説明

Fターム[4K017BA09]の内容

金属質粉又はその懸濁液の製造 (21,321) | 粉末の主成分 (4,105) | 化合物 (54)

Fターム[4K017BA09]に分類される特許

21 - 40 / 54


【課題】高容量で、漏れ電流値が小さく、高温特性及び耐熱特性の良好なニオブコンデンサの製造方法を提供する。
【解決手段】ニオブを含む粉体を焼結してニオブ合金の焼結体を得、この焼結体を一方の電極とし、その焼結体表面上に誘電体を形成し、前記誘電体上に対電極を設けるコンデンサの製造法であって、一窒化二ニオブ結晶を焼結体に含有させる工程を含むことを特徴とするコンデンサの製造方法。 (もっと読む)


【課題】粒子を単離するための方法の提供。
【解決手段】単離された粒子を作製するための方法であって、高度に分散されたコロイド状懸濁物の中に存在する粒子を封入材料により少なくとも実質的に封入し、当該封入粒子が当該懸濁物から分離しても独立且つ分離したまであり続けるようにする段階を含む方法。更には、前記封入材料で少なくとも実質的に封入された独立且つ分離した粒子。 (もっと読む)


【課題】熱伝導率を十分に低減させ、特性を大きく向上させた熱電変換素子の製造方法を提供する。
【解決手段】平均粒子径が1〜100nmであるセラミックス粒子及び熱電変換材料を構成する元素の塩を含むアルコール分散液を調製した後、この分散液を、還元剤を含む溶液に滴下して熱電変換材料の原料粒子を析出させ、加熱処理し、次いで焼結する工程を含む。 (もっと読む)


【課題】飽和磁束密度4πIが大きく、保磁力HCJも大きく、かつ安定した高磁気特性を有するFe相およびSmCo5相のナノコンポジット構造の永久磁石を得る方法を提供する。
【解決手段】硬磁性相および軟磁性相がコンポジット化した組織を有する永久磁石の製造方法において、硝酸サマリウム及び硝酸コバルトをプロパノールまたはエタノール等の有機溶媒に溶解し、この溶解液を活性マグネシアに真空含浸し、含浸した活性マグネシアに硝酸鉄及び塩化第二鉄を添加した金属塩溶液を加え、真空中で乾燥し、金属カルシウム中で熱処理した。 (もっと読む)


【課題】高耐熱性を有する含金属元素粒子および/または含半金属元素粒子を得る。
【解決手段】1.3<b/a<10(a,bは含金属元素粒子および/または含半金属元素粒子(含金属又は半金属元素粒子)の一次粒子のピーク径を表し、b>aである)の関係を満たす2種の含金属又は半金属元素粒子を含む混合粉末を焼成する焼成工程または、一次粒子のピーク径が異なる2種以上の含金属又は半金属元素粒子を含む混合粉末を、低温領域Tで1〜100℃/hの昇温速度にて第1の焼成を行なった後に高温領域T(>T)で第2の焼成を行なう多段階焼成工程を有している。 (もっと読む)


【課題】回収効率に優れ、良質の無機ナノ粒子コロイド溶液や任意の組成の多元合金あるいは多元化合物のナノ粒子を容易に製造可能な、粒径200nm以下のナノ粒子の製造方法を提供する。
【解決手段】原材料液(ただし、ポリシランを含むものを除く)に対して400nm未満の波長のレーザー光をパルス照射して、粒径200nm以下のナノ粒子を製造する。原材料液にナノ粒子分散剤を添加することが好ましい。製造するナノ粒子がPtナノ粒子の場合には、塩化白金(IV)酸六水和物(H2Pt(IV)Cl6・6H2O)をエタノール(C2H5OH)中に溶解したものが原材料液として用いられる。製造するナノ粒子がFeナノ粒子の場合には、錯体である鉄(III)アセチルアセトネート(Fe(III)(C5H7O2)3)をエタノール(C2H5OH)中に溶解したものが原材料液として用いられる。 (もっと読む)


【課題】TiAl金属間化合物基合金の欠点である常温での切削性や延性を改善し、均質で微細組織に優れた材料特性とし、最終製品に近い形状で完全に緻密な金属の焼結体を再現性良く得られるTiAl金属間化合物基合金の粉末焼結体の製造方法を提供する。
【解決手段】TiAl金属間化合物を主成分とする合金を溶解し、前記溶解で得られる液滴を急冷凝固させて金属粉末を得、前記金属粉末を缶に入れて後に真空排気し、前記缶の全体を熱間等方加圧処理により加熱及び加圧して粉末焼結体を製造する。 (もっと読む)


【課題】水中あるいは血液等の電解質水溶液中において安定性に優れ、かつ安全性の高い磁性微粒子の提供及び該磁性微粒子を含む感度の高い造影剤、ならびに温熱効果の高い温熱療法用製剤の提供。
【解決手段】
白金及び/又は金ならびに酸化鉄を含み、平均粒径が5nm以上20nm以下であり、かつ保磁力が16KA/m以下0.1KA/m以上である磁性微粒子。 (もっと読む)


【課題】ZnPd合金はメタノール水蒸気改質触媒として期待されている。そこで、さらに触媒能を高くするためにZnPdの微粒子が望ましい。しかし、ZnPdの微粒子はZn2+イオンの還元が難しいことから技術的に実現することが困難であった。
【解決手段】有機配位子存在下にて亜鉛または亜鉛錯体とパラジウム錯体との混合物を還元することによりパラジウムと亜鉛とを含有する長径1nmから100nmである亜鉛パラジウム微粒子を実現した。 (もっと読む)


【課題】室温での硬度(室温硬度)、耐摩耗性、耐熱衝撃性(耐熱サイクル特性)に加え、耐熱性の指標である高温下での硬度(高温硬度)に優れる溶射用Ni基自溶合金粉末およびその製造方法と、自溶合金溶射皮膜を提供する。
【解決手段】Cr、CおよびCoを含むNi基自溶合金からなり、粒径5μm以下のクロムカーバイドが、粒子内部に均一に析出している溶射用Ni基自溶合金粉末であり、30.0質量%〜65.0質量%のCrと、1.0質量%〜4.5質量%のCと、5.0質量%〜20.0質量%のCoと、0.5質量%〜4.0質量%のSiと、0.5質量%〜4.0質量%のBと、0.5質量%〜4.0質量%のMoと、選択的に0〜5.0質量%のFeとを含み、残部がNiおよび不可避的不純物である。さらに、45μm〜106μmの粒度範囲に整粒される。 (もっと読む)


【課題】コバルト/炭化タングステン複合体において、粒子成長を抑制して一層微粒な微細構造をもつと共に、酸素に対する敏感性を低下する、粒子成長阻止剤の配合方法を与える。
【解決手段】コバルト及びタングステンと、バナジウム、クロム、タンタル、及びニオブからなる群から選択された粒子成長阻止金属の少なくとも一種類とを含む前駆物質粉末を、一酸化炭素と二酸化炭素との混合物からなる炭化用ガスで、炭化タングステンを形成するのに有効な温度で初期炭化にかけ、そして希釈剤と、約1.4より大きな炭素活性度を有する炭化水素ガスとからなる炭化用ガスを用いて約900℃〜1000℃の温度で第二炭化工程にかけることからなる、粒子成長阻止金属を含むコバルト/炭化タングステン粒子製造方法。 (もっと読む)


本発明は、複合体粉末の製造方法に関するものであり、その際に、少なくともタングステン及び/又はモリブデン及び/又はこれらの金属の合金及び/又は化合物を含む粉末状の出発物質Aを、少なくともCo及び/又はFe及び/又はNi及び/又はこれらの金属の合金及び/又は化合物を含む粉末状の出発物質Bと混合し、その際に混合物中で、タングステン及び/又はモリブデン対Co及び/又はNi及び/又はFeの元素比を、99:1(A:B)〜50:50(A:B)質量%の大きさに調節し、かつ粉末混合物を還元過程にかけ、その過程で使用されるCo、Fe及び/又はNiが層W及び/又はMoと共に重複成長される。こうして取得される複合体粉末は、その後の加工工程において部分的に浸炭、窒化又は浸炭窒化されることができる。
(もっと読む)


【課題】液相還元により形成され、高分子分散剤(D)でその表面が覆われて水溶液中に分散している微粒子(P)から、高分子分散剤(D)が除去された微粒子(P)の製造方法を提供する。
【解決手段】液相還元による、一次粒子の平均粒径がナノサイズの金属、合金、及び金属化合物の1種又は2種以上からなる微粒子(P)の製造方法であって、
(i)前記液相還元により形成された微粒子(P)がその表面を高分子分散剤(D)で覆われて分散している水溶液中に、凝集促進剤(F)を添加し、撹拌して微粒子(P)を凝集させる工程(工程a)と、(ii)前記工程aによって凝集した微粒子(P)を水溶液から分離して回収する工程(工程b)とを含むことを特徴とする、微粒子の製造方法。 (もっと読む)


【課題】高温における強度とスラグ等に対する耐食性に優れた不定形耐火物を得ることができる窒化珪素を主成分とする複合セラミック粉末とその製造方法、ならびにその複合セラミック粉末を用いた不定形耐火物を提供する。
【解決手段】Feの含有量が15〜25mass%で、平均粒径が44μm以下の珪素鉄(Fe−Si)粉末100質量部に対し、平均粒径が44μm以下の炭化珪素(SiC)粉末30〜250質量部を混合した混合物を、窒素ガス含有非酸化性雰囲気中で1200〜1350℃に加熱して窒化処理を施すことにより、珪素鉄から遊離した鉄(Fe)が2〜11mass%、炭化珪素から遊離した炭素(C)が4〜15mass%、残部が珪素鉄および炭化珪素から生成した窒化珪素(Si)および不可避的不純物とからなり、平均粒径が30μm以下である複合セラミック粉末を得る。 (もっと読む)


【課題】合金を原料として蛍光体等の無機機能材を製造するにあたり、無機機能材化のための反応を効率的かつ均一に進行させて高性能の無機機能材を製造することができる無機機能材原料用合金粉末を提供する。
【解決手段】無機機能材の製造原料としての合金粉末であって、少なくとも1種の金属元素と、少なくとも1種の付活元素Mとを含有し、重量メジアン径D50が5μm以上40μm以下である無機機能材原料用合金粉末。この合金粉末を、合金を酸素濃度15体積%以下の不溶性ガス雰囲気下で粉砕することにより製造する。合金粉末の粒径、更には純度を制御することにより、蛍光体化等の機能化のための反応を制御して、高性能の無機機能材を得ることができる。 (もっと読む)


【解決手段】本発明は、水素の可逆貯蔵に適合される材料の作製方法に関し、マグネシウムに基づく材料の第1粉末を供給するステップと、第1粉末の少なくとも一部を金属水素化物に転換するために第1粉末を水素化するステップと、水素化された第1粉末を、チタンとバナジウムとクロム又はマンガンから選択された少なくとも1つの他の金属とに基づく体心立方構造を有する合金から形成されている第2粉末添加物と混合するステップとを備え、得られた混合物の第2粉末の質量比が1質量%と20質量%との間にあり、更に、第1粉末及び第2粉末の混合物を粉砕するステップを備える。
(もっと読む)


【課題】WC粉末とともに、微粒のCo粉末が均一に分布する超硬合金粉末およびその製法を提供する。
【解決手段】メタタングステン酸アンモニウム塩と硝酸コバルトとを含み、pHが4〜7のW−Co含有水溶液を調製する工程と、該W−Co含有水溶液を噴霧乾燥してWおよびCoを含む前駆体粉末を得る工程と、前記前駆体粉末をCO/H混合ガス中で加熱する工程とを経て得られ、WC粉末およびCo粉末を含む超硬合金粉末であって、前記WC粉末は平均粒径が50〜200nmであり、前記Co粉末は粒径が100nm以上のCo粉末数が全Co粉末数の4%以下の割合である。 (もっと読む)


【課題】 製造が容易でアスペクト比が高く電波吸収特性にも優れ、かつ表面被覆を行なう際の反応性確保にも有利な表面形態を有した鉄系ナノ細線を提供する。
【解決手段】 この発明の鉄系ナノ細線は、線径が50nm以上300nm以下であり、かつ、線アスペクト比が20以上となるように鉄系粒状結晶が列状に連なった細線形態又は該列状に連なった細線部が樹枝状に連結した形態をなす。また、線長手方向において各鉄系金属粒状結晶の線外周面を構成する表面部分の形態が、隣接粒子との接続面位置で線断面積の極小値を形成し、かつ、両側の接続面の途中位置で線断面積の極大値をなす凸湾曲面となる数珠状形態をなす。 (もっと読む)


本発明は、タングステン化合物とコバルト化合物を原材料として経済的に優れた超微粒タングステンカーバイド−コバルト複合粉末(Ultra−fine WC−Co Composite powder)を製造するための方法に関し、詳しくは、タングステン化合物とコバルト化合物、そして粒子成長抑制剤化合物及び酸化物を機械的方法により混合する工程と、混合した粉末のアンモニアと水分を除去して酸化物に形成するためのか焼工程と、か焼された酸化物粉末を純粋金属粉末に製造するための還元工程と、還元された金属複合粉末に炭素ソースを添加する混合工程と、混合した粉末を最終形態であるタングステンカーバイド−コバルト複合粉末を製造するための浸炭工程とからなる製造方法を提供する。本発明の製造方法を用いると、0.1〜0.2μm、0.2〜0.3μm、0.3〜0.4μmの超微粒の粒子サイズと結合相が均一に混合された高硬度・高靭性の高特性を有する超微粒超硬合金複合粉末を製造することができ、特に、タングステン化合物とコバルト化合物を用いた化合物の価格競争力と工程の単純化を通じた経済的な利点を以てタングステンカーバイド−コバルト複合粉末を製造することができる。
(もっと読む)


【課題】中心部を保護する有機物を該中心部から脱離させて該中心部を金属化させる温度を大幅に低減させて、はんだによる接合の代替に応用できるようにする。
【解決手段】本発明の複合型無機金属化合物ナノ粒子10は、無機金属化合物を含み、表面の略大部分が該無機金属化合物12からなる中心部16の該表面を有機物18で取囲んでいる。 (もっと読む)


21 - 40 / 54