説明

Fターム[4D053BA01]の内容

サイクロン (4,364) | 渦室の数 (493) | 単数 (331)

Fターム[4D053BA01]に分類される特許

121 - 140 / 331


【課題】分離水出口管にスチームトラップを設ける場合でも、スチームトラップへの錆の流入を防止する。
【解決手段】気固液分離器1の胴2は、円筒状でその軸線を上下方向へ沿って配置される。蒸気入口管3は、胴2の周側壁に対し接線方向に接続される。蒸気出口管4は、胴2の天板7中央に設けられる。分離水出口管5は、胴2の上下方向中途部の周側壁に接続される。胴2内での蒸気の旋回により、「気体(蒸気)」と「液体(水)および固体(錆)」とに分けた後、後者をさらに「液体(水)」と「固体(錆)」とに分けることができる。すなわち、分離水出口管5は、胴2の上下方向中途部の周側壁に接続されているので、胴2内の下部には水と錆とが溜まることになり、錆が含まれにくいオーバーフロー水が分離水出口管5へ導出される。 (もっと読む)


【課題】分離水出口管にスチームトラップを設ける場合でも、スチームトラップへの錆の流入を防止する。
【解決手段】気固液分離器1の胴2は、円筒状でその軸線を上下方向へ沿って配置される。蒸気入口管3は、胴2の周側壁に対し接線方向に接続される。蒸気出口管4は、胴2の天板8中央に設けられる。ストレーナ5は、周側壁が網状または多孔板状の筒状に形成されており、胴2の底板9中央から胴2内へ突入して設けられる。分離水出口管6は、ストレーナ5からの水を胴2外へ導出する。胴2内での蒸気の旋回により、「気体(蒸気)」と「液体(水)および固体(錆)」とに分けた後、後者をさらにストレーナ5により、「液体(水)」と「固体(錆)」とに分けることができる。錆は、ストレーナ5により除去され、スチームトラップ17への流入が防止される。 (もっと読む)


【課題】サイクロンを利用した分離の原理は昔から知られているが、その原理を利用した従来の分離装置はいずれも遠心力が不十分であり、塗装ガンに供給する空気のように高い精度で分離除去効果を要求されるものには適用できなかった。
【解決手段】サイクロン筒3と、排出筒33と、サイクロン筒3と排出筒33との間の断面環状空間を上下で仕切るように配設され、サイクロン筒3内に上方から流入した圧縮ガスに旋回力を与えて下方サイクロン室35に送り出す螺旋状プレート23と、螺旋状プレート23上に設けられた圧力室31とを備えている。この分離装置1によれば、旋回流中の水分など等に作用する遠心力を、通常の重力場における自重に対して、300〜2,000倍に高めることができ、構造や製造が簡単な割には十分な遠心分離効果を得られる。 (もっと読む)


【課題】螺旋状の下向き案内部における切欠きから漏れる気流に乗って飛散し,フィルタの目詰まりを生じさせる微粉塵が飛散しないようにすることのできるサイクロン分離装置を提供する。
【解決手段】捕集容器(集塵容器11)の円周部に吸い込まれた空気を、略円筒状の捕集容器の内周面に沿って旋回させた後,前記捕集容器の中心部からフィルタ手段を経て排気することにより,前記空気に含まれる比較的大きい捕集対象物を前記旋回する空気流の遠心力によって前記空気から分離し前記捕集容器の底部で捕集するサイクロン分離装置の前記捕集容器内に該捕集容器の垂直中心軸を中心とする螺旋状曲面を1周以上備え,前記螺旋状曲面の外周端と前記捕集容器の内壁との間に,所定の隙間が設けられてなる螺旋状分離部材123を設けた。 (もっと読む)


【課題】 被処理液w中からのスラッジw1の分離効率を向上させることができ、また液体サイクロン装置で清浄化された被処理液w中に気泡が混入することによる弊害を解消させる。
【解決手段】 縦向きの液体サイクロン筒11と、これの内方空間の下端を下向きに開口したスラッジ排出口15に縦向きに連通された旋回流規制通路体18とを備え、該旋回流規制通路体18は、上下方向へ液を通過させる通路筒19と、該通路筒19内を液が通過する過程で該通路筒19の縦中心線d1回りの、液の旋回流を規制する縦向き板状部20とからなっている構成である。 (もっと読む)


【課題】空気中の塵埃を遠心分離によって除去するサイクロン式集塵装置に関して、分離された塵埃の気流による再飛散を抑制することで、装置寸法の小型化と高い集塵率とを両立した集塵装置を提供することを目的とする。
【解決手段】集塵装置1は外円筒2底面に遮蔽部材6を備えており、遮蔽部材6は外縁8を備えた円筒である。集塵装置1の高さ寸法を小さく構成すると内円筒4下端と外円筒2底面とが接近するため、一度分離されて外円筒2底面に落下した塵埃は、内円筒4に吸引される気流によって内円筒4側に引き寄せられる。これに対して、遮蔽部材6を備えているので、塵埃が遮蔽部材6に衝突する等してその移動が妨げられ、塵埃の再飛散を抑制することができる。したがって集塵率を低下させずに内円筒4と外円筒2底面をより接近させることが可能になるため、装置寸法の小型化と高い集塵率とを両立したサイクロン式集塵装置を提供することができる。 (もっと読む)


【課題】被処理流体中の磁性粒子の除去効率を向上させる。
【解決手段】サイクロン式処理容器2の内周面2gには、内径が上下方向の全体に亘って略一定となる円筒状部2fと、該円筒状部2fの下側に連設され、下側ほど内径が小さくなる上記上側逆円錐状部2bと、該上側逆円錐状部2bに隣接してその下側に形成された下側逆円錐状部2dと、両逆円錐状部2b,2d同士を接続する円錐状部2cとからなる。サイクロン式処理容器2の中心部には、上下方向に延びる筒状排出管6が配設されている。筒状排出管6の下端部に設けられた流体排出口7の高さ位置は、下側逆円錐状部2dの上端とほぼ同じ高さ位置か、その近傍に位置する。筒状排出管6の下方には、筒状排出管6の内径から外径程度の直径の円板状のじゃま板301(流れ制御部材)が設けられている。 (もっと読む)


【課題】効率良く微粒子を捕集する、サイクロン集塵装置を提供する。
【解決手段】サイクロン内部の旋回気流を上昇旋回気流02とし、上部ダスト捕集部03に水を封入し、噴射ノズル07で水を泡立て微粒子を水中に固着させ、更に、サイクロン出口04の先端に取付けたパンチング鋼板08を下部ダスト捕集部05内に封入した水中内に噴射させ微粒子を捕集することを特徴としている。 (もっと読む)


【課題】大気中に含まれる粉塵を分離除去するサイクロン式集塵装置に関して、圧力損失を低減し、設置スペースを維持したまま、高い集塵効率を有する集塵装置を提供する。
【解決手段】集塵装置1へ空気が導入されると、環状室2内で旋回流が生じ、空気中の粉塵に遠心力が加わり、円錐筒5の内壁面に沿って旋回しながら降下し、集塵室6内に落下する。排気室8内部に備えられたシロッコファン10が回転して作動すると、昇圧作用が働き、排気口9の静圧が内円筒側よりも高くなるため、集塵装置としての圧力損失を低減できる。 (もっと読む)


【課題】構造が複雑な部材の加工を容易にし、かつ、固液分離機能により分離した破片を安全に捕集するための専用回収容器を不要にすることを課題とする。
【解決手段】垂直円筒形容器2と、該容器の上端外周接線方向に取り付けられた被処理流体流入管3と、前記容器内部の上部側に該容器の軸と平行かつ円周方向に等間隔に配置された複数本の紫外線ランプ4と、これらランプの外周を夫々包む保護管5と、前記容器中心軸位置に配置され、下端が保護管下端位置より下方にあり、かつ上端は前記容器の外部に突出するように配置された処理流体流出管6と、該流出管の下端部に取付けられた保護管下端固定板と、前記容器下方側の内部に設置された逆円錐形管8とを具備し、逆円錐形管の上端は処理水流出管下端位置と同一高さかその下方に位置し、下端は前記容器最底面に接しないように設置され、かつ、上方端が前記容器内径と同一径であることを特徴とする紫外線照射水処理装置。 (もっと読む)


【課題】時間あたりの塵埃の圧縮量を増加させることのできる効率のよいサイクロン分離装置を提供すること。
【解決手段】内周面が略円筒状の捕集容器と,前記捕集容器内に設けられ,該捕集容器の垂直中心軸を中心とする螺旋状曲面を備え,前記垂直中心軸の周りに回転可能な圧縮部材とを備え,前記捕集容器の周方向に設けられた空気流入口から吸い込まれた空気を前記捕集容器の略円筒状の内周面に沿って旋回させた後,前記捕集容器の中心部からフィルタ手段を経て排気することにより,前記空気に含まれる比較的大きい捕集対象物を前記捕集容器の底部で捕集すると共に,比較的小さい捕集対象物を前記フィルタ手段において捕集するサイクロン分離装置において,前記圧縮部材は,多条ねじ構造を有することを特徴とするサイクロン分離装置。 (もっと読む)


【課題】 簡単な構造により入口の下部を流れる液体を確実に液体通路に流入させることができる気液分離器を提供する。
【解決手段】 ケーシング1,2,6内に二重のほぼ円筒形状の隔壁部材10を配置する。隔壁部材10の内側円筒10aと外側円筒10bの間に旋回羽根12を配置する。旋回羽根12の上方を入口4に連結し、隔壁部材10の内側円筒10aの内側の排気孔11を通してその上方を出口5に連結する。隔壁部材10の下方に液溜室15を形成して液溜室15の下端を排液口8に連結する。隔壁部材10の外側円筒10bの外側とケーシング1,2の内側との間に液体通路としての液体通過空間13を形成する。液体通過空間13の上方を入口4に連結する。隔壁部材10の外側円筒10bの上端に入口4の下端よりも上方に突出する突起10cを形成する。 (もっと読む)


【課題】粒状物と粉状物との混合物から粉状物を分離除去し、粒状物を取り出すための分離装置において、所定粒度以上の分離効率に優れたものにする。
【解決手段】エアーを旋回させながら導入する導入部3からエアーを排出する取出部4へ向けて先細りのフィルタ材5により形成された分離筒体6と、この分離筒体6内に隙間Kを有して配置されていて導入エアーの流れを拡散する拡散部材7とを設けて、分離効率を向上した構成を採用する。 (もっと読む)


【課題】複数個の穀類乾燥機に対応することができ、使用の融通性を高めることができ、設置及び保管用の省スペース化を図ることができると共に保守点検も容易に行うことができる。
【解決手段】サイクロン器体3の側周面に穀類乾燥機1の排塵口2から強制排出される含塵空気Wの導入口部4を設け、サイクロン器体の上面に空気の排気口部5を設け、サイクロン器体の下面に塵埃落下口部6を設け、塵埃落下口部に塵埃Mを回収する回収袋12を設け、導入口部をサイクロン器体の側周面に複数個設けてなる。 (もっと読む)


【課題】圧縮部材の回転位置を調整することで送風ファンの大きさを大きくすることなく,任意に捕集容器内の旋回流の速度を調整して,掃除の環境などに応じて塵埃に対する捕集性能を調整することが出来るサイクロン分離装置を提供すること。
【解決手段】捕集容器の円周部に沿って空気を旋回させた後,前記捕集容器の中心部からフィルタ手段を経て排気し,前記空気に含まれる大型の捕集対象物を前記捕集容器の底部で捕集すると共に,小型の捕集対象物を前記フィルタ手段において捕集するサイクロン分離装置の前記捕集容器内に設けられ,該捕集容器の垂直中心軸を中心とする螺旋状曲面を備え,前記垂直中心軸の周りに回転可能な圧縮部材であって,その外周面の面積が回転位置によって異なる圧縮部材と,前記補集容器に対する圧縮部材の回転位置を調整する圧縮部材回転位置調整手段とを備えてなるサイクロン分離装置。 (もっと読む)


【課題】 本体部の軸方向長さを確保しつつ本体部の軸が鉛直方向に延びている場合に比べてオイルセパレータの高さ方向の寸法を小さくでき、単純にオイルセパレータを斜めにする場合に比べてオイルセパレータの性能悪化を抑制できるサイクロン式オイルセパレータの提供。
【解決手段】本体部20と、オイル混合ガスを本体部20内に導入するガス導入部30と、オイル混合ガスからオイルが分離されたガスを本体部20外に排出するガス排出部40と、オイル混合ガスから分離されたオイルを本体部20外に排出するオイル排出部50と、を有し、本体部20の軸Pが鉛直方向から傾いており、本体部20の上壁21の下面21aが水平面とされており、ガス導入部30が水平に延びている、サイクロン式オイルセパレータ10。 (もっと読む)


【課題】分離槽内の原水から、原水に含まれる懸濁物質を容易かつ短時間で分離する固液分離装置を提供する。
【解決手段】2つの円錐形を底面で重ね合わせた紡錐形状を有し、流入した原水を内部で旋回させて懸濁物質と処理水とに分離する分離槽13と、流入した原水が分離槽内で旋回するように、分離槽の中心より外側に設置される流入管12と、分離槽の上部に開口されたフロス排出口を有し、原水よりも比重が小さく分離槽内で浮上した懸濁物質を排出するフロス排出管14と、分離槽の底部に開口されたスラッジ排出口を有し、原水よりも比重が大きく分離槽内で沈降した懸濁物質を排出するスラッジ排出管16と、原水から懸濁物質が除去された処理水を分離槽から排出する処理水排出管18とを備えることを特徴とする。 (もっと読む)


【課題】直接燃焼式石炭燃焼システムを提供する。
【解決手段】本石炭燃焼システム(100)は、石炭水スラリーを受けるように構成された入力部を有し、また石炭水スラリーを圧縮機(106)からの吐出空気と混合して該石炭水スラリーをガス化しかつ合成ガスを生成する旋回チャンバ(114)を含む。本システムは、旋回チャンバの第2の端部に直接結合されたサイクロン分離器(116)と、該サイクロン分離器の出力部に結合された第2段燃焼入力部(112)とを含む。 (もっと読む)


【課題】被処理流体中の磁性粒子の除去効率を向上させる。
【解決手段】サイクロン式処理容器2の内周面2gには、内径が上下方向の全体に亘って略一定となる円筒状部2fと、該円筒状部2fの下側に連設され、下側ほど内径が小さくなる上記上側逆円錐状部2bと、該上側逆円錐状部2bに隣接してその下側に形成された下側逆円錐状部2dと、両逆円錐状部2b,2d同士を接続する円錐状部2cとからなる。サイクロン式処理容器2の外周には、複数の永久磁石10が設けられている。円筒状部2fの上端部には、サイクロン式処理容器2内に被処理流体を導入して旋回流動させるための導入口3が形成されている。上側逆円錐状部2bには、断面形状が矩形、リード角が30°で、3条の螺旋溝2jが形成されている。 (もっと読む)


【課題】被処理流体中の磁性粒子の除去効率を向上させる。
【解決手段】サイクロン式処理容器2の内周面2gには、内径が上下方向の全体に亘って略一定となる円筒状部2fと、該円筒状部2fの下側に連設され、下側ほど内径が小さくなる上記上側逆円錐状部2bと、該上側逆円錐状部2bに隣接してその下側に形成された下側逆円錐状部2dと、両逆円錐状部2b,2d同士を接続する円錐状部2cとからなる。円筒状部2fの上端部には、サイクロン式処理容器2内に被処理流体を導入して旋回流動させるための導入口3が形成されている。サイクロン式処理容器2の外周には、複数の永久磁石10が、半径方向内側がS極になるものとN極になるものとが、互いに隣り合うように配設され、2個ずつが、例えばパーマロイの薄板が折り曲げられて形成されたヨークによって連結(磁気的に結合)されている。 (もっと読む)


121 - 140 / 331