説明

Fターム[5E040NN17]の内容

硬質磁性材料 (8,571) | 数値限定の対象 (1,979) | 製造、処理方法、装置 (486)

Fターム[5E040NN17]の下位に属するFターム

温度 (275)

Fターム[5E040NN17]に分類される特許

101 - 120 / 211


【課題】高性能なCa−La−Co系フェライト焼結磁石を製造することができる新規な方法を提供する。
【解決手段】M型フェライト構造を有し、Ca1−xFe2n−yCo、0.3≦1−x≦0.65、0.2≦x≦0.65、0.03≦y≦0.65、及び4≦n≦7により表わされる組成を有するフェライト焼結磁石を製造するに際し、原料の混合工程において前記フェライト焼結磁石の対応組成に調整された混合物の総質量に対し、炭酸ナトリウムの換算値でNaを0.01〜0.3質量%添加するフェライト焼結磁石の製造方法。 (もっと読む)


【課題】環境汚染重金属やレアメタルの回収に利用でき,耐酸・アルカリ性を有し,表面積が大きく,化学結合によってその表面へ機能性基を持った分子を高効率で修飾する、磁性が高く再利用性を備えた磁性粉体の製造方法を提供する。
【解決手段】マグネタイト粒子表面へチタン化合物層を形成する工程と焼成工程と機能性基による修飾工程の3工程を含む製造方法において,(1)チタンアルコキシドのアルコールなどの有機溶媒に水を加えて,種粒子表面に加水分解により生じる水酸化チタン微粒子を成長させていく際に,適量のグリセリンを添加して反応条件を最適化して行い,表面がチタン化合物で積層された磁性粉体を得る。(2)不活性ガス雰囲気中で焼成した後粉砕して,マグネタイト粒子表面にチタン酸化物層を形成した磁性粉体を得る。(3)シランカップリング処理を行いEDTAなどの機能性基で修飾した磁性粉体を得る。 (もっと読む)


【課題】 Brを良好に維持しながらHcJを向上させることができる希土類磁石の製造方法を提供すること。
【解決手段】 本発明の好適な希土類磁石の製造方法は、複数の原料化合物から構成される原料粉末を成形して成形体を得る成形工程と、成形体を焼成する焼成工程とを有しており、原料化合物として、第1の原料化合物:R−T−B化合物及びR−T−B化合物から選ばれる少なくとも1種の化合物(但し、RはYを含む軽希土類元素を示し、Rは重希土類元素を示し、Tは希土類元素を除く金属元素を示し、少なくともFeを含む。)、第2の原料化合物:R−T化合物、R−T化合物及びR−T化合物から選ばれる少なくとも1種の化合物、並びに、第3の原料化合物:Rを含み、第1及び第2の原料化合物よりも融点が高い化合物を用いる。 (もっと読む)


【課題】数百MHz〜数GHzの周波数において、磁気損失が充分小さい複合磁性体及びその製造方法は提案されていない。
【解決手段】 磁性粉末を絶縁性材料中に分散して構成され、複素透磁率の実部μr’が4GHz以下の周波数で1よりも大きく、かつ1GHz以下の周波数において損失正接tanδが0.1以下であることを特徴とする複合磁性体が得られる。複合磁性体中の磁性粉末は鉄系金属磁性粉末又は金属酸化物磁性粉末であり、絶縁材料中に10〜95vol%含まれている。 (もっと読む)


【課題】 ロータリーキルンの内壁への原料組成物や仮焼体の付着が生じ難いフェライト焼結磁石の製造方法を提供すること。
【解決手段】 第1の原料をロータリーキルンにより仮焼する仮焼工程と、仮焼体に第2の原料を加えて焼成しフェライト焼結磁石を得る焼成工程とを含み、第1及び第2の原料として、仮焼体及びフェライト焼結磁石が、それぞれ下記一般式(1)及び(2)で表される組成を有し、且つ、これらの式中の組成比が、所定の各条件を満たすように調整されたものを用いる。
1−x−b−m−aCaFe2n−z−c19 (1)
1−x−b−m−aCam+ax+bFe2n−z−cz+c19 (2) (もっと読む)


【課題】自動車の位置制御用センサーなどに要求される温度特性に優れた磁石材料とその製造方法、並びにこの磁石材料を用いたセンサー等に使われる樹脂結合型磁石を提供する。
【解決手段】一般式SmαHREβFe(100−α− β− γ−δ) Mnγδ(但し、HREはGdまたはErから選ばれる一種以上の重希土類元素であり、α、β、γ、δは原子%で、5≦α+β≦10、α>β、2≦γ≦5、及び15≦δ≦25なる関係式を満足する)で表わされる磁石材料であって、該磁石材料結晶粒内に少なくとも前記Sm、HRE、Fe、Mn及びNを成分とする菱面体晶および/または六方晶の結晶構造を有する主相と、主相に比べて窒素濃度が高い副相を含み、しかも保磁力Hcjが240kA/m(3kOe)以上、保磁力Hcjの温度係数が絶対値で0.50%/K以下、磁束密度Brの温度係数が絶対値で0.02%/K以下であることを特徴とする磁石材料などにより提供する。 (もっと読む)


【課題】適切な粒径のNdFeB系粒子を製造する方法を提供する。
【解決手段】NdFeB系合金を不活性雰囲気中において機械的粉砕により粉砕することによるNdFeB系ナノ粒子の製造方法であって、NdFeB系合金を粗粉砕した後、湿式ビーズミルを用いて周速12m/s以上で機械的粉砕を行い、このビーズミル中のビーズの粒径が0.1mm以下であることを特徴とする。 (もっと読む)


【課題】磁石特性を劣化させることなく水素粉砕処理の時間・コストを短縮できるR−Fe−B系永久磁石の製造方法を提供する。
【解決手段】本発明のR−Fe−B系永久磁石の製造方法は、まず、水素粉砕のための処理室内でR−Fe−B系磁石合金に水素を吸蔵させ、自己発熱によって合金の温度を上昇させる水素吸蔵工程を行う。水素吸蔵工程では、合金の温度が最高温度Tmaxに到達した後、最高温度Tmaxから100℃以上低下しないように処理室内の温度を第1処理室温度T1以上に加熱する。次に、処理室内から水素を排気し、合金を加熱することによって脱水素処理を行う脱水素工程を行う。脱水素工程では、第1処理室温度T1よりも高い第2処理室温度T2で脱水素処理を行う。 (もっと読む)


【課題】 リサイクル性に優れ、高性能な磁石粉およびボンド磁石を作製できるようにする。
【解決手段】 本発明の磁石粉の製造方法は、希土類磁石を含む原料を溶解し、溶解した金属溶湯を急冷させて金属薄帯または金属粉を作製し、金属薄帯または金属粉を粉砕してなるものであり、原料はR−T−B系の希土類焼結磁石と鉄基合金からなり、金属薄帯または金属粉の粉砕は、水素雰囲気中で水素化物を形成させた後、脱水素化してなるものである。 (もっと読む)


【課題】重希土類元素RHを効率よく活用し、磁石が比較的厚くとも、磁石全体にわたって主相結晶粒の外殻部に重希土類元素RHを拡散させたR−Fe−B系希土類焼結磁石を提供する。
【解決手段】本発明によるR−Fe−B系希土類焼結磁石の製造方法では、まず軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR−Fe−B系希土類焼結磁石体を用意する。次に、焼結磁石体の表面に重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を供給しつつ、焼結磁石体を加熱し、表面から重希土類元素RHを希土類焼結磁石体の内部に拡散させる。 (もっと読む)


【課題】飽和磁束密度4πIが大きく、保磁力HCJも大きく、かつ安定した高磁気特性を有するFe相およびSmCo5相のナノコンポジット構造の永久磁石を得る方法を提供する。
【解決手段】硬磁性相および軟磁性相がコンポジット化した組織を有する永久磁石の製造方法において、硝酸サマリウム及び硝酸コバルトをプロパノールまたはエタノール等の有機溶媒に溶解し、この溶解液を活性マグネシアに真空含浸し、含浸した活性マグネシアに硝酸鉄及び塩化第二鉄を添加した金属塩溶液を加え、真空中で乾燥し、金属カルシウム中で熱処理した。 (もっと読む)


【課題】重希土類元素RHを効率よく活用し、磁石が比較的厚くとも、磁石全体にわたって主相結晶粒の外殻部に重希土類元素RHを拡散させたR−Fe−B系希土類焼結磁石を提供する。
【解決手段】本発明によるR−Fe−B系希土類焼結磁石の製造方法では、まず軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR−Fe−B系希土類焼結磁石体を用意する。次に、焼結磁石体の表面に重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を供給しつつ、焼結磁石体を加熱し、表面から重希土類元素RHを希土類焼結磁石体の内部に拡散させる。 (もっと読む)


【課題】優れた磁気特性を有する希土類磁石粉末の製造方法及び希土類ボンド磁石の製造方法を提供する。
【解決手段】窒化した希土類磁石粉末を作製する際に、希土類元素−遷移金属系の合金粉末に対し、窒素原子を含む雰囲気下でマイクロ波を照射し、結晶格子間に窒素原子を侵入させる窒化工程を行う。 (もっと読む)


【課題】磁石の磁気特性及び機械的特性を向上させる希土類ボンド磁石の製造方法を提供する。
【解決手段】希土類ボンド磁石の製造方法において、希土類磁石粉末及び熱硬化性樹脂及び添加剤からなる混合物を圧縮成形し、成形品にマイクロ波を照射して、前記希土類磁石粉末による発熱により熱硬化性樹脂を硬化させる。 (もっと読む)


【課題】
希土類ボンド磁石の磁気特性の向上,低コスト化、及び高温高圧高湿環境下での磁気特性維持が課題である。
【解決手段】
上記課題を解決するために、樹脂を含有させないで希土類磁石用磁粉単体で冷間成形を行うことで磁石の磁気特性向上を図り、高耐食性かつ熱減磁抑制効果を有する相を得るような熱処理を実施する。その後磁石の強度を確保するために低粘度のSiO2 前駆体を磁石成形体中に含浸し熱硬化することで磁気特性向上かつ低コスト化を両立させた希土類ボンド磁石を得ることができる。 (もっと読む)


【課題】 高Brを有する磁石を得ることができる磁石の製造方法を提供すること。
【解決手段】 本発明の好適な実施形態の磁石の製造方法は、磁性粉末、溶媒及び分散剤を含む混合物を混練して混練物を得る混練工程、及び、混練物を成形して成形体を得る成形工程、成形体を焼成する焼成工程を有し、混練工程において、混合物中の磁性粉末の含有量が85〜95質量%である状態で当該混合物の混練を行う。この磁石の製造方法においては、混練工程後、成形工程前に、溶媒を更に加えて混練物を希釈する希釈工程を実施すると更に好ましい。 (もっと読む)


【課題】微粒子であっても配向性が高く、磁気粘性の小さい金属磁性粉末を提供する。
【解決手段】FeまたはFeとCoを主成分とする金属磁性相を有し、希土類元素(Yも希土類元素として扱う)、AlおよびSi(以下これらを「非磁性成分」という)の1種以上を含有する粒子からなる金属磁性粉末に対し、前記非磁性成分の少なくとも1種以上と錯体を形成しうる錯化剤を含有する液中において還元剤を作用させることにより、粉末粒子中の非磁性成分を液中に溶出させる工程(溶出処理工程)、還元性ガス雰囲気で熱処理する工程(再還元処理工程)、酸化性ガス雰囲気で熱処理する工程(安定化処理工程)を順次有する処理を施す磁気記録用金属磁性粉の製造法によって、粒子長10〜45nm、軸比が2以上であり、粒子の先端部が丸みを帯びている粒子で構成される磁気記録用金属磁性粉を得る。 (もっと読む)


【課題】均一な厚みの希土類合金鋳造板及びその製造方法を提供する。
【解決手段】本発明は、板厚の平均値がDであり、その板厚分散値がσである希土類合金鋳造板において、平均値Dは0.1mm〜1.0mmの範囲であり、少なくとも80%の希土類合金鋳造板の厚さが[D−0.1mm、D+0.1mm]の範囲にあり、σ≦0.015mmであることを特徴とする。この希土類合金は、Sc、Yを含めた17種の希土類元素の1種または2種以上であるRと、Fe以外の遷移元素である、Al、Ga、In、C、N、Si、Ge、Sn、Pb、Mg、Caの中の1種または2種以上であるMと、ホウ素であるBとからなる、R−(Fe,M)−B系の組成であり、Rの含有量が26.0〜50.0wt%、Mの含有量が0〜10.0wt%、Bの含有量が0〜1.5wt%、残部がFe及び不可避不純物からなる。 (もっと読む)


【課題】重希土類元素RHを効率よく活用し、磁石が比較的厚くとも、磁石全体にわたって主相結晶粒の外殻部に重希土類元素RHを拡散させたR−Fe−B系希土類焼結磁石を提供する。
【解決手段】本発明によるR−Fe−B系希土類焼結磁石の製造方法では、まず軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR−Fe−B系希土類焼結磁石体を用意する。次に、焼結磁石体の表面に重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を供給しつつ、焼結磁石体を加熱し、表面から重希土類元素RHを希土類焼結磁石体の内部に拡散させる。 (もっと読む)


【課題】比較的に簡単に微小ホールに均一に磁性体を充填することができる複合材およびその製造方法を提供する。または、結晶核の大きさや分散を十分に制御することができる多結晶構造膜を提供する。
【解決手段】複合材39は非磁性の基体41を備える。基体41の表面には微小ホール42が穿たれる。微小ホール42内には磁性の微小粒子43が配置される。こうした複合材39では、微小粒子43は微小ホール42内に確実に配置されることができる。しかも、微小ホール42の位置は規則的に制御されることができる。こうした微小ホール42に基づき微小粒子43は規則的に配置されることができる。 (もっと読む)


101 - 120 / 211