説明

Fターム[4K017BB12]の内容

金属質粉又はその懸濁液の製造 (21,321) | 粉末の副成分 (3,507) | 希土類 (277)

Fターム[4K017BB12]に分類される特許

41 - 60 / 277


【課題】めっき膜が表面処理された希土類永久磁石から希土類合金を回収する方法において、回収した希土類合金が磁石に再利用しやすい形で高回収率で回収する。
【解決手段】めっき膜2が表面処理された希土類永久磁石1を大割した後に水素中熱処理する際、本処理を200〜300℃前後間に亘る処理温度、1時間以上の処理時間で実施し、篩分けにより希土類合金を回収することにより、回収合金粉の平均粒径を回収しやすくかつ酸化の少ない適正な値として希土類合金をを回収することができる。 (もっと読む)


【課題】磁気特性が高くかつ耐酸化性に優れた鉄系ナノサイズ粒子を提供する。
【解決手段】鉄系ナノサイズ粒子であって、Feを主成分としてNiを含む組成を有する金属粒子と、炭素を主成分とする被覆層、またはAl、As、B、Ce、Cl、Co、Cr、Ga、Hf、In、Mn、Nb、Ti、V、Zr、Sc、Si、Y、Taから選ばれた一種以上の金属元素の酸化物もしくは窒化物の被覆層とを有することを特徴とする。前記金属粒子は、Ni/Feの質量比が0.01〜0.1または0.4〜15の範囲内にある組成を有することが望ましい。 (もっと読む)


【課題】主相の粒成長を防止するとともにリッチ相を均一に分散することを可能とした永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジム磁石の微粉末に対して、M−(OR)(式中、MはCu又はAlである。Rは炭化水素からなる置換基であり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、ネオジム磁石の粒子表面に、均一に有機金属化合物を付着させる。その後、圧粉成形した成形体を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。その後、焼成を行うことによって永久磁石を製造する。 (もっと読む)


【課題】湿式粉砕を用いた場合であっても、焼結前に磁石粒子の含有する炭素量を予め低減させることができ、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末を、有機溶媒中でビーズミルにより粉砕し、その後、圧粉成形した成形体を水素雰囲気において200℃〜900℃で数時間保持することにより水素中仮焼処理を行う。続いて、焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】還元拡散法により得た希土類−遷移金属母合金粉末を均一に窒化し、安価で磁気特性の優れた希土類―鉄―窒素系磁石粉末の製造法を提供する。
【解決手段】遷移金属合金粉末、希土類酸化物粉末、及び該希土類酸化物を還元するための還元剤を混合し、該混合物を非酸化性雰囲気中で加熱焼成して希土類−遷移金属母合金を含む還元拡散反応生成物を得て、該還元拡散反応生成物から還元剤を除去する湿式処理を行い、乾燥する還元拡散法により希土類−遷移金属母合金粉末を得る。得られた粉末を窒化ガス雰囲気下で250〜700℃に加熱し1〜3.5時間保持した後、100℃以下に冷却する工程を2回以上繰り返し、粉末の膨張収縮による粉末の崩壊により新生面が生じ均一な窒化が実現できる。 (もっと読む)


【課題】還元拡散法を利用し希土類−鉄合金粉末を均一に窒化することで、磁気特性を向上させる希土類−鉄−窒素系磁石粉末の製造方法、及び得られる希土類−鉄−窒素系磁石粉末を提供。
【解決手段】希土類酸化物粉末、鉄粉末、及び該希土類酸化物を還元するための還元剤を混合し、この混合物を還元拡散法により非酸化性雰囲気中で加熱焼成して希土類−鉄母合金を含む還元拡散反応生成物を得て、次に、該還元拡散反応生成物を湿式処理装置に装入し、水洗、デカンテーション、酸洗して崩壊させるとともに還元拡散反応生成物から還元剤を除去し、引き続き乾燥した後、得られた希土類−鉄母合金粉末を窒化処理して下記の一般式(1)で表される希土類−鉄−窒素系磁石粉末を得る製造方法において、前記還元拡散反応生成物の湿式処理から乾燥工程までを一貫して非酸化性雰囲気中で行うことを特徴とする希土類−鉄−窒素系磁石粉末を得る製造方法などにより提供。
Fe(100−a−b) ・・・(1)
(式(1)中、Rは1種類または2種以上の希土類元素であり、またa、bは原子%で、4≦a≦18、10≦b≦17を満たす。) (もっと読む)


【課題】微小範囲の粒径の磁石粉末を、高い歩留りで得ることを可能となり、その結果、磁気性能及び工業生産性を向上させることが可能な永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末をジェットミル粉砕分級システム32へと搬送し、ヘリウム雰囲気下でジェットミル粉砕を行うとともに、ジェットミル34とサイクロン分級機35との間で磁石粒子を循環させて繰り返し粉砕を行い、所定の範囲(例えば0.2μm〜1.2μm)の粒径のものを分級して回収し、成形後に800℃〜1180℃で焼成を行うことによって永久磁石を製造する。 (もっと読む)


【課題】永久磁石中にα−Feが生成されることを抑制することが可能な永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末をジェットミル粉砕分級システム32へと搬送し、所定の範囲(例えば0.1μm〜5.0μm)の粒径のものを分級して回収し、回収された磁石粉末に対して、M−(OR)x(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、磁石の粒子表面に対して均一に有機金属化合物を付着させた後に、成形及び焼結を行うことによって永久磁石を製造する。 (もっと読む)


【課題】HDDR法を用いて高い保磁力HcJを有することが可能な希土類合金粉末の製造方法を提供する。
【解決手段】本発明に係る希土類合金粉末の製造方法は、HDDR法によって希土類合金粉末を製造するにあたり、希土類合金の原料合金に水素を吸蔵させる水素吸蔵工程(ステップS13)と、水素を吸蔵させた原料合金を水素化して分解させ、分解生成物を得るHD工程(ステップS14)と、分解生成物の温度を750℃以上950℃以下の第1のDR温度に保持した後、途中から550℃以上700℃以下の第2のDR温度に低下させ、分解生成物から水素を放出させて希土類合金粉末を得る脱水素再結合工程(ステップS16)とを含む。 (もっと読む)


【課題】希土類系磁石用原料合金に水素を吸蔵させる水素吸蔵工程において、磁気特性を低下させることなく水素吸蔵工程を短縮して製造コストを低減することができる希土類系磁石用原料合金の製造装置及び製造方法を提供すること。
【解決手段】処理容器50に収容された希土類系磁石用原料合金に水素を吸蔵させる水素吸蔵室10と、水素吸蔵室10に処理容器50を搬入する搬送手段5とを有する希土類系磁石用原料合金の製造装置であって、搬送手段5又は搬送手段5の上流側に処理容器50を加熱する加熱手段24を設けたことを特徴とする。 (もっと読む)


【課題】粉砕後の磁石粉末を加熱することによって、磁石粒子の表面を再生し、磁気性能を向上させた永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末を、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)に該当する有機金属化合物とともに溶媒中でビーズミルにより粉砕し、磁石粒子表面に対して均一に有機金属化合物を付着させる。その後、乾燥した磁石粉末を低酸素雰囲気下において600℃〜1000℃で数時間保持することにより、磁石粉末43を構成する各磁石粒子の再生処理を行う。更に、再生された磁石粉末を成形し、800℃〜1180℃で焼成を行うことによって永久磁石1を製造する。 (もっと読む)


【課題】成形体の酸化および水分の吸着を防止するとともに、その保存性を向上して高い磁気特性を有する希土類焼結磁石、およびその製造方法を提供する。
【解決手段】粉砕されたネオジム磁石の微粉末を構造式M−(OR)(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む有機溶媒中に回収してスラリー42を生成し、その後、成形装置50においてキャビティ54に注入したスラリー42に対して磁場を印加した状態で圧力を加えて成形し、その後に有機溶媒を揮発させて成形体を得る。次に、成形体を水素雰囲気において水素中仮焼処理を行い、800℃〜1180℃で焼成を行うことによって永久磁石を製造する。 (もっと読む)


【課題】HDDR粉末を用いたバルク磁石を従来よりも高い効率で製造できる希土類磁石の製造方法を提供する。
【解決手段】本発明の希土類磁石の製造方法は、HDDR粉末を成形して圧粉体を作製する工程と、圧粉体を5℃/秒以上の昇温速度で500℃〜900℃の範囲内の所定の温度に加熱する工程と、圧粉体が上記所定の温度にある間に、加圧方向を正としたときの圧粉体の加圧方向における寸法変化の時間微分の値が−0.12〜0.0mm/分以下の値である期間が90秒未満となるように圧粉体を20〜3000MPaの圧力で加圧することによって密度7.52g/cm3以上の密度を有するバルク体を得る工程と、バルク体を所定の温度から400℃未満の温度に冷却する工程と、バルク体を加圧することなく、真空または不活性雰囲気下で500℃以上900℃以下の第1温度で1分以上60分未満の時間にわたって熱処理を行なう工程とを包含する。 (もっと読む)


【課題】 割れ難く機械加工ができる程度まで密度を向上させることができるCo、Taおよび希土類金属を含有する膜を形成するためのスパッタリングターゲットの製造方法を提供すること。
【解決手段】 希土類金属をRとしてR:5〜10原子%、Ta:5〜10原子%を含有し、残部:Coおよび不可避不純物からなるターゲット組成となる割合で、CoとRとの合金粉末であるR−Co合金粉と、Ta粉と、の混合粉末を作製する工程と、該混合粉末を真空または不活性ガス雰囲気中でホットプレスする工程と、を有している。 (もっと読む)


【課題】粉砕性を向上すると共に、磁気特性の向上を図った希土類焼結磁石の製造方法及び希土類焼結磁石を提供する。
【解決手段】本発明に係る希土類焼結磁石の製造方法は、R214B(Rは1種類以上の希土類元素を表し、TはFe又はFe及びCoを含む1種以上の遷移金属元素を表し、BはB又はB及びCを表す)化合物を含む主相と、Rを多く含む粒界相とを有する希土類焼結磁石を製造するにあたり、R214B化合物を含む第1合金の合金粉末と、HR214B化合物(HRは1種類以上の重希土類元素を表す)を含み、HRの含有量が25.0質量%以上32.5質量%以下であり、Bの含有量が0.6質量%以上1.4質量%以下である第2合金の合金粉末とを混合し、焼結して得られ、Rが25.0質量%以上32.5質量%未満であり、Bが0.5質量%以上1.5質量%以下の組成を有する。 (もっと読む)


【課題】合金粉末の製造に必要な投入エネルギーの低減及び製造時間の短縮により、希土類金属を含む合金粉末の製造コストを低減できる合金粉末製造方法を提供する。
【解決手段】希土類金属酸化物と、他の金属と、水素化又は窒化によって発熱する還元剤との還元拡散反応によって、希土類金属を含む合金粉末を製造する合金粉末製造方法に、前記希土類金属酸化物、他の金属及び還元剤を、水素雰囲気又は窒素雰囲気中で加熱する工程を備える。 (もっと読む)


【課題】希土類焼結磁石を製造するにあたって、磁性粉末を作製する際における合金の粉砕性の確保と磁気特性の確保との両立を図ること。
【解決手段】R、T、及びBを含む合金溶湯を鋳造して合金を得る工程、上記合金を不活性ガス雰囲気中又は真空中700℃以上900℃以下の温度範囲で熱処理する工程、及びda<d50<dbとするとともに、粉砕雰囲気中の酸素濃度を500ppm以上5000ppm以下として、上記合金を粉砕する工程を含む。 (もっと読む)


【課題】耐食性に優れた希土類磁石を提供すること。
【解決手段】本発明の希土類磁石100は、希土類元素Rを含むR−Fe−B系合金の結晶粒子群4を備え、希土類磁石100の表面部40に位置する結晶粒子4の粒界三重点6に含まれるRリッチ相に存在するCuの原子数が[Cu]であり、Rリッチ相に存在するFeの原子数が[Fe]であり、Rリッチ相に存在するRの原子数が[R]であるとき、[Cu]>[Fe]であり、[Cu]/[R]>0.5である。 (もっと読む)


【課題】HDDR処理によって得られる個々の粉末粒子の異方性を高めることにより磁気特性を高めた希土類異方性磁石の製造方法を提供する。
【解決手段】R−Fe−B系希土類磁石粉末(Rは、Yを含む希土類元素の少なくとも1種)を原料とし、これにHDDR処理を行なう際に、HD処理後の粉末を粉砕した後にDR処理を行なうことを特徴とする希土類異方性磁石の製造方法。典型的にはRがNdであり、製造される磁石の組成がNdFe14Bである。好ましくは、前記粉砕後の粉末粒径が原料の粉末粒径の80%以下、更に好ましくは75%以下である。 (もっと読む)


【課題】HDDR法を用いて優れた磁気特性を有すると共に、減磁曲線の角型性が高い希土類合金粉末を製造することが可能な希土類合金粉末の製造方法を提供する。
【解決手段】原料合金に水素を吸蔵させる第1の水素吸蔵工程(ステップS13)と、原料合金を水素化分解させて第1の分解生成物を得る第1の水素化分解(HD)工程(ステップS14)と、第1の分解生成物から水素を放出させ、第1の希土類合金粉末を得る第1の脱水素再結合(DR)工程(ステップS16)と、第1の希土類合金粉末を冷却する不活性ガス冷却工程(ステップS17A)と、第1の希土類合金粉末に水素を吸蔵させる第2の水素吸蔵工程(ステップS18)と、第1の希土類合金粉末を水素化分解させて第2の分解生成物を得る第2のHD工程(ステップS19)と、第2の分解生成物から水素を放出させ、第2の希土類合金粉末を得る第2のDR工程(ステップS21)とを含む。 (もっと読む)


41 - 60 / 277