説明

Fターム[4G169CC31]の内容

触媒 (289,788) | 使用対象反応−エネルギーと化学原料関連 (3,716) | エネルギー変換関連反応 (1,195)

Fターム[4G169CC31]の下位に属するFターム

Fターム[4G169CC31]に分類される特許

81 - 97 / 97


【課題】200℃のような低温雰囲気下において、炭化水素ガスから水素ガスを発生させることができる触媒材料とその製造方法、並びにその触媒材料を用いた水素ガスの製造方法を提供する。
【解決手段】炭化水素ガスから水素ガスを製造するための触媒材料であって、貴金属ナノ微粒子が担持されたマンガン酸化物のナノ微粒子の凝集体からなることとする。 (もっと読む)


【課題】 安価で、かつ、白金を上回る高活性の水素発生触媒を提供する。
【解決手段】 本発明の水素発生触媒は、酸化タングステンからなる。過酸化タングステン酸水溶液から酸化タングステンを電析させることによって製造する。本発明の水素発生電極は、酸化タングステン膜で被覆された電極基材からなる。過酸化タングステン酸水溶液に電極基材を浸漬し、電極基材の表面に酸化タングステンを電析させて電極基材を酸化タングステン膜で被覆することで製造する。白金よりもはるかに安価で、かつ、白金を大きく上回る高活性の水素発生触媒、水素発生電極を提供することができる。
(もっと読む)


【課題】 チタニアペーストの製造方法及びこのペーストを用いたチタニア多孔質層の製造方法並びにこの多孔質層に増感色素が付着してなる光触媒層を提供する。
【解決手段】 本発明のチタニアペーストの製造方法は、チタニア粉末及び媒体(エタノール等)を含有する分散体と、チタンアルコキシド(チタンテトライソプロポキシド等)及び有機溶媒(エタノール等)を含有する溶液に水を添加してなるゾルとを混合することを特徴とする。本発明のチタニア多孔質層の製造方法は、本発明のチタニアペーストを基材(樹脂シート、ガラス等からなる。)に塗布し、その後、78〜400℃(特に120〜280℃)で熱処理することを特徴とする。本発明の光触媒層は、本発明のチタニア多孔質層と、これに付着している増感色素(ルテニウム錯体色素等)とを備える。 (もっと読む)


優れた低温放電特性を提供する電気化学的水素吸蔵合金を含む、優れた性能を提供する電気化学的および熱的水素吸蔵合金組成物。合金組成物は、界面領域に、高多孔質であり触媒金属粒子を含む微小構造を含む。微小構造は、球状またはチャンネル状の形状を有し、構造的に十分開放的で、微小構造中および触媒金属粒子近傍の反応性化学成分の移動度の増大を促進する、高い容積分率の空孔を含む。したがって反応性部位へのより大きな接近性が得られる。反応性化学成分の移動度が大きくなるほど、かつ/または触媒粒子の密度が高くなるほど、特に低い作動温度においてより速い反応速度と改善された性能(例えばより高い出力)が得られる。微小構造は、合金組成物中に微小構造調整元素を含有させて、加工条件を制御し、かつ/または水素吸蔵合金の形成加工後の過程でのエッチングステップを含むことによって形成することができる。 (もっと読む)


【課 題】 本発明は、バイオマスのガス化効率を高める触媒、特にバイオマスの熱分解過程において生じるタールの分解及び水蒸気改質反応を促進し、水素及び一酸化炭素をはじめとする低分子気体の生成量を増加させる触媒を提供することを目的とする。
【解決手段】 多孔質流動媒体にガス化触媒成分が担持されていることを特徴とするバイオマスのガス化用触媒。 (もっと読む)


金属酸化物触媒及びその製造方法を提供する。さらに具体的には、一つ以上の金属酸化物を含む水素製造用金属酸化物触媒及びその製造方法を提供する。該水素製造用金属酸化物触媒を利用すれば、水素を効率的かつ経済的に生産できる。
(もっと読む)


【課題】 触媒を用いて低級炭化水素を直接分解して水素とナノ炭素とを生成する際に、経時的な転化率の低下を防止する。
【解決手段】 低級炭化水素4を触媒1を使用して直接分解し、機能性ナノ炭素と水素を得る反応において、前記低級炭化水素に低濃度の酸化性ガスあるいは還元性ガスまたはそれらの混合物ガスを共存させたガス9を前記反応に供する。前記反応により触媒上に生成される機能性ナノ炭素の前駆体や副生物の無定形炭素と共存ガスが反応して触媒上から除去され、前記前駆体、副生物によって反応が阻害されて転化率が経時的に減少するのを防止する。低級炭化水素原料がバイオガスである場合には、メタンの精製度を低くすることによって共存ガスを容易にメタン中に混合でき、また水素は低級炭化水素の分解生成物の一つとして得られるので再反応させる際に混入させることができる。 (もっと読む)


本発明は、優れた酸素還元触媒能を有する酸素還元電極を提供することを主な目的とする。本発明は、マンガン酸化物の一次粒子が凝集した二次粒子からなり、かつ、酸素還元触媒能を有するマンガン酸化物ナノ構造体を製造する方法であって、マンガン酸化物からなるターゲット板にレーザ光を照射することによって、ターゲット板の構成物質を脱離させ、前記ターゲット板にほぼ平行に対向する基板上にその脱離した物質を堆積させる工程を有する製造方法に係る。
(もっと読む)


白金不含のキレート触媒材料は、たとえば自動車産業における水素およびメタノールの燃料電池における選択的な酸素の還元のために使用される。達成可能な多孔度および触媒活性は、商業的な適用のための製造の際の高温処理の間の焼結効果に基づいて不十分である。従って本発明による方法は、プラズマ反応室中で、不活性なプラズマガスを用いて、遷移金属キレートの分子がプラズマ中で断片化され、かつその後の化学反応において架橋することによって、一方では炭素マトリックスが形成されるが、しかし他方では遷移金属の周辺におけるキレートの基本構造は維持されるようにプラズマ出力、プラズマガス圧、プラズマ初期化および処理時間を選択して、粉末状の遷移金属キレートを低温プラズマ処理することを特徴とする。得られるキレート触媒粒子は高多孔質であり、かつ0.06μmの範囲の大きさを有する。こうして製造された中間生成物は、並行して、または交互に運転される異なった出力の2つの異なった低温プラズマによる組み合わされたスパッタ−プラズマ処理により、特にガス拡散電極への応用において、最終生成物としての電極触媒被覆へとさらに加工することができる。
(もっと読む)


【課題】電解質にイオン性液体を用いた電気化学デバイスにおける電極触媒において、電極反応の進行が円滑に行われる電極触媒構造体を提供すること。
【解決手段】電解質としてイオン性液体を用いる電気化学デバイスに採用され、電極基体に電極触媒層を備え、該電極触媒層に触媒被毒緩和材が混在している電極触媒構造体である。触媒被毒緩和材がアルカリ金属やアルカリ土類金属である。アルカリ金属がリチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムなどである。アルカリ土類金属がベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウムなどである。 (もっと読む)


【課題】電解質としてイオン性液体を用いた電気化学デバイスにおける電極触媒において、電極反応の進行が円滑に行われる電極触媒構造体を提供すること。
【解決手段】電解質としてイオン性液体を用いる電気化学デバイスに採用される電極触媒構造体である。電極基体と、電極触媒層と、触媒被毒緩和材を含む触媒被毒緩和層を有する。触媒被毒緩和層が、電極触媒層上に積層されている。 触媒被毒緩和層は、触媒被毒緩和材を含むゲル体で構成されており、このゲル体は、プロトン伝導性材料を前駆物質とする。 (もっと読む)


【課題】比較的安価な金属からなり、タール生成やカーボン蓄積を抑え、比較的穏和な反応条件でバイオマスを好ましくは水素ガスにガス化できる触媒及びこの触媒を用いたバイオマスから水素を工業的に有利に製造できる方法を提供する。
【解決手段】 ニッケル担時ゼオライトを含有するバイオマスのガス化触媒。好ましくは補助成分としてセリウムを含有する上記触媒。これらの触媒の存在下でバイオマスを熱分解して水素を製造する。 (もっと読む)


処理困難なバイオマスを熱電併合システムで燃焼可能な清浄ガス燃料に転換するためのガス化技術を提供する。このガス化技術は,従来のガス化技術とは異なり,1段流動床触媒ガス化,および2段のタールガス化およびタール中の窒素と可燃性ガス中のHCNをNHに転換する触媒改質反応を含む。また,全体ガス化工程の温度は灰分の溶融温度より低いため,粉末状灰分が発生して処理が容易である。また,工程温度が低くて放熱損失が少なく,よって高発熱量のガスを生成するように小型反応器を設計することができる。また,発生したタールは回収してほかの工程で再利用し,ガス燃料は少量のアンモニアを含有する。
(もっと読む)


【課題】 燃焼排ガス中に過剰の酸素が存在する場合に、少ない消費電力で高効率に窒素酸化物を浄化することが可能な化学反応システムを提供する。
【解決手段】 遷移金属の微細粒子、酸素欠損濃集部を有するイオン伝導体、及び電子伝導体、を構成要素として、(1)反応場となる遷移金属の微細粒子からなる還元相、(2)被処理物質を反応場に導入するための空間、(3)反応場となるイオン伝導体結晶構造の中に形成された酸素欠損濃集部、(4)イオン伝導体の酸素欠損濃集部に吸着する酸素分子をイオン化するために必要な電子を供給する電子伝導相、及び(5)イオン伝導体の酸素欠損でイオン化された酸素分子を反応系外に搬出するための経路となるイオン伝導相、を基本単位とする化学反応部を形成したことを特徴とする、化学反応システム。
【効果】 被処理物質の浄化効率を向上させ、低温浄化を実現することができる。 (もっと読む)


本発明は、天然の炭化水素貯留層から抽出されたガス状炭化水素を炭素に転換する方法であって、反応器中で、昇温状態で該ガス状炭化水素を、該ガス状炭化水素を炭素と水素に転換可能な触媒と接触させ、未転換の炭化水素から生成した水素を分離し、該水素を燃焼してエネルギーを発生させ、該エネルギーにより、該反応器もしくは該反応器へのガス状炭化水素のガス流を加熱し、または熱量消費装置もしくは電力消費装置に熱もしくは動力を供給する方法を提供する。 (もっと読む)


本発明は、PEM水電解におけるアノード触媒としての使用のための酸化イリジウムベースの触媒に関する。特許の保護が請求された複合触媒材料は、酸化イリジウム(IrO)及び場合により酸化ルテニウム(RuO)を高表面積の無機酸化物(例えばTiO、Al、ZrO;及びそれらの混合物)との組合せで含んでいる。無機酸化物は、50〜400m/gの範囲内のBET表面積、0.15g/lより低い水への溶解度を有し、かつ触媒の全質量に対して20質量%未満の量で存在する。特許の保護が請求された触媒材料は、水電解における低い酸素過電圧及び長い寿命により特徴付けられる。前記触媒は、PEM電解槽のための電極、触媒−コート膜及び膜−電極−アセンブリにおいて並びに再生形燃料電池(RFC)、センサ、及び他の電気化学的デバイスにおいて使用される。 (もっと読む)


本発明は、高濃度過酸化水素を、ガソリン、ディーゼル、DME、JP5、JP8などのようなより一般的な燃料だけでなくエタノール、メタノール、メタンのような炭化水素と組み合わせて用い、主として水素と二酸化炭素とからなる混合ガスを発生させる、制御された自己着火法を提供するものである。また、空気を酸素源として用いないので、この新規な方法では亜酸化窒素(NO)化合物が生成されず、したがって主な窒素汚染源を回避することもできる。その工程は、マイクロスケールで、制限されたシステムで実行され、その結果、供給される水素は、自身で加圧される。これにより、車両、船舶、および固定式の電力源で用いるために提案されているような、可変出力の燃料電池発電装置用に、オンデマンドの水素燃料源の使用が実現可能となる。本発明の他の実施形態では、過酸化水素は、触媒または熱によってHO蒸気およびOを発生するように反応する。この気体の流れが燃料電池のカソードに導入されると、それに応じて空気移動装置による寄生的な電力の需要が増加することなく酸素濃度が上昇する。このように酸素源としてHを用いることは、連続的にも、断続的にも可能であり、またはピーク電力需要時または高い過渡負荷がFCPにかかった場合等の特定の場合に限定することもできる。
(もっと読む)


81 - 97 / 97