酸素量を制御するための酸素供給量制御手段1を備え、酸素供給量制御手段1は、送風手段20と酸素富化ガス発生装置31の合計使用電力量と送風すべき風量が相当する酸素量の関係から、より少ない電力で酸素供給を可能とするように送風手段20と酸素富化ガス発生装置31の運転を制御する。 (もっと読む)


【課題】設備の劣化度に基づいて、真に更新が必要な設備を更新するための設備更新計画の作成を支援する。
【解決手段】流入ポンプ21,22毎の消費電力量及び流入流量に基づいて、単位流量あたりの消費電力量を示す消費電力原単位を演算し、演算された現在の消費電力原単位と、導入当初又はメンテナンス直後の所定期間における基本消費電力原単位とを比較表示する。 (もっと読む)


【課題】比較的小さな設備面積の設備によって処理水質及び処理性能の良好な排水処理を行うことができる排水の処理方法及び装置を提供する。
【解決手段】硝化槽1に原水及び返送汚泥を導入し、曝気処理液を沈殿池4に導入して沈降分離処理する。硝化槽1から沈殿池4へ流入する曝気処理液のアンモニア性窒素濃度を1mg/L以下、好ましくは0.5mg/L以下とする。これにより、沈殿池4中のBOD成分濃度も十分に低いものとなり、沈殿池4における脱窒反応が防止ないし抑制され、この脱窒反応に起因した汚泥浮上が防止される。 (もっと読む)


【課題】パームオイル排水のBOD成分及びSS成分を十分に低減するパームオイル排水処理装置を提供する。
【解決手段】メタン発酵後のパームオイル排水を曝気槽2に導入して生物処理し、これにより、有機物を分解して主に溶解性のBOD成分を低減し(SS性のBOD成分も一部は除去し)、曝気槽2からの生物処理済パームオイル排水に対して、凝集剤供給手段10により、凝集剤を供給し、この凝集剤供給後の凝集剤含有パームオイル排水を、凝集汚泥処理手段4で、処理水と凝集汚泥とに容易に分離し、この凝集汚泥が、凝集剤と反応したSS成分により形成されることから、処理水にあっては、SS成分を低減できると共にSS由来のBOD成分を低減できる。 (もっと読む)


【課題】コークス製造工程で発生する安水の生物学的好気処理後の処理水中COD濃度を予測可能なCODシミュレーション方法及び装置を提供する。
【解決手段】安水に含まれる各既知成分濃度及び溶解性COD濃度を測定分析する分析工程、各既知成分濃度の分析値から各既知成分のCOD濃度を決定する既知成分COD分画工程、事前に難分解性COD濃度を決定する工程、安水に含まれる未知成分COD濃度を決定する工程、微生物の種類及び濃度、並びに化学量論パラメーターである増殖収率、飽和定数、最大比増殖速度を設定する工程、溶存酸素濃度測定工程、各工程から得られた情報から所定の演算により処理水に残存する各既知成分COD濃度及び未知成分COD濃度を算出する工程、算出された残存する各既知成分COD濃度及び未知成分COD濃度に難分解性COD濃度を加算することにより残存する溶解性COD濃度を算出する処理水COD濃度算出工程を有する。 (もっと読む)


【課題】活性汚泥において、BOD除去と窒素除去を同時に処理可能な運転条件や制御方法を提供する。
【解決手段】曝気槽内のDOを、DO一定制御を行っている状態において、DOの制御値を概ね1mg/l以下のDOcp±0.3mg/lの範囲に制御する。また出口近傍からサンプリングした曝気槽内の混合液及び流入原水を用いて、曝気槽出 口の処理水BODと、処理水BOD予測値と、硝酸イオン濃度と、を評価する測定値を用いて、曝気槽内DOを概ね1mg/l以下のDOcp±0.3mg/lの範囲に制御する。 (もっと読む)


【課題】特別に生産される酸素の消費なしに、生物処理槽でのDO値が低下しない安定した運転が可能で、必要に応じ、分解成分にアンモニアが含まれていても簡易に臭気対策ができるようにする
【解決手段】過酸化水素含有の有機性排水2を導入して、分解装置4により過酸化水素を水と酸素に分解して酸素を排気する分解処理系5と、分解処理系5とは別処理系となる有機性排水2を導入して生物曝気槽11により生物処理する生物処理系12と、分解装置4からの酸素を主成分とする排気ガス6またはこれに加え外気7を吸引して強制送風し、前記生物曝気槽内に供給されている有機性排水2を曝気させる送風装置21と、を備えて、上記の課題を解決する。 (もっと読む)


分離サブシステムを有する生物学的反応器と、懸濁システムと、膜操作システムとを備える廃水処理システムが提供される。分離サブシステムは、吸着性物質を混合液とともに生物学的反応器中に維持する構築され、配列される。懸濁システムは生物学的反応器中に配置され、吸着性物質を混合液とともに懸濁状態に維持するように構築され、配列される。膜操作システムは、生物学的反応器の下流に配置され、生物学的反応器から処理済み混合液を受け、膜透過物を排出するように構築されて、配列される。 (もっと読む)


【課題】被処理水の水質及び生物反応槽の状態から、処理水中のりん濃度について目標値を満足した上で、エネルギー消費量を最小とするよう曝気風量と凝集剤注入率を調整する。
【解決手段】嫌気槽4と好気槽5をもつ生物反応槽と、凝集剤注入設備が取付けられた撹拌槽7と、攪拌槽7に接続された最終沈殿池8と、計算機1を備え、計算機1は、被処理水と処理水の水質偏差及び生物反応槽の状態から、処理水中のりん濃度について目標値を満足した上でエネルギー消費量を最小とするよう、曝気風量及び凝集剤注入率を演算する演算部2と、演算結果に基づいて曝気設備及び凝集剤注入設備14を制御する制御部3を有する。 (もっと読む)


【課題】廃水処理施設に流入する原水が、短時間のうちに急激に増加した場合に、最終沈殿槽からの汚泥流出を抑制しうる廃水処理施設の運転方法を提供すること。
【解決手段】原水中の固形物を沈殿除去する最初沈殿槽と、最初沈殿槽の上澄水中の有機物を活性汚泥によって分解する好気的生物処理槽と、生物処理槽の上澄水中から汚泥を沈殿除去する最終沈殿槽とを備える有機性廃水処理施設において、
原水の流量が所定流量を超えた場合には、生物処理槽の曝気量を所定量よりも減少させ、最終沈殿槽から流出する汚泥量を減少させる。 (もっと読む)


1 - 20 / 79