説明

Fターム[4K013BA03]の内容

溶融状態での鋼の処理 (7,585) | 処理目的 (1,164) | 成分除去 (748) | 脱リンを目的とするもの (47)

Fターム[4K013BA03]の下位に属するFターム

Fターム[4K013BA03]に分類される特許

1 - 20 / 45


【課題】マンガン源として安価な高炭素FeMnを使用したとしてもなお、CのピックアップやMnのロスを少なくすることで、低C高Mn鋼を確実にかつ安価に溶製することができる低炭素高マンガン鋼の溶製方法を提案する。
【解決手段】転炉の吹錬終了後、底吹きガスによるリンシング処理を行ってから取鍋へ出鋼するに当たり、まず、C≧1.0mass%を含有する高C−FeMnを投入したのちにAlを投入して脱酸処理し、次いで、出鋼溶鋼をAP処理して脱硫し、その後、RHガス脱ガス処理を施すことにより、C:0.030〜0.050mass%、Mn≧1.00mass%の鋼とする。 (もっと読む)


【課題】容器内の非対称な位置に吹込み位置を変化させることができ、もって攪拌効率、反応効率の向上効果を図れる粉体吹込み方法を提供する。
【解決手段】溶融金属の成分を調整するために粉体を容器3内の溶融金属に吹き込む粉体吹込み方法において、ランス1を支持する台車2を水平面内において円弧又は円の軌道に沿って円周方向に移動させながら、ランス1の先端から容器3に貯蔵された溶融金属5にキャリアガスと共に粉体を吹き込む。 (もっと読む)


【課題】溶銑を転炉で予備脱燐処理し、次いで、この溶銑に別の転炉で脱炭精錬を行って溶鋼を製造するにあたり、上吹きランスの流路内での発熱・燃焼を危惧することなく、高い着熱効率及び生産性で溶鋼を製造する。
【解決手段】精錬剤供給路と、第1の燃料供給路と、燃焼用ガス供給路と、脱燐用酸化性ガス供給路と、第2の燃料供給路と、を構成する第1の上吹きランス1を用い、第1及び第2の燃料供給路からの燃料により火炎を形成させながら、精錬剤供給路から不活性ガスともに酸化鉄、石灰系媒溶剤、可燃性物質の1種以上を供給しながら脱燐用酸化性ガスを吹き付けて溶銑を予備脱燐処理し、次いで、溶銑を別の転炉に装入し、精錬用酸素ガス供給路と、燃料供給路とを有する第2の上吹きランスを用い、燃料供給路からの燃料により火炎を形成させながら、精錬用酸素ガス供給路から酸素ガスとともに粉状媒溶剤を供給して溶銑を脱炭精錬して溶鋼を製造する。 (もっと読む)


【課題】溶銑脱硫スラグから精錬用フラックスなどとして再利用可能な改質スラグを、環境汚染物質の排出を抑えて、低コストで多量に処理する有効な方法を提案することにある。
【解決手段】溶銑脱硫スラグを再利用可能な改質スラグにするに当たり、その溶銑脱硫スラグを、燃焼ガスを反応ガスとして用いる反応槽内に装入して焙焼し、各種精錬材として再利用できるようにする溶銑脱硫スラグの改質方法。 (もっと読む)


【課題】難造粒性微粉原料を、焼結機を用いて塊成化するに際し、生産性及び歩留を下げることなく焼結することができる焼結用原料の事前処理方法を提供する。
【解決手段】石灰石を30質量%以上含有し、かつ、直径0.25mm以下の粒度構成比率が50質量%以上である原料を、焼結機で塊成化する際、(i)前記原料を、高速撹拌型造粒機又は振動型造粒で、8mm以下の造粒物に造粒し、次いで、(ii)回転ドラム等を通過させて、圧潰強度30N未満の造粒物を破砕し、最後に、(iii)1mm以下の未造粒物を分級して除去することを特徴とする。 (もっと読む)


【課題】 極低硫鋼を製造することを目的として転炉から出鋼された溶鋼に対して、CaO含有物質を脱硫剤の主たる構成物質として用いて取鍋内で取鍋精錬法による脱硫処理を施すにあたり、CaF2を脱硫剤の一部として使用しなくても、また、脱硫剤がプリメルトフラックスでなくても、添加した脱硫剤を迅速に滓化させ、効率良く脱硫する。
【解決手段】 脱硫処理及び脱燐処理の施された溶銑の転炉での脱炭精錬によって得られ、転炉から取鍋2に出鋼された溶鋼9を、当該溶鋼への攪拌用ガスの吹き込みにより攪拌しながら、取鍋内に添加されたCaO含有物質を脱硫剤として用いて取鍋内で脱硫処理する溶鋼の脱硫処理方法であって、脱硫処理後の取鍋内スラグ10の組成を、SiO2の含有量が5〜15質量%、[(質量%CaO)+(質量%MgO)]/(質量%Al23)が1.5〜3.0で、且つCaF2を実質的に含有しない組成に調整する。 (もっと読む)


【課題】脱硫・脱燐に寄与するNa2 Oを積極的多量に生石灰に混成させたかたちの精錬剤とすること、Na2 Oが溶湯投入直後に消失することなくCaOとともに溶鉄内での反応を可能にしておくこと、Na2 Oの原料となるNa2 CO3 の精錬剤への転化率を高めて未消費損失を可及的に抑制できるようにすること。
【解決手段】カルシウム・アルミネート・ソーダの混成固形物CaO・Al23 ・Na2 Oを30ミリメートル以下に粉砕した石灰系フラックスであり、これにはCaO100重量部に対してAl23 は80ないし120重量部、Na2 Oは24ないし76重量部含ませる。また、カルシウム・フェライト・ソーダの混成固形物を粉砕した石灰系フラックスとする場合、CaO100重量部に対してFe23 は90ないし130重量部、Na2 Oは25ないし80重量部含ませる。 (もっと読む)


【課題】耐久性および長寿命化を更に図り得るガス吹き込みランスを提供する。
【解決手段】ガス吹き込みランスは、長手方向に延びる芯体2と、芯体2に被覆され金属溶湯Mに浸漬または接近する耐火物層3とをもつ。芯体2の内壁面には、第1ガス通路4の径内方向に突出する突出部8が設けられている。突出部8は、第1ガス通路4の中心軸線P3の回りに巡らされたリング体80で形成されている。 (もっと読む)


【課題】耐久性および長寿命化を更に図り得るガス吹き込みランスを提供する。
【解決手段】ガス吹き込みランスは、長手方向に延びる芯体2と、芯体2に被覆され金属溶湯Mに浸漬または接近する耐火物層3とをもつ。芯体2は、芯体2の第1ガス通路4の中心軸線P3に沿った断面において、第1ガス吹出口41に向かうにつれて中心軸線P3に向かうよう傾斜する傾斜部2rをもつ。傾斜部2rと、傾斜部2rに中心軸線を介して対向する壁部との少なくとも一方には、第1ガス通路4の径内方に突出する突出部8Fが設けられている。 (もっと読む)


【課題】耐久性および長寿命化を更に図り得るガス吹き込みランスを提供する。
【解決手段】ガス吹き込みランスは、第1ガスを金属溶湯に向けて吹き出す第1ガス吹出口41をもつ第1ガス通路4を有する芯体2と、芯体2の外周部に被覆された耐火物層3とを有する。芯体2の外周側には、耐火物層3を形成する耐火材料と接触するメッシュ部材および/またはチェーン部材等の係合部材90が配置されている。 (もっと読む)


【課題】 二重管構造のランス本体と、該ランス本体を保持するランスホルダーとで構成される浸漬ランスにおいて、ランス本体とランスホルダーとを正確な芯合わせを必要とせずに強固な連結ができる浸漬ランスを提供する。
【解決手段】 二重管構造のランス本体2と、ランス本体を保持するランスホルダー3と、で構成される浸漬ランス1において、ランスホルダーの下端部にはアダプター16が接合され、アダプターの下端部及びランス本体の上端部にはそれぞれフランジ17,21が設けられ、ボルト22及びナット23によってランス本体がランスホルダーに固定されるとともに、各々のボルトはランスホルダー側に設置された散水スプレー25によって冷却されるように構成されており、且つ、ランス本体には炭化水素ガス導入管26が設置されていて、内管19と外管20との間隙は上端部で密閉され、ランスホルダーを通って供給される酸素含有ガスが内管内に流入する。 (もっと読む)


【課題】芯体の曲成部における耐久性および長寿命化を更に図り得るガス吹き込みランスを提供する。
【解決手段】ガス吹き込みランスは、長手方向に延びる芯体2と、芯体2に被覆され金属溶湯Mに浸漬または接近する耐火物層3とをもつ。芯体2の少なくとも曲成部510,610は、内パイプ51と、内パイプ51の外周側に内パイプ51を覆うように配置された外パイプ52とを有する。内パイプ51と外パイプ52との間には、曲成部510,610において、ガス通過用または断熱用の隙間6pを形成するスペーサ部材9が設けられている。 (もっと読む)


【課題】電気炉およびそれに準じる製鋼炉を用いて精錬するに際して、フッ素を含む媒溶剤の添加を実質的に行うことなく脱りん処理および溶鋼内の有価金属成分の安定制御が可能な精錬方法を提供する。
【解決手段】精錬終了時にCr:0.1質量%以上3.0質量%以下、P:0.002質量%以上0.20質量%以下を含有する溶鋼を対象として、T.Fe:4質量%以上30質量%以下、NaO:4質量%以上20質量%以下であるとともに、(%CaO)、(%Al)および(%Cr)の比が、1.0≦(%CaO)/{(%Al)+(%Cr)}≦3.0を満足する組成を有するスラグを生成する。 (もっと読む)


【課題】マイクロ波レベル計のみでスラグの厚さを正確に測定する方法及び装置を提供する。
【解決手段】溶鉱炉内において溶鉄上に浮遊するスラグの厚さ測定する方法であって、上端または管内にマイクロ波送受信用のアンテナが設置されたガイドパイプを、スラグに向けて降下させながら該ガイドパイプの下端の開口を通じてマイクロ波の送受信を行い、降下位置毎に反射位置と受信強度とをモニタするとともに、最も大きな2つの受信強度のピークが現れた降下位置における前記ピークの反射位置の差をスラグの厚さにする。 (もっと読む)


【課題】リン[P]などの不純物元素の金属Caによる還元精錬技術などを、製品鋳塊重量が例えば10kg以上となる実用規模の精錬技術にまで発展させるための具体的な方法を明示すること。
【解決手段】精錬剤は、金属CaとCaハライド組成フラックスとの混合物である。Caハライド組成フラックスは、フッ化カルシウムに酸化カルシウムを5〜30wt%配合したCaF-CaO、フッ化カルシウムに塩化カルシウムを5〜30wt%配合したCaF-CaCl、または、フッ化カルシウムに酸化カルシウムおよび塩化カルシウムを5〜30wt%配合したCaF-(CaO+CaCl)である。合金溶湯プール6の重量に対する金属Caの添加率を0.5wt%以上とし、合金溶湯プール6の重量に対するCaハライド組成フラックスの添加率を、金属Caの添加率以上とする。 (もっと読む)


【課題】コールドクルーシブル式誘導溶解法を利用した酸化精錬技術において、少なくとも炭素およびCaを含む不純物元素を合金中から除去できる方法を明示すること、および、この酸化精錬技術を、製品鋳塊重量が例えば10kg以上となる実用規模の精錬技術にまで発展させるための方法を明示すること。
【解決手段】精錬剤は、酸化鉄とCaハライド組成フラックスとの混合物である。Caハライド組成フラックスは、例えばフッ化カルシウムに酸化カルシウムを5〜30wt%配合したCaF-CaOである。酸化鉄の添加重量を、合金溶湯プール6中の炭素およびカルシウムを含む不純物元素を全量酸化させるために算出される算出重量の0.2倍以上、4.0倍以下とする。また、合金溶湯プール6の重量に対するCaハライド組成フラックスの添加率を、0.5wt%以上、5.0wt%以下とする。精錬工程では、チャンバー内の排気状態を15分以上保持する。 (もっと読む)


【課題】芯金に曲がっている部分を有するランスパイプであって、粉末など固体の溶湯処理剤を導入しても芯金が損耗し難く、且つ容易に製造することができるランスパイプを提供する。
【解決手段】金属製で円管状の芯金10、及び、芯金の外周面を被覆する耐火物層20を備え、固体の溶湯処理剤を溶融金属に供給するランスパイプ1であって、芯金は、溶湯処理剤が導入される導入口21から直線状に伸びる直管部11、及び、直管部から湾曲して延設される曲管部12を備え、金金の直管部の内周面、及び、曲管部において曲管部において曲管部の湾曲に対して外側となる方向の内周面から、芯金の内径の1/20〜1/2の高さ突出している一以上の金属製の突片Pを具備する。 (もっと読む)


【課題】蛍石を使用しないで、溶銑中のP濃度を0.020%以下とすることができる、溶銑の脱りん方法を提供する。
【解決手段】上底吹き転炉を用い、粉状のCaO含有脱りん剤を上吹きランスから溶銑に吹き付けて脱りん処理するに際し、前記吹き付ける粉状のCaO含有脱りん剤質量を、転炉内に投入する全CaOの合計質量の40%以上、脱りん処理後の配合塩基度(添加したCaOの、溶銑中のSiO2に対する比の値)を2.0〜3.0、脱りん処理後の溶銑温度を1350℃〜1420℃とする。そして、前記粉状のCaO含有脱りん剤の溶銑への吹き付けを、当該脱りん処理における上吹き酸素の供給開始時から全上吹き酸素の供給時間T1の15〜35%経過後に開始し、前記時間T1の85%〜100%経過時までの間継続し、かつ、吹き付け継続期間中の平均脱りん剤吹き付け速度を0.5〜3.0kg/min/tとする。 (もっと読む)


【課題】脱燐が困難なFe−Cr−Ni系ステンレス鋼を脱燐して最終的に0.02mass%以下の燐濃度に抑えることができるとともに、冷えたCr原料を投入する必要がなく、また、入手が容易な低品質(高P)の合金スクラップ原料を有効活用することができる技術を提供する。
【解決手段】2つの電気炉を用いて原料を溶解し、それらを合わせることで目的とする成分のステンレス鋼を製造する低燐ステンレス鋼の製造方法であって、第1の電気炉においては、少なくともFe、Cr、Niを含む鋼を溶解し、第2の電気炉においては、少なくともFeを含む鋼、あるいは少なくともFeおよびNiを含む鋼を溶解し、第2の電気炉にて溶解した溶鋼に酸素を吹き込むことによりPを酸化除去し、第1および第2の電気炉で溶解した鋼を合わせた後、P濃度を0.02mass%以下とする低燐ステンレス鋼の製造方法。 (もっと読む)


【課題】Ndの添加のみでPの偏析を鋼の内部に分散させることにより、鋼中のPを従来にない水準まで無害化させた鋼を提供する。
【解決手段】Cを0.10-0.30質量%、Pを0.005-0.030質量%含有する、凝固初晶がフェライト相でありかつ固相線温度でオーステナイト相にて凝固を完了する鋼であって、該P含有濃度に応じて2.5×10-4/[P]≦[Nd]<3.5×10-3/[P]の関係を、さらにOを0.005質量%以下、Sを0.005質量%以下含有する場合には、前記含有P、O、およびS濃度に応じて6×([O]+[S])+1.6×10-4/[P]≦[Nd]≦6×([O]+[S])+2.7×10-3/[P]の関係を、満足する量のNdが添加されたことによって、Pのミクロ偏析が分散されたことを特徴とする鋼である。 (もっと読む)


1 - 20 / 45