説明

Fターム[5F033PP06]の内容

半導体集積回路装置の内部配線 (234,551) | 導電膜の成膜方法 (14,896) | CVD(化学的気相成長法) (3,065)

Fターム[5F033PP06]の下位に属するFターム

Fターム[5F033PP06]に分類される特許

2,261 - 2,271 / 2,271


【課題】 絶縁膜及びその上のARL膜に埋め込まれた配線同士の間における短絡を防止する。
【解決手段】 基板100上に形成されたFSG膜109及びARL膜110に複数の配線用溝111を形成した後、各配線用溝111が完全に埋まるようにARL膜110の上にバリアメタル膜(窒化タンタル膜112)及び配線用導電膜(銅膜113及び114)を順次堆積する。その後、各配線用溝111の外側の銅膜113及び114を研磨により除去した後、各配線用溝111の外側の窒化タンタル膜112を研磨により除去する。その後、研磨時に基板100に付着した異物を除去した後、ARL膜110の表面を研磨する。 (もっと読む)


【課題】 絶縁膜及びその上のARL膜に埋め込まれた配線同士の間における短絡を防止する。
【解決手段】 基板100上に形成されたFSG膜109及びARL膜110に複数の配線用溝111を形成した後、各配線用溝111が完全に埋まるようにARL膜110の上にバリアメタル膜(窒化タンタル膜112)及び配線用導電膜(銅膜113及び114)を順次堆積する。その後、各配線用溝111の外側の銅膜113及び114を研磨により除去した後、各配線用溝111の外側の窒化タンタル膜112を研磨により除去する。その後、研磨時に基板100に付着した異物を除去した後、銅膜113及び114の研磨工程と同じ種類の研磨剤を用いてARL膜110の表面を研磨する。 (もっと読む)


【課題】 配線遅延を抑止し配線の微細化及び多層配線化を可能とする配線構造、及び当該配線構造の材料に固有の諸問題、例えば一方の材料の他方の材料への溶出等の不都合を解決して、信頼性の高い配線構造を実現する。
【解決手段】 Cu配線101と電気的に接続されるWプラグ102を形成するに際して、■WF6ガスを一定時間連続して供給する工程、■。WF6ガス雰囲気を一定時間連続して排気除去する工程、■SiH4ガスを一定時間連続して供給する工程、■SiH4ガス雰囲気を一定時間連続して排気除去する工程からなる一連工程(工程■〜■)を繰り返し行い、W核形成を行う。 (もっと読む)


【課題】 CMOS製造技術を利用し、フォトマスキングを使用しないバック・エンド処理を利用する三次元ソレノイドの製造方法を開示する。
【解決手段】 この方法では、異なる残留応力ないし熱膨張係数を有する金属からなる二重層金属構造で各々形成された二つのサスペンド・アームが、二つのアームの中間にAlCuに形成された誘導コイルに結合されるように利用される。二酸化シリコンの絶縁層がサスペンド・アームから除去されると、アームの自由端が上方に湾曲し、誘導コイルが半導体基板の表面から三次元構造に立ち上がる。 (もっと読む)


【課題】 アルミニウムを主成分とする導体膜パターンを有する半導体集積回路装置の信頼性を向上させる。
【解決手段】 アルミニウムを主成分とする導体膜16dを有する第1層配線L1をドライエッチング法によってパターニングした後、その加工側壁の側壁保護膜18およびエッチングマスクとして使用したフォトレジストパターン17aをプラズマアッシング処理によって除去する。続いて、絶縁膜15bおよび第1層配線L1の表面に付着した塩素成分を、酸素ガスとメタノールガスとの混合ガスを用いたプラズマアッシング処理によって除去する。この際、フォトレジストパターン17a等のアッシング除去処理時は、ウエハの主面温度が相対的に低くなるようにし、塩素成分の除去処理時は、ウエハの主面温度が相対的に高くなるようにする。また、それらのプラズマアッシング処理を別々の処理室で行う。 (もっと読む)


【課題】複数の半導体チップを配線基板に積層しても、半導体チップを積層した半導体装置の厚みおよび基板面積の増大および半導体チップ間の配線長の増加を招かない半導体チップ、その製造方法および半導体装置等を提供する。
【解決手段】半導体基板13と、半導体基板13の第1の面14に形成された第1の外部電極21と、半導体基板13の第2の面17に形成された第2の外部電極22と、半導体基板13に形成された貫通孔16とを有し、貫通孔16は第2の面17となす内角が鈍角をなして形成された斜面15に設けられ、第1の外部電極21と第2の外部電極22とは、貫通孔16の内壁および斜面15を経由して形成された導電パターン19により電気的に接続されている。 (もっと読む)


【課題】 誘電率の低い有機物を主成分とする層間絶縁膜層に接して金属又は化合物の薄層からなる拡散障壁層の相互間の結合が強く、その界面で剥離・脱離が発生することのない配線構造及びその製造方法を提供すること。
【解決手段】 誘電率の低い有機物を主成分とする層間絶縁膜層に接して金属又は化合物の薄層からなる拡散障壁層を堆積・被覆し、該拡散障壁層に接して導電部分を配設することによって構成される配線構造であって、層間絶縁膜層(有機絶縁膜層)30と拡散障壁層との界面付近に高速粒子照射により両側の部材を構成する原子又は分子が互いにミキシングされた状態のミキシング領域(ミキシング層31)を形成した。 (もっと読む)


【課題】 エレクトロマイグレーション耐性と、ストレスマイグレーション耐性を同時に向上させる多層配線構造及びその製造方法を提供する。
【解決手段】 AlCu膜103Cと、厚みが0〜15nmのTi膜との反応によりAl3 Ti層103DをAlCu膜とTiN膜の界面に形成することにより、界面拡散を抑制し、かつAl3 Ti層形成時に発生する引張り応力を低減し、EM耐性を向上させる。その後のFSG膜104AをHDP−CVD法で成膜する際に、ウェハ裏面に不活性ガスを流してウェハを冷却し、ウェハ温度を450℃以下にすることにより、FSGとAlCuの熱膨張率差に起因するAlCu膜の残留引張り応力の発生を低減し、SM耐性及びEM耐性を向上させる。さらに、FSG膜の上にSiON膜を設けることにより、FSG膜の遊離フッ素の上方への拡散を阻止して、上層配線の剥がれを防止する。 (もっと読む)


【課題】 多層配線構造において、エレクトロマイグレーション耐性の向上及びより一層の微細化を図る。
【解決手段】 下層配線Aは、第1のチタニウム膜102、第1の窒化チタン膜103、第1のAl−Cu膜104、第2のチタニウム膜105及び第2の窒化チタン膜106からなる。ヴィアコンタクトBは、第1の密着層109(チタニウム膜)、第2の密着層110(窒化チタン膜)及びタングステンプラグ111(タングステン膜)からなる。第2のチタニウム膜105及び第2の窒化チタン膜106には、ヴィアコンタクトBの平面形状よりも小さい開口部が形成され、ヴィアコンタクトBは開口部において第1のAl−Cu膜104と接続している。第1及び第2の密着層109、110は、側壁部の下端から内側に張り出す張り出し部において、第2の窒化チタン膜106における開口部の周辺領域と接続している。 (もっと読む)


【課題】その中にマイクロトレンチを含まない低誘電体層間絶縁膜金属導体配線構造およびそのような構造の形成方法を提供する。
【解決手段】導体抵抗に対する制御は、第1の原子組成を有する多孔性の低誘電体層間絶縁膜の線とバイア誘電体層との間に位置する第2の原子組成を有する埋込みエッチング停止層により行われる。本発明の配線構造は、また、二重波形模様タイプの配線構造を形成する際に助けになるハードマスクを含む。第1および第2の組成は、エッチング選択性が少なくとも10:1またはそれ以上になるように選択され、特定の原子組成および他の発見できる量を有する多孔性の低誘電体層間絶縁膜有機材料または無機材料の特定のグルーブから選択される。 (もっと読む)


本発明においては、前面(14)と背面(16)とを備える半導体基板(12)であって、基板を(12)通って前面(14)と背面(16)との間を延びる孔(18、20、22)を備える半導体基板(12)を用意する。孔(18、20、22)は、部分的に、内壁部分によって規定され、外側導電性シースを形成する。導電性材料(54)を、内壁部分の少なくとも一部に隣接して形成する。その後に誘電体材料層(56)を、孔内部に、導電性材料上であってそのラジアル方向内側に形成する。次に第2の導電性材料(60)を、孔内部に、誘電体材料層(56)上であってそのラジアル方向内側に形成する。後者の導電性材料は、内側導電性コアキシャル線要素を構成する。 (もっと読む)


2,261 - 2,271 / 2,271