説明

Fターム[4K058FC05]の内容

金属の電解製造 (5,509) | 電解液(浴)の製造、再生、精製 (444) | 原料表示 (198) | 工程液(浴) (33)

Fターム[4K058FC05]に分類される特許

1 - 20 / 33


【課題】濃縮された処理溶液を効率よく排出できる電気蒸発槽の操業方法を提供する。
【解決手段】黒鉛電極棒13が挿入され、側壁に排出口14が設けられた電気蒸発槽10の操業方法であって、電気蒸発槽10に処理溶液Lを供給し、処理溶液Lを黒鉛電極棒13による通電により加熱して水分を蒸発させて濃縮し、黒鉛電極棒13の処理溶液Lへの挿入量を急増させて、処理溶液を急加熱するとともに液面を上昇させることにより、排出口14から該処理溶液を排出する。処理溶液の対流が起こり電気蒸発槽の底に堆積した高濃度の処理溶液を攪拌することができる。液面を上昇させることにより、攪拌された処理溶液Lを排出口14から排出できる。 (もっと読む)


【課題】鉛の品位が極めて低い亜鉛や銅などの非鉄金属を安価に電解採取することができるとともに、鉛の品位が極めて低い亜鉛や銅などの非鉄金属をより長期間にわたって安定して電解採取することができる、非鉄金属の電解採取方法を提供する。
【解決手段】鉛を含むアノードを使用して硫酸亜鉛や硫酸銅などの非鉄金属の硫酸塩を含む電解液から亜鉛や銅などの非鉄金属を電解採取する方法において、電解液に浸漬される表面に100μm以上、好ましくは300μm以上の高低差が形成されたアノードを使用して、非鉄金属の電解採取を行う。 (もっと読む)


【課題】原料溶液中から不純物を除去する工程を設け、溶液組成に対するロバスト性の高いレアメタルの製造方法を提供することを目的とする。
【解決手段】レアメタルの製造方法において、第1残渣液を回収する工程(S11〜S14)と、ReO4-を抽出する工程(S15,S16)と、第1溶離液に逆抽出する工程(S17)と、電解して陰電極にReを採取する工程(S18,S19)と、第2残渣液を回収する工程(S20)と、水素イオン指数をpH3以上pH5未満に調整する工程(S21,S22)と、希土類金属イオン(RE3+)を抽出する工程(S23,S24)と、第2溶離液に逆抽出する工程(S25)と、(COOH)2を添加してRE2(C24)3を沈殿させる工程(S26)と、希土類金属酸化物(RE23)に転換させる工程(S27,S28)と、溶融塩電解して陰電極に希土類金属(RE)を採取する工程(S29,S30)と、を経る。 (もっと読む)


【課題】テルルの回収率を向上でき、処理プロセス全体の効率化が可能なテルルの回収方法を提供する。
【解決手段】テルルを含むアルカリ浸出残渣を、セレン還元工程で得られるテルルを含むセレン還元後液と混合させ、混合物中に含まれるテルルを酸浸出させる浸出工程と、浸出工程で得られる浸出後液中のテルルを還元回収する工程とを含む。 (もっと読む)


【課題】不純物を含有するニッケル塩から精製ニッケル溶液を調製する方法において、コバルトの除去率を向上させることを課題とする。
【解決手段】リン化合物及びコバルト成分を不純物として含むニッケル塩を無機酸で溶解することにより、リン化合物及びコバルト成分を含むニッケル溶液を形成する工程と、当該ニッケル溶液に対して酸化剤を添加することにより、リン化合物をリン酸塩として沈殿させ、これを固液分離によって除去する脱リン工程と、脱リン工程よりも後又は脱リン工程と同時に、当該ニッケル溶液に対して酸化剤を添加することによりコバルト成分を酸化した後に、中和して沈殿させ、これを固液分離によって除去する脱コバルト工程と、を含む精製ニッケル溶液の調製方法。 (もっと読む)


【課題】簡易な装置で、ニッケル含有溶液を用いて電解採取により効率的に高純度のニッケルを製造する方法を提供する。
【解決手段】鉄、亜鉛、銅等の不純物を含むニッケル含有溶液に対し、一定の範囲の電流密度、pHの条件で電解することによって不純物を除去し、前記不純物の濃度が0.1mg/L以下の電解液を得る工程1と、前記不純物が除去された電解液を用いてアノードとカソードが隔膜で仕切られた電解層でニッケルを電解採取する工程2と、を備えた高純度ニッケルの製造方法。 (もっと読む)


【課題】 ニカワの分解、腐蝕を抑制し、ニカワの効果が十分に利用できるニカワ供給装置及びニカワ供給方法を提供する。
【解決手段】 銅の電解精製を行う電解層11内の電解液10にニカワ溶液230を供給するニカワ供給装置2は、ニカワ20を溶解するための溶解槽23、溶解槽23内にニカワを供給するフィーダ装置22、溶解槽23内に貯えられたニカワ溶液230の液面高さを測定する液面レベル測定器27、溶解槽23のニカワ溶液230の液面高さを液面レベル測定器によって測定し、ニカワ溶液230をために必要な量のニカワ及び水が補充されるようにフィーダ装置22のフィーダ機構223及びバルブ250を制御する制御装置30を備え、少量のニカワ溶液を作成しつつ連続的に電解液10へ供給する。 (もっと読む)


【課題】 塩化ニッケル溶液の精製方法において、系内の塩素ロスの低減を図るとともに、新規な塩素の使用量を削減する。
【解決手段】 炭酸ニッケル製造工程S5では、電解採取法により塩化ニッケル溶液17から製造された電気ニッケル18のニッケル電解廃液20とソーダ灰22とから炭酸ニッケル24を製造し、電気ニッケルの製造プロセス系内の保有液量に応じた量の炭酸ニッケル24のろ液26を、浄液工程S3での回収塩素ガス16源、又は、塩素浸出工程S2での回収塩素ガス15源として系内に戻す。これにより、系内の塩素ロスを低減するとともに新規な塩素の使用量を削減することができる。 (もっと読む)


【解決課題】製造コストが低く、運転管理及び装置管理が簡便な多結晶シリコンの製造方法を提供すること。
【解決手段】高純度四塩化珪素と亜鉛との反応により生成する排出ガスから分離した該塩化亜鉛及び未反応亜鉛の混合物を酸化する酸化処理と、塩化亜鉛及び酸化亜鉛の混合物を塩酸水溶液に溶解させる塩酸水溶液溶解処理と、酸性抽出剤により亜鉛成分を抽出する亜鉛成分抽出処理と、硫酸水溶液により亜鉛成分を逆抽出する亜鉛成分逆抽出処理と、硫酸亜鉛水溶液を水溶液電解する硫酸亜鉛水溶液電解処理と、該亜鉛成分抽出処理で得られる塩酸水溶液のうちの一部の塩酸水溶液中の塩酸を分解して、塩素ガスを得る塩酸分解処理を有し、該亜鉛成分抽出処理で得られる該塩酸水溶液のうちの他部、該亜鉛成分逆抽出処理で得られた酸性抽出剤を含有する有機溶媒、及び該硫酸亜鉛水溶液電解処理で得られた該硫酸水溶液を循環使用する高純度多結晶シリコンの製造方法。 (もっと読む)


【課題】アルカリ金属アマルガムを含むアノード、アルカリイオン伝導性を有する固体電解質、及び融解アルカリ金属であるカソードを用いた電気分解によりアルカリ金属アマルガムからアルカリ金属を製造する方法。
【解決手段】大気圧下または大気圧よりわずかに大きな圧力下で攪拌することにより、アノードであるアルカリ金属アマルガムに運動状態が付与されることを特徴とする、アルカリ金属アマルガムからアルカリ金属を製造する方法。 (もっと読む)


【課題】非電気伝導性かつ高融点の溶融塩の流量を、安定して測定可能な差圧式流量計およびこれを用いた流量測定方法およびを提供する。
【解決手段】差圧式流量計1は、主配管2内に設けられた絞り部3と、主配管2の側面の、溶融塩の流動方向に対して絞り部3の上流側および下流側のそれぞれに設けられた圧力孔4に接続された圧力検知配管5と、圧力検知配管5に接続され、圧力検知配管5のそれぞれにかかる圧力の差を検知する圧力検知器6とを備え、圧力検知配管5にかかる圧力の差に基づいて、主配管2内を流動する溶融塩の流量を測定するものであり、圧力孔4を開閉可能な開閉機構8を有する。これを用いて流量を測定する場合、溶融塩が流動を開始する時点において圧力孔4を閉止し、溶融塩の流量を測定する際には圧力孔4を開放する。 (もっと読む)


【課題】溶融塩電解により純度の高い金属カルシウムを効率よく製造できる方法および装置を提供する。
【解決手段】電解槽に電解浴として溶融塩化カルシウムを満たし、電解浴に浸漬配置した陽極および陰極に電圧を印加して溶融塩電解を行う金属カルシウムの製造方法において、電解浴のうち、陰極を含む部分の電解浴を金属カルシウムの融点以上に保持して溶融金属カルシウムを生成させ(以下、「電解工程」と呼ぶ)、陰極を含む部分の電解浴を金属カルシウムの融点以下に冷却して金属カルシウムを析出させる(以下、「冷却工程」と呼ぶ)。また、電解浴を満たす電解槽と、電解浴に浸漬配置する陽極および陰極を備えた金属カルシウムの製造装置であって、陰極および陽極が、陰極および陽極をそれぞれ取り囲む陰極隔壁および陽極隔壁の内側に配設されている。 (もっと読む)


【課題】内部に隔離体を有する電解槽において、隔離体にかかる溶融塩による応力を低減する電解方法を提供する。
【解決手段】電解槽容器11の内部を隔離体である隔膜18によって、陽極12を含む陽極室21、陰極13を含む陰極室22に隔離する。陽極室21および陰極室22にそれぞれ溶融塩の注入口15および排出口17を設け、陽極室21内および陰極室22内に溶融塩を流動させて発生する圧損により、隔膜18に陽極室21側および陰極室22側から応力が互いに打ち消し合うようにかかるようにする。 (もっと読む)


【課題】Ca濃度の異なる溶融塩間で、含有する金属粒子等の移動を伴わず、Ca濃度の高い溶融塩からCa濃度の低い溶融塩へCaを移動させる方法を提供する。
【解決手段】主槽31と主槽31の内部に配置された副槽33を有するCa調整槽30において、副槽33の底面を多孔質板34で形成する。副槽33の注入口33aと排出口33bは下方において通過可能に配置された隔壁35によって隔離されている。注入口33aから副槽33に注入された第1の溶融塩41は、底面の多孔質板34に接しながら隔壁35の下方を通過して排出口33bから排出される。主槽31の注入口31aから注入された第2の溶融塩42は、副槽33の底面の多孔質板34に接しながら副槽33の下方を通過し、排出口31bから排出される。第1の溶融塩41よりもCa濃度の高い第2の溶融塩42から第1の溶融塩41へ多孔質板34を介してCaのみが移動する。 (もっと読む)


【課題】銅原料を塩素浸出する工程、得られた塩化物水溶液を還元する工程、溶媒抽出方法により銅を分離する工程、及び銅イオンを電解採取する工程を含む湿式銅製錬法に用いる、抽出段と逆抽出段からなる溶媒抽出方法において、逆抽出段において、抽出段で得られた1価の銅イオンを含む抽出剤からなる有機相と銅電解陰極廃液からなる水相を接触混合して銅を逆抽出することにより形成される抽出剤中の残留銅濃度を極力させることができる溶媒抽出方法を提供する。
【解決手段】前記抽出段において、還元後の塩化物水溶液とトリブチルフォスフェイトを含む抽出剤を接触混合し、次いで前記逆抽出段において、該抽出段で得られた1価の銅イオンを含む抽出剤からなる有機相と前記銅電解陰極廃液からなる水相を接触混合して銅を逆抽出する際に、逆抽出後の水相の酸化還元電位(銀/塩化銀電極基準)を300〜400mVになるように制御することを特徴とする。 (もっと読む)


【課題】ハロゲン含有量の高い亜鉛含有物を原料に用いて、乾式処理を介することなく、生産性が高く、ハロゲンの除去が容易である、低ハロゲン濃度の高純度な亜鉛電解元液を効率よく製造できる亜鉛電解液の製造方法の提供。
【解決手段】亜鉛及びハロゲンを含む亜鉛含有物を酸浸出して抽出元液(水相A)を得る浸出工程と、前記抽出元液(水相A)と、亜鉛抽出剤を含む非水溶性有機溶媒(有機相A)とを撹拌して混合することにより、亜鉛及びハロゲンを含む有機相Bと、ハロゲンを含む抽出后液(水相B)を得る溶媒抽出工程と、亜鉛及びハロゲンを含む有機相Bと電解尾液(水相E)とを撹拌して混合することにより亜鉛を逆抽出后液(水相F)に回収し、亜鉛電解元液を得る逆抽出工程とを含む亜鉛電解液の製造方法である。 (もっと読む)


【課題】溶融塩電解槽で製造された溶融マグネシウム、あるいは四塩化チタンと溶融マグネシウムの反応で副生した溶融塩化マグネシウムを抜き出して次工程へ移送する間の大気との接触を回避する方法および装置の提供。
【解決手段】溶融塩化マグネシウムあるいは溶融マグネシウムを、溶体受入容器11に抜き出す。また、溶体受入容器11から溶体を抜き出す溶体抜き出し装置Mには、溶体抜出ノズル30と、溶体抜き出しノズル30の先端部には溶融金属等を受け入れる溶体移送容器15との接続部をシールするために接続フランジ31と接続管32とが備えられ、接続管32の下端部は、溶体移送容器15に設けた溶体受入ノズル37と嵌合して接続し、接続部を覆うシールカバー33が配設されている。 (もっと読む)


【課題】 銅の電解精製において発生する銅電解スライムを、電解槽から流送配管を通して効率的に回収するための装置を提供する。
【解決手段】 電解槽から銅電解スライムを回収する流送配管3内に、高圧水流を噴出する噴出ノズル8a、8b、8cを1〜5mの間隔で複数個配置すると共に、各噴出ノズル8a、8b、8cに接続した高圧バルブ7a、7b、7cを上流から下流に向かって順に切り替えることにより、高圧水流が噴出する噴出ノズル8a、8b、8cの位置を制御する。噴出ノズル8a、8b、8cから噴出される高圧水流は、形状が充円錐型で且つ噴出内角が30〜45°であることが好ましい。 (もっと読む)


【課題】フッ素を含有する粗酸化亜鉛等の亜鉛含有物を湿式亜鉛製錬用工程で用いる際に、フッ素が液中に蓄積しないよう効率良くフッ素を吸着除去することを目的とする。
【解決手段】上記課題を解決するために、硫酸酸性溶液中にフッ素イオンと第二鉄イオンとを共存させ、当該溶液を中和することによって生成する鉄沈殿物にフッ素を吸着させて共沈除去する。また、フッ素を吸着した鉄沈殿物を再溶解して、複数回フッ素吸着用の鉄原料として使用することにより、鉄元素のフッ素吸着剤としての能力を最大限に活用する。そして、亜鉛製錬工程で発生する未溶解残渣を、吸着剤である鉄の原料として活用し、フッ素を含む粗酸化亜鉛などを中和剤として用いれば、湿式亜鉛製錬工程で一般的に実施されている、溶解、中和、固液分離の操作のみで目的を達成できる。従って、大きな設備投資を必要としない。 (もっと読む)


【課題】再現性がよく、かつ、誤差が少ない銅電解液またはめっき液中のスルフォン酸型陰イオン界面活性剤の定量方法を提供する。
【解決手段】25〜250mlの銅電解液またはめっき液に、錯化剤としてアンモニアを作用させて処理液のpHを8〜13とし、かつ、反応時の液温を30℃以下、好ましくは10〜30℃に維持することにより、銅電解液またはめっき液に含まれる重金属イオンをアンミン錯体に調整して処理液を得る。これにより、銅電解液またはめっき液に含まれる重金属イオンが、メチレンブルー錯体に誘導する時の妨害にならないようにする。 (もっと読む)


1 - 20 / 33