説明

Fターム[5C135AA02]の内容

冷陰極 (7,202) | 電界放出型のエミッタ形状 (1,432) | 巨視的形状 (662) | 錘状 (98)

Fターム[5C135AA02]の下位に属するFターム

Fターム[5C135AA02]に分類される特許

1 - 20 / 64


【課題】触媒や各種の電子的用途への応用が期待できる新規なナノ・マイクロ突起体、及びその製造方法を提供する。
【解決手段】Arイオンスパッタリングの閾値エネルギーが25eV以下で、表面拡散の活性化エネルギーが1.6eV以下の貴金属からなる板に、低真空下で高エネルギービームを照射して、スパッタされた金属原子のエネルギー源方向への表面拡散により形成・成長されたことを特徴とするナノ・マイクロ突起体。Arイオンスパッタリングの閾値エネルギーが25eV以下で、表面拡散の活性化エネルギーが1.6eV以下の貴金属からなる板に、低真空下で高エネルギービームを照射して、金属原子のエネルギー源方向への表面拡散により複数の小突起体が合体されてなる大突起体を形成することを特徴とするナノ・マイクロ突起体の製造方法。 (もっと読む)


【課題】面発光型蛍光発光装置では、十分な電子放出効率が得られない状況にあった。
【解決手段】金属材料によって形成された電極より仕事関数の小さな材料によって電子放出層を有する陰極電極が得られる。電子放出層と電極との間に、電子放出層よりも抵抗率の小さい薄膜を介在させることにより、電子放出効率を更に改善できる。 (もっと読む)


【課題】 電子放出特性に優れる電子放出素子を提供する。
【解決手段】 カソードと該カソードから電界放出された電子が照射されるゲートとを備える電子放出素子であって、前記ゲートは、前記カソードから電界放出された電子が照射される部分に、モリブデンと酸素とを含む層を少なくとも有しており、前記層が、透過電子顕微鏡を用いた電子エネルギー損失分光法によるスペクトル測定において、397eV〜401eVの範囲と414eV〜418eVの範囲と534eV〜538eVの範囲と540eV〜547eVの範囲のそれぞれにピークを有する。 (もっと読む)


【課題】機械的にパターン形成されたIII族窒化物の層を製造する方法を提供する。
【解決手段】本方法は結晶質基板を提供すること、および基板の平坦な表面上にIII族窒化物の第1の層を形成することを含む。第1の層は単一極性であり、また基板の一部を露出する孔または溝のパターンを有する。次いで、本方法は、第1の層と基板の露出部の上に第2のIII族窒化物の第2の層をエピタキシャル成長することを含む。第1および第2のIII族窒化物は異なる合金組成物を有する。また、本方法は第2の層を塩基の水性溶液に曝し、第2層を機械的にパターン形成することも含む。 (もっと読む)


【課題】良好な透明性を有する電子放出用素子を含んでなる光発生装置、並びに、その製造方法を提供する。
【解決手段】透明な電子放出用素子を含んでなる光発生装置であって、前記透明な電子放出用素子が、透明基材、及び前記透明基材上に配置された突起、を備えること、前記突起が、可視光を散乱させない大きさを有すること、並びに前記透明基材と前記突起とからなる部材上の、少なくとも前記突起が配置されている領域の露出面である突起配置面が導電性を有すること、を特徴とする光発生装置。 (もっと読む)


【課題】比較的低温及び低引き出し電圧のもとで電子放出の可能な電子放出素子、及び、この電子放出素子の作製方法を提供する。
【解決手段】電子放出素子2は、ダイヤモンド結晶を含むエピタキシャル構造体5を備え、エピタキシャル構造体5は、100μmの直径の底面と1000μmの高さとを有する円柱内に収容可能な形状を有する。更に、電子放出素子2は、エピタキシャル膜6上に設けられた金属膜7を更に備える。また、エピタキシャル構造体5はn型又はp型ドーパントを含有する。 (もっと読む)


【課題】比較的低温及び低引き出し電圧のもとで電子放出の可能な電子放出素子、及び、この電子放出素子の作製方法を提供する。
【解決手段】電子放出素子2は、ダイヤモンド結晶を含むエピタキシャル膜6と、エピタキシャル膜6が形成された領域を含む表面を有するダイヤモンド突起部5とを備える。ダイヤモンド突起部5は、100μmの直径の底面と1000μmの高さとを有する円柱内に収容可能な形状を有する。更に、電子放出素子2は、エピタキシャル膜6上に設けられた金属膜7を更に備える。また、エピタキシャル膜6はn型又はp型ドーパントを含有する。 (もっと読む)


【課題】新規な電子放出装置を提供することを目的とする。
【解決手段】電子放出装置は、エミッタ3と、前記エミッタ3との間に電圧が印加される引き出し電極4と、前記エミッタ3の先端にレーザー光を照射するレーザー照射装置を有する。ここで、エミッタ3は、金、銀、銅、アルミニウムまたは白金からなることが好ましい。また、エミッタ3の先端直径は1〜400nmの範囲内にあることが好ましい。また、エミッタ3の先端と引き出し電極4の距離は10nm〜5mmの範囲内にあることが好ましい。また、印加される電圧は1mV〜1000Vの範囲内にあることが好ましい。また、パルスレーザーの強度尖頭値、または連続波レーザーの強度は1W/cm2〜10GW/cm2の範囲内にあることが好ましい。 (もっと読む)


【課題】撮像管と同等の耐放射線性を持った撮像素子及び耐放射線カメラを提供する。
【解決手段】撮像素子20は、透光性の窓10を有する真空容器VCと、前記真空容器内において、第1の方向に走る、ストライプ状の、複数の透明電極アノード9と、前記窓を介して受光した光を正孔に変換する、光電変換膜8と、前記正孔を読み取るための電子を放出する、前記第1の方向と交わる第2の方向に走る、ストライプ状の、複数の電界放出型の冷陰極カソード7と、前記透明電極アノードのあるものと、前記冷陰極カソードのあるものと、の間に電圧を加え、これらの組み合せを順次変えることにより、映像信号の位置を特定する、電圧切り換え装置4Aと、を備えるものとして構成され、この撮像素子を用い、放射線を遮蔽した状態と遮蔽しない状態の両方の信号を得ることが出来るものとして耐放射線カメラが構成されている。 (もっと読む)


【課題】簡易な構成で電子放出効率が高く、安定して動作し、放出された電子ビームが良好に集束する電子放出素子を備えた電子線装置を提供する。
【解決手段】基板1上に、絶縁部材3、ゲート5を形成し、絶縁部材3に凹部7を形成し、絶縁部材3の側面にカソード6を配置し、ゲート5を、該カソード6に対応する領域が突出し、該領域の両側のゲート端部が後退した後退部9を有する凹凸形状に形成し、該後退部9に露出した絶縁部材3表面を、少なくとも絶縁層3a表面まで後退させ、該表面に制御電極13を形成する。 (もっと読む)


【課題】簡易な構成で電子放出効率が高く、安定して動作する電子放出素子および画像表示装置を提供する。
【解決手段】電子放出素子が、側面を有する絶縁層と、前記絶縁層の前記側面に形成された凹部と、前記凹部の上方に配置されたゲート電極と、前記凹部の下側のへりに配置され、前記凹部側の第1斜面と前記凹部とは反対側の第2斜面を有するくさび形のエミッタと、を備える。前記エミッタの前記第1斜面の下端は前記凹部内に入り込んでおり、前記エミッタの第1斜面と前記第2斜面はともに前記凹部の外側に傾いている。 (もっと読む)


【課題】 安定して動作する電子放出素子を提供することを目的とする。
【解決手段】 導電性部材である構造体3と、構造体3の上に設けられた硼化ランタン層5と、を少なくとも備える電子放出素子10であって、構造体3と硼化ランタン層5との間に、酸化物層4が設けられている。 (もっと読む)


【課題】現実的に作製可能な構造原理をもってエミッタから放出される電子ビームを十分に集束する機能を呈することができる集束電極一体型電界放出素子提案する。
【解決手段】基板10上に、先端11tpが先鋭な電子放出端となっているエミッタ11と、エミッタ先端11tpを露呈する開口を有する絶縁膜12と、この絶縁膜12上に形成され、エミッタ先端11tpを露呈する開口を有する引き出しゲート電極13を形成し、引き出しゲート電極13上には集束電極積層構造20を形成する。集束電極積層構造20は、一層の絶縁膜25,26,27,28と、その上に形成された一層の集束電極21,22,23,24とを単位積層段として、この単位積層段を基板10の鉛直方向に沿って少なくとも四段積層して構成される。最下段に位置する単位積層段の絶縁膜25は引き出しゲート電極13の上に形成されていると共に、全ての単位積層段の絶縁膜25,26,27,28及び集束電極21,22,23,24には、エミッタ先端11tpを露呈する開口を開ける。 (もっと読む)


本発明による炭素微細構造物を有する電界放出アレイの製造方法は、透明基板の表面にパターン溝を有するフォトマスクを付着するフォトマスク付着段階と、フォトマスクの表面にネガティブ・フォトレジストを付着するフォトレジスト付着段階と、透明基板のフォトマスクが付着された部分の反対側から光を照射してパターン溝を通じてネガティブ・フォトレジストに照射される光によってネガティブ・フォトレジストの一部を硬化させる露光段階と、ネガティブ・フォトレジストの露光されていない部分を除去して、ネガティブ・フォトレジストが硬化されてなる微細構造物を形成する現像段階と、微細構造物を加熱して炭化させる熱分解段階と、微細構造物が形成された透明基板の表面に電圧を供給するためのカソードを付着するカソード付着段階とを包含してなることを特徴とする。本発明によると、電子放出素子として使用される炭素微細構造物を簡単でかつ低コストで製造することができる。 (もっと読む)


【課題】エミッタ数を増やした場合においてもマトリックス動作時の線欠陥を防止できるマトリックス型冷陰極電子源装置を提供する。
【解決手段】エミッタアドレス電極上に形成された電子を放出するためのエミッタが複数配列されたエミッタアレイと前記エミッタアレイに対向するように配置されたゲート電極とから成るマトリックス型冷陰極電子源装置において、前記ゲート電極は、ゲート信号配線に接続するためのゲートアドレス電極と前記エミッタアレイに対向する位置に配置されたエミッタ領域ゲート電極を有し、前記ゲートアドレス電極と前記エミッタ領域ゲート電極との間に高抵抗領域を有するマトリックス型冷陰極電子源装置。 (もっと読む)


【課題】電子ビームにおけるエミッタンス増大を制限するためのシステム及び方法を提供する。
【解決手段】本システム(10)は、電子ビーム(28)を発生するように構成されているエミッタ素子(26)と、エミッタ素子(26)に隣接して配置されて、そこから電子ビーム(28)を引き出す引出し電極(20)とを含み、引出し電極(20)はそれを貫通する開口(24)を含んでいる。本システム(10)はまた、引出し電極(20)の開口(24)の中に配置されて、エミッタ素子(26)の表面の電界の強度及び一様性を増強する網状格子(32)と、網状格子(32)のエミッタ素子(26)側とは反対の側で網状格子(32)に隣接して配置されて、電子ビーム(28)のエミッタンス増大を制御するように構成されているエミッタンス補償電極(ECE)(34)とを含む。 (もっと読む)


【課題】線欠陥のない映像情報を得ることができる撮像装置を実現できる電界放出電子源の駆動方法と電界放出電子源を提供することを目的とする。
【解決手段】マトリクス配列されたセルエリア毎に電子源アレイを配置したマトリクス型電界放出電子源を駆動するに際し、エミッタを複数配列したエミッタアレイの前記エミッタに対向して第1のゲート電極(9a)と第2のゲート電極(9a)を配置し、第1,第2のゲート電極(9a,9b)を別々のドライブ回路(15a,15b)によって同一の期間内に駆動することを特徴し、第1のゲート電極(9a)とエミッタの間でリークが発生しても、第2のゲート電極(9b)の間の電位差で正常な電子放出を期待でき、画像の品位を確保でき、線欠陥を解消できる。 (もっと読む)


【課題】配線の微細化によって生じる配線領域の浮遊容量の増大を防ぎ、配線遅延の生じ難いゲート引出し配線を形成することができるマトリックス型冷陰極電子源装置を提供する。
【解決手段】電子を放出するエミッタが複数配列したエミッタアレイをマトリクス状に配置した電子源と、前記エミッタアレイに対向するように配置された開口部を持つゲート電極アレイと、前記電子源の下部に絶縁層を介して形成されたゲート信号配線と、前記ゲート電極アレイと前記ゲート信号配線とを電気的に接続するためのプラグと、を有するマトリックス型冷陰極電子源装置。 (もっと読む)


【課題】十分な量の電子放出を安定して得られる電子放出素子、電子源、及び電子線装置を提供する。
【解決手段】電子顕微鏡20に用いられている電子源10Aでは、仕事関数が3.0ev以下であるダイヤモンドを陰極部42に用いることで、陰極部42から真空中に電子が容易に電界放出可能となる。また、電子放出部48の先端52が、炭化チタンからなる導電層44により覆われているので、電子放出部48の先端52における電圧降下が抑制され、電位が一定に保たれる。したがって、電子源10Aでは、十分な量の電子放出を安定して得ることができる。導電層44は、厚さ20nm以下に抑えられており、導電層44自体に起因する陰極部42の仕事関数の増加は回避されている。 (もっと読む)


【課題】ディスプレイ及び高効率ランプ分野に適用可能な電界放出素子及びその製造方法に関するものである。
【解決手段】本発明は、基板とアノードが具備され、ディスプレイ分野と高効率ランプに使用する電界放出素子の製造方法において、基板の上部に金属触媒をコーティングする段階と;前記金属触媒をシリコンと反応させて金属シリサイド層を形成する段階と;前記金属シリサイド層の上に金属拡散でシリサイドナノワイヤーを成長させる段階;とを含んでなる。本発明は、ドーピング過程と尖った形状を作るための過程を省略して、生産工程の短縮で生産費を節減することができ、少ない電圧で放出電流を増大させることができて性能の向上を図り、物理的蒸着と化学的蒸着方法すべてを適用してシリサイドナノワイヤーを成長させることができるので、適用範囲を拡張させることができる。 (もっと読む)


1 - 20 / 64