説明

Fターム[4K017BB12]の内容

金属質粉又はその懸濁液の製造 (21,321) | 粉末の副成分 (3,507) | 希土類 (277)

Fターム[4K017BB12]に分類される特許

61 - 80 / 277


【課題】HDDR法によって優れた磁気特性を有する希土類合金粉末を製造することが可能な希土類合金粉末の製造方法及び永久磁石を提供する。
【解決手段】本実施形態に係る希土類合金粉末の製造方法は、R14Bの原料合金を鋳造して原料合金を得る合金準備工程(ステップS11)と、原料合金Sを反応炉10内に投入し、反応炉10内を水素雰囲気とする水素吸蔵工程(ステップS13)と、反応炉10内で原料合金Sを水素化分解させて分解生成物を得るHD工程(ステップS14)と、反応炉10内の温度を昇温する昇温工程(ステップS15)と反応炉10内で分解生成物から水素を放出させ、分解生成物の水素濃度を低減し希土類合金粉末を得るDR工程(ステップS16)と、希土類合金粉末を室温にまで冷却する冷却工程(ステップS17)とを含み、水素吸蔵工程と水素化分解工程との何れか一方又は両方で原料合金Sを粉砕する。 (もっと読む)


【課題】 絶縁性の材料からなる被覆層が表面に形成された永久磁石粉末が緻密化されてなる永久磁石において、渦電流損失を充分に抑制し、かつ、絶縁性の材料による磁石特性の低下を防止しうる手段を提供する。
【解決手段】 絶縁性の材料からなる被覆層が表面に形成された永久磁石粉末が緻密化されてなる永久磁石であって、前記絶縁性の材料からなる被覆層の厚さt(m)と前記絶縁性の材料の体積抵抗率ρ(Ωm)との積を、前記永久磁石粉末の体積抵抗率ρ(Ωm)で除した値として定義される被覆抵抗H(=t×ρ÷ρ)と、前記永久磁石粉末の粒径d(mm)とが、H≧23000×d−1を満たすことを特徴とする、永久磁石である。 (もっと読む)


【課題】従来と同等の耐候性レベルを維持しながら、粒子体積の割に飽和磁化σsが大きい、高記録密度の塗布型磁気記録媒体に適した金属磁性粉末を提供する。
【解決手段】FeまたはFeとCoを主成分とする金属磁性相および酸化膜を有する粒子からなる粉末であって、その粉末粒子の平均長軸長が10〜50nm、酸化膜を含んだ平均粒子体積が5000nm3以下であり、粉末粒子中に含まれる各元素の含有量(原子%)の値を用いて算出される(R+Al+Si)/(Fe+Co)原子比が20%以下である磁気記録媒体用金属磁性粉末。ただし、Rは希土類元素(Yも希土類元素として扱う)である。この金属磁性粉末は錯化剤と還元剤を使用して焼成後に非磁性成分を溶出処理することにより得られる。 (もっと読む)


【課題】十分に優れた保磁力と角型を有する希土類ボンド磁石を製造することが可能な製造方法を提供すること。
【解決手段】軽希土類元素を含み、水素化分解・脱水素再結合法によって得られた磁性粉末と、重希土類元素を含む拡散材と、を含む混合粉末を、磁場中成形して成形体を作製する第1工程と、成形体に樹脂を含浸して樹脂を硬化することにより希土類ボンド磁石を得る第2工程と、を有し、第1工程における磁性粉末は、平均粒径が1〜30μmである第1の磁性粉末と、平均粒径が80〜200μmである第2の磁性粉末と、の混合物であり、第1工程において、混合粉末及び成形体の少なくとも一方を加熱して、重希土類元素を第1の磁性粉末及び第2の磁性粉末の粒内に拡散させる希土類ボンド磁石の製造方法である。 (もっと読む)


【課題】従来の方法に比べて脱水素化処理の条件が改善された希土類磁石粉末の製造方法を提供する。
【解決手段】少なくとも1種の希土類元素の水素化物粉末と、鉄粉末と、鉄とは異なる元素のホウ化物粉末とを混合する工程、及び得られた混合粉末を脱水素化処理する工程を含むことを特徴とする希土類磁石粉末の製造方法が提供される。 (もっと読む)


【課題】従来の方法に比べて脱水素化処理の条件が改善された希土類磁石粉末の製造方法を提供する。
【解決手段】少なくとも1種の希土類元素及び該少なくとも1種の希土類元素とは異なる元素の合金水素化物粉末と、鉄粉末と、鉄ホウ化物粉末とを混合する工程、並びに得られた混合粉末を脱水素化処理する工程を含むことを特徴とする希土類磁石粉末の製造方法が提供される。 (もっと読む)


【課題】保存安定性および磁気特性の良好な高密度磁気記録媒体が得られる金属磁性粉末およびそれを用いた磁気記録媒体を提供する。
【解決手段】周期律表第1a族元素の含有量が0.05重量%以下に低減され、さらには可溶性となる周期律表第2a族元素の残存量が0.1重量%以下に低減され、金属元素の総量に対して0.1〜30原子%のアルミニウム、または金属元素の総量に対して0.1〜10原子%の希土類元素(Yを含む)を含有し、長軸長が0.12μm以下の針状粒子からなる強磁性金属粉末およびそれを用いた磁気記録媒体である。 (もっと読む)


【課題】 磁石全体にわたって主相結晶粒の外殻部に重希土類元素RHを拡散させた希土類焼結磁石の製造方法を提供する。
【解決手段】
本発明によるR−Fe−B系希土類焼結磁石の製造方法では、まず、軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR−Fe−B系焼結磁石を用意する。次に、焼結磁石体の表面にRH(但し、RHは、Dy、Ho、Tbから選ばれる希土類元素の1種又は2種以上)と、RHMとなり融点を下げる金属M(但し、MはAl、Cu、Co、Fe、Agから選ばれる金属元素の1種または2種以上)とからなるRHM合金層を被覆する。この後、真空又はAr雰囲気中で800℃以上1000℃以下の熱処理を行い、表面から金属元素Mを焼結磁石の内部に拡散させ、また、表面から重希土類元素RHを希土類焼結磁石体の内部に拡散させる。 (もっと読む)


【課題】希土類元素を含む磁石合金粉を原料とし、成形性に優れ、かつ耐食性に優れた樹脂結合型磁石用樹脂組成物の製造方法、樹脂結合型磁石用組成物、樹脂結合型磁石を提供。
【解決手段】希土類元素を含む鉄系磁石合金粗粉を有機溶媒中で粉砕する際、又は粉砕後に、リン酸を添加し攪拌して、磁石合金粉の表面に複合金属リン酸塩被膜を形成し、得られた磁石合金粉に、再びリン酸と有機溶媒を含む溶液を添加し攪拌して、複合金属リン酸塩被膜を積層し、次に、得られた複数層の複合金属リン酸塩被膜を有する磁石粉末に樹脂バインダーとして熱可塑性樹脂、熱硬化性樹脂から選ばれるいずれか一種と、0.001〜3質量%の重金属不活性化剤及び/又は活性炭とをインテグラルブレンド法で添加し、混練することを特徴とする樹脂結合型磁石用組成物の製造方法などによって提供する。 (もっと読む)


本明細書では、約15wt%未満のアルミニウムを含むチタン−アルミニウム合金を製造する方法が開示されている。本方法は、チタン−アルミニウム合金を生成するために必要な化学量論量以上の量のチタン亜塩化物が、アルミニウムによって還元されることにより、元素チタンを含む反応混合物が形成される第1ステップと、さらに、元素チタンを含む反応混合物が加熱されて、チタン−アルミニウム合金が形成される第2ステップとを含む。チタンアルミナイドの形成をもたらす反応が最小限になるように、反応速度が制御される。 (もっと読む)


【課題】焼結時の結晶化により粗大結晶粒を生成させず、良好な磁気特性を備えたナノコンポジット磁石を製造する方法を提供する。
【解決手段】硬磁性相と軟磁性相とから成る急冷組織から成り、結晶組織が85重量%以上である急冷合金を、加圧下で急速昇温により結晶化温度以下の温度に昇温して焼結することを特徴とするナノコンポジット磁石の製造方法。 (もっと読む)


【課題】酸化熱処理によって温度や湿度が変動する環境においても十分な耐食性が付与され、磁気特性の低下が抑制され、ハイブリッド自動車や電気自動車の駆動モータや空調機のコンプレッサーに組み込まれるIPMモータで使用しても、高温や高圧の環境下で発生する水素を吸蔵し脆化することによる磁気特性の低下が効果的に防止される、表面改質された希土類系焼結磁石の製造方法を提供する。
【解決手段】希土類系焼結磁石に対し、酸素分圧が1×102Pa〜1×105Paで水蒸気分圧が200Pa〜1000Paの雰囲気下、250℃〜600℃で熱処理工程を含み、常温から熱処理開始温度までの昇温を、酸素分圧が1×102Pa〜1×105Paで水蒸気分圧が1×10-3Pa〜100Paの雰囲気下で2段階工程で行い、常温から200℃迄の昇温を20分間未満で行った後、200℃から熱処理開始温度迄の昇温を20分間以上で行う。 (もっと読む)


【課題】アルカリ蓄電池の出力特性と耐久性を同時に高めることができる水素吸蔵合金及び水素吸蔵合金電極を提供する。
【解決手段】アルカリ蓄電池用水素吸蔵合金であって、組成式がLaxReyMg1-x-yNin-m-vAlmv(ただし、ReはYを含む希土類元素(Laを除く)から選択される少なくとも1種の元素、TはCo,Mn,Zn,Fe,Pb,Cu,Sn,Si,Bから選択される少なくとも1種の元素、0.17≦x≦0.64、3.5≦n≦3.8、0.10≦m+v≦0.22、v≧0)と表され、主相がA519型構造であり、表面層のニッケル(Ni)に対するアルミニウム(Al)の濃度比率X(Al/Ni)(%)とバルク層のニッケル(Ni)に対するアルミニウム(Al)の濃度比率Y(Al/Ni)(%)の比X/Yが0.36以上、0.84以下である。 (もっと読む)


【課題】 低着磁磁界でも大きな着磁性を達成できる着磁性のよいR−T−B系焼結磁石を提供する。
【解決手段】
R−T−B系焼結磁石の着磁性を向上することを目的として、R−T−B系焼結磁石において、焼結磁石を構成する結晶粒全数に対して、隣り合う結晶粒の2粒子間のいずれにおいてもR化合物が存在していない結晶粒の数の割合が50%から100%であるR−T−B系焼結磁石、好ましくは、前記割合が70%から100%である。 (もっと読む)


下記一般式:Ra−x−yHoDyFe1−a−b−c−dCo によって表された希土類永久磁性材料を提供すること。式中、x、y、a、b、c、およびdは対応する元素の重量割合であり、28%≦a≦34%、0.95%≦b≦1.3%、0≦c≦1.5%、1%≦d≦10%、15%≦x≦20%、および3%≦y≦8%であり;Rは希土類元素であり、Nd、Pr、La、Ce、Gd、Tb、およびそれらの組み合わせからなる群から選択され;Mは、Al、Cu、Ti、V、Cr、Zr、Hf、Mn、Nb、Sn、Mo、Ga、Si、およびそれらの組み合わせからなる群から選択される。また、希土類永久磁性材料を調製する方法を提供すること。 (もっと読む)


【課題】 分散安定性に優れしかも粒径制御が可能な新規な金属複合超微粒子を提供し、同時にそれを安価に大量生産できる製造方法を開発する。
【解決手段】 この目的を達成するために、本発明は、金属有機化合物から還元析出する金属原子が集合した金属核の周りを、界面活性剤殻と金属有機化合物起源の有機化合物殻が取り巻くことを特徴とする金属複合超微粒子を提供する。
また、金属無機化合物から還元析出する金属原子が集合した金属核の周りを界面活性剤殻が取り巻くことを特徴とする金属複合超微粒子を提供する。
その一つの製法は、金属有機化合物又は金属無機化合物を界面活性剤を用いて非水系溶媒中でコロイド化して超微粒子前駆体を形成する第1工程と、このコロイド溶液中に還元剤を添加することにより前記超微粒子前駆体を還元し、金属核の外周に少なくとも界面活性剤殻を有する金属複合超微粒子を形成する第2工程から構成される。 (もっと読む)


【課題】 本発明は、磁気特性と耐酸化性が同時に改善された鉄を主成分とする強磁性金属粒子粉末とその製造法を提供する。
【解決手段】 平均長軸径が60nm以下の微細な粒子でありながら、磁気特性と耐酸化性が同時に改善された鉄を主成分とする強磁性金属粒子粉末は、ゲータイト粒子粉末を加熱処理してヘマタイト粒子粉末とした後、該ヘマタイト粒子粉末を加熱還元して強磁性金属粒子粉末を得る製造法において、前記ヘマタイト粒子粉末を加熱還元して金属粒子粉末とした後、気相において酸化処理を行うことにより金属粒子表面に酸化被膜を形成し、更に、該酸化被膜を有する金属粒子粉末を、不活性ガス雰囲気下で200℃以上、300℃未満の温度範囲で加熱処理することにより得られる。 (もっと読む)


【課題】Ga、Dy、Tbを含まない元素をR−T−B系合金粉末と混合しHDDR処理することで、HDDR磁粉の保磁力を向上させることを目的とする。
【解決手段】本発明のR−T−B系永久磁石の製造方法は、組成中の希土類量が29mass%超40mass%以下およびB量が0.3mass%以上2mass%以下であるR−T−B系合金粉末を用意する工程と、少なくともZnを30mass%以上含みGa、Dy、およびTbを含まない金属、合金のいずれかの粉末であるZn含有粉末を用意する工程と、前記R−T−B系合金粉末およびZn含有粉末を、Znが全体の0.05mass%以上1.5mass%以下となるように混合して混合粉末とする工程と、前記混合粉末をHDDR処理する工程と、を含むことを特徴とする。 (もっと読む)


【課題】残留磁束密度を低下させることなく、保磁力の向上を図ること。
【解決手段】以下の構成を備えた磁気異方性磁石素材及びその製造方法。(1)前記磁気異方性磁石素材は、Pr:12.5〜15.0原子%、B:4.5〜6.5原子%、及びGa:0.1〜0.7原子%を含み、残部がT及び不可避的不純物からなるPr−T−B−Ga系の成分組成を有する。但し、Tは、Fe又はFeの一部をCoで置換したものである。(2)前記磁気異方性磁石素材は、残留磁束密度(Br)/飽和磁束密度(Js)で規定される磁気配向度が0.92以上である。(3)前記磁気異方性磁石素材は、結晶粒径が1μm以下である。 (もっと読む)


【課題】 ニッケル水素蓄電池の放電容量の増大を図るとともに、併せて該ニッケル水素蓄電池のサイクル寿命特性を改善することを目的とする。
【解決手段】 M1元素、カルシウム、マグネシウムおよびM2元素を主体として含む水素吸蔵合金と、水酸化アルミニウムとを含有して構成された負極を備え、M1元素は、希土類元素、4A族元素、5A族元素およびPdからなる群より選択される1種又は2種以上の元素(少なくとも希土類元素を含む)であり、M2元素は6A族元素、7A族元素、8族元素(Pdを除く)、1B族元素、2B族元素および3B族元素からなる群より選択される1種又は2種以上の元素(少なくともニッケルを含む)であり、水素吸蔵合金中のM2元素の含有割合が、M1元素、カルシウムおよびマグネシウムの各元素の含有割合の合計の3倍より大きく5倍未満であり、水素吸蔵合金中のカルシウムの含有割合が0.5原子%以上であり、かつ、水素吸蔵合金中のM2元素としてのアルミニウムの含有割合が0原子%以上1.5原子%以下である、ニッケル水素蓄電池による。 (もっと読む)


61 - 80 / 277