説明

Fターム[5F048AC03]の内容

MOSIC、バイポーラ・MOSIC (97,815) | 集積回路要素 (9,617) | MOS+MOS (7,604) | CMOS(Complementary MOS) (4,005)

Fターム[5F048AC03]の下位に属するFターム

Fターム[5F048AC03]に分類される特許

201 - 220 / 3,186


【課題】トランジスタのチャネル部に印加される応力を増加させて、電流増加効果を高めることを可能とする。
【解決手段】半導体基板上にダミーゲートを形成した後、該ダミーゲートの側壁に側壁絶縁膜を形成し、該ダミーゲートの両側の前記半導体基板にソース・ドレイン領域を形成する工程と、前記ダミーゲートおよび前記ソース・ドレイン領域の上に応力印加膜を形成する工程と、前記ダミーゲートの上の領域に形成された前記応力印加膜と前記ダミーゲートを除去して溝を形成する工程と、前記溝内の前記半導体基板上にゲート絶縁膜を介してゲート電極を形成する工程と、を備えた半導体装置の製造方法。 (もっと読む)


【課題】半導体装置においてチップサイズに影響を与えないデカップリング容量を得る。
【解決手段】半導体装置は、基板1、10と、高濃度拡散層領域11と、第1ウェル4と、第2ウェル3とを具備している。基板1、10は第1導電型である。高濃度拡散層領域11は基板1、10上に形成され、第1導電型である。第1ウェル4は基板1、10上に形成され、高濃度拡散領域11の一方側に設けられ、第1導電型である。第2ウェル3は基板1、10上に形成され、高濃度拡散領域11の他方側に設けられ、第1導電型と逆導電型となる第2導電型である。第2ウェル3と高濃度拡散領域11との間、及び、第2ウェル3と基板1、10との間でデカップリング容量が形成される。 (もっと読む)


【課題】微細化しても高い性能を実現可能な半導体装置を提供する。
【解決手段】実施の形態の半導体装置は、半導体基板と、半導体基板上に形成されたゲート絶縁膜と、ゲート絶縁膜上に形成されたゲート電極と、ゲート電極の両側に形成された第1のゲート側壁と、半導体基板上に形成され、ゲート電極との間に第1のゲート側壁を挟むソース・ドレイン半導体層と、を備える。さらに、ゲート電極の両側に、第1のゲート側壁上およびソース・ドレイン半導体層上に形成され、第1のゲート側壁との境界がゲート電極の側面で終端し、第1のゲート側壁よりもヤング率が小さく、かつ、低誘電率の第2のゲート側壁、を備える。 (もっと読む)


【課題】ゲート絶縁膜をHigh−k材料で構成し、ゲート電極をメタル材料で構成するHK/MGトランジスタを有する半導体装置において、安定した動作特性を得ることのできる技術を提供する。
【解決手段】素子分離部2で囲まれた活性領域14に位置し、後の工程でコア用nMISのゲートGが形成される領域Ga1のみに、Nch用ゲートスタック構造NGを構成する積層膜を形成し、上記領域Ga1以外の領域NGa1には、Pch用ゲートスタック構造PGを構成する積層膜を形成する。これにより、コア用nMISのゲートGが形成される領域Ga1へ素子分離部2から引き寄せられる酸素原子の供給量を減少させる。 (もっと読む)


【課題】複数の有機EL素子への供給電流ばらつきを低減する。
【解決手段】有機EL素子50と電源ラインVLとの間に、電源ラインVLから供給する電流量を制御する素子駆動用TFT20を備え、TFT20のチャネル長方向を、画素の長手方向、又はTFT20を制御するスイッチング用TFT10にデータ信号を供給するデータラインDLの延在方向、又はTFT20の能動層16を多結晶化するためのレーザアニールの走査方向に平行な方向に配置する。さらに電源ラインVLとTFT20の間にTFT20と逆特性の補償用TFT30を備えていても良い。 (もっと読む)


【課題】混合信号プロセスにおいてアナログ回路の性能を向上させる方法および装置を提供すること
【解決手段】順方向バイアスおよび修正された混合信号プロセスを用いた回路設計を用いて、アナログ回路性能を向上させる方法が提示される。複数のNMOSトランジスタおよびPMOSトランジスタを含む回路が規定される。NMOSトランジスタのボディ端子は、第1の電圧ソースに連結され、PMOSトランジスタのボディ端子は、第2の電圧ソースに連結される。回路内のトランジスタは、各選択されたNMOSトランジスタのボディ端子に該第1の電圧ソースを適用することと、各選択されたPMOSトランジスタのボディ端子に該第2の電圧ソースを適用することとによって、選択的にバイアスされる。一実施形態において、第1の電圧ソースおよび第2の電圧ソースは、順方向バイアスおよび逆方向バイアスをトランジスタのボディ端子に提供するように修正可能である。 (もっと読む)


【課題】従来のゲートラスト法の問題点を解決し、さらなる微細化に対応できるゲート構造を実現する。
【解決手段】半導体領域101上から、ダミーゲート構造を除去してリセス107aを形成した後、リセス107aの底部の半導体領域101の表面上に界面層108を形成する。次に、界面層108上及びリセス107aの側壁上に高誘電率絶縁膜109を形成すした後、リセス107a内部の高誘電率絶縁膜109上に、ゲート電極の少なくとも一部となる金属含有膜110を形成する。界面層108上に形成されている部分の高誘電率絶縁膜109の厚さは、リセス107aの側壁上に形成されている部分の高誘電率絶縁膜109の厚さよりも厚い。 (もっと読む)


【課題】 収率が低下することなくCMOS集積回路の特性を最適可能な半導体素子の製造方法を提供する。
【解決手段】 半導体基板1の上の第1領域A内及び第2領域B内に各々形成された第1グルーブ15a及び第2グルーブ15bを有する層間絶縁膜15を形成する。次に、半導体基板1上に積層金属膜22を形成し、積層金属膜22上に非感光性を有する平坦化膜23を第1グルーブ15a及び第2グルーブ15bを充填するように形成する。第1領域A内の平坦化膜23を乾式エッチングによって選択的に除去し、第1領域A内の積層金属膜22を露出させ、第2領域B内の積層金属膜22を覆う平坦化膜パターン23pを形成する。これにより、第1領域A内の最上部金属膜を容易に除去することができるので、収率が低下することなく異なる仕事関数を有する第1金属ゲート電極及び第2金属ゲート電極を形成できる。 (もっと読む)


【課題】基板に対して斜め方向からイオン注入を行う工程を含む半導体装置の製造方法においてゲート電極サイズの縮小化とリーク電流特性の改善を両立することができる製造方法を提供する。
【解決手段】
半導体基板の表面にゲート電極を形成する。ゲート電極のゲート長方向と交差するゲート幅方向における両端面を被覆するレジストマスクを形成する。半導体基板にゲート長方向成分およびゲート幅方向成分を有する注入方向で不純物イオンを注入して半導体基板の表面のゲート電極を挟む両側にゲート電極とオーバーラップした低濃度不純物層を形成する。ゲート電極の側面を覆うサイドウォールを形成する。ゲート電極およびサイドウォールをマスクとして不純物イオンを注入して半導体基板の表面のゲート電極を挟む両側にゲート電極から離間した高濃度不純物層を形成する。 (もっと読む)


【課題】工程が簡単で、よりラッチアップに強いCMOS構造を得る。
【解決手段】1×1018cm−3から1×1019cm−3の高不純物濃度の半導体基板2を用い、CMOS構造のP型ウェル4とN型ウェル5の境界に設けられた溝分離部13の先端部分がその高不純物濃度領域に達する(エピタキシャル層3を貫通して半導体基板2の領域に至る)ように深く形成することにより、従来のように溝分離部13よりも更に深い領域(溝分離部13の下側)を電子が通過することなく、従来のようにウェル領域内にN+埋め込み層やP+埋め込み層を基板深く埋め込む必要もなく、簡便な方法で、よりラッチアップに強いCMOS構造を得ることができ、コスト性能の両方に優れた半導体装置1を得ることができる。 (もっと読む)


【課題】活性領域におけるイオン濃度のばらつきを抑制すること。
【解決手段】半導体装置の製造方法は、半導体基板にイオンを注入するための第1開口を有し、第1層ウェルを形成するための第1マスクを半導体基板上に形成する工程と、第1マスクを用いて半導体基板に第1イオンを注入して、第1領域及び第2領域を有する第1層ウェルを形成する工程と、半導体基板にイオンを注入するための第2開口を有し、第2層ウェルを形成するための第2マスクを半導体基板上に形成する工程と、第2マスクを用いて半導体基板に第2イオンを注入して、第1層ウェルより下方に位置する第2層ウェルを形成する工程と、を含む。第1領域を第2領域より第1層ウェルの外縁寄りに形成する。第1イオンを注入する際に、第1マスクの第1内壁面で反射した第1イオンを第1領域に供給する。第2イオンを注入する際に、第2マスクの第2内壁面で反射した第2イオンを第2領域に供給する。 (もっと読む)


【課題】半導体基板上の所定の領域内の窒化膜を、当該領域へのダメージを抑制しつつ選択的に除去することにより、信頼性の高い半導体装置を実現する。
【解決手段】半導体装置の製造方法は、半導体基板上の第1領域の全域を覆い、第2領域内の所定領域を覆う窒化膜を形成する工程と、窒化膜の全表面に酸化皮膜を形成する酸化皮膜形成工程と、この後、第1領域上を被覆し、第2領域上の所定の酸化膜形成対象領域を被覆しないパターンのレジスト膜を前記窒化膜上に形成する工程と、ふっ酸液によるウェットエッチングによって、酸化膜形成対象領域の窒化膜の表面に形成された酸化皮膜を選択的に除去して前記窒化膜を露出させるふっ酸エッチング工程と、レジスト膜を剥離する工程と、高温のリン酸液によって露出した窒化膜を除去する工程と、窒化膜が除去された酸化膜形成対象領域の基板表面に熱酸化による酸化膜を形成する工程とを含む。 (もっと読む)


【課題】半導体デバイスを提供する。
【解決手段】理論的な金属:酸素化学量論比を有する高kゲート誘電体、前記高kゲート誘電体の上部に設置された、Mを遷移金属として、組成がMxAlyで表されるアルミナイドを含むNMOS金属ゲート電極、および前記高kゲート誘電体の上部に設置された、アルミナイドを含まないPMOS金属ゲート電極、を有するCMOS半導体デバイス。 (もっと読む)


【課題】構造が簡単なトランジスタにより、サステイン耐圧を改善し且つサステイン耐圧のばらつきの抑制及びトランジスタ形成後のドレイン抵抗及び接合プロファイルの調整が可能な、自由度が高い半導体装置を実現できるようにする。
【解決手段】半導体装置は、p型ウェル102に形成され、互いに並行に延びると共に、ゲート長方向の幅が比較的に大きい第1ゲート電極125と、ゲート長方向の幅が比較的に小さい第2ゲート電極126と、p型ウェル102における第1ゲート電極125及び第2ゲート電極126同士の間に形成されたLDD低濃度領域135と、該p型ウェル102における第1ゲート電極125及び第2ゲート電極126のそれぞれの外側に形成されたLDD中濃度領域134とを有している。LDD低濃度領域135の不純物濃度は、LDD中濃度領域134の不純物濃度よりも低い。 (もっと読む)


【課題】半導体デバイスの小面積化を実現する。
【解決手段】電極と、第1絶縁体と、バンドギャップが2eV以上の第1半導体と、第2絶縁体と、第2半導体とが積層されており、第1半導体に接する1つ以上の電極と、第2半導体に接する2つ以上の電極とを少なくとも備えることを特徴とする半導体デバイス。 (もっと読む)


【課題】ESD保護回路の面積を増大させることなく、サージに対する耐性に優れた半導体集積回路を実現する。
【解決手段】半導体集積回路は、互いに隣接する入出力セル1及び入出力セル2間には、アノードが入出力端子3に接続され、且つ、カソードが入出力端子7に接続されたサイリスタ13と、カソードが入出力端子3に接続され、且つ、アノードが入出力端子7に接続されたサイリスタ14とが構成されている。 (もっと読む)


【課題】複雑な工程を回避すると共に、高い有効仕事関数値を得ることにより、高歩留まり及び高性能の半導体装置を実現できるようにする。
【解決手段】ダミー電極22をマスクとして、n型活性領域13にp型の不純物イオンを導入することにより、n型活性領域13におけるダミー電極22の両側方にp型のソースドレイン領域25pを形成し、形成されたソースドレイン領域25pに熱処理を施す。熱処理を施した後に、n型活性領域13の上に、ダミー電極22を覆うように層間絶縁膜26を形成し、形成された層間絶縁膜26からダミー電極22を露出し、露出したダミー電極22を除去する。続いて、層間絶縁膜26におけるダミー電極22が除去された凹部26aに、第2の金属電極27を選択的に形成する。 (もっと読む)


【課題】微細構造を有する半導体装置において、ゲート長の最適化が可能な半導体装置を提供する。
【解決手段】基体上に形成された高誘電率材料からなるゲート絶縁膜15と、ゲート絶縁膜15上に形成されたメタルゲート電極と、メタルゲート電極の側壁に形成されたサイドウォールスペーサ21とを備える半導体装置10を構成する。そして、第1導電型のトランジスタ及び第2導電型のトランジスタのいずれか一方にメタルゲート電極側壁とサイドウォールスペーサ21内壁との間に形成されたオフセットスペーサ19が形成される。或いは、第1導電型のトランジスタと第2導電型のトランジスタとに、厚さの異なるオフセットスペーサ19が形成される。 (もっと読む)


【課題】モリセル領域内と周辺回路領域内およびそれらとの間に実施的に段差がない状態でメタル積層配線を形成し、段差部でメタル積層配線が断線する問題を回避する。センスアンプを構成するNMOSトランジスタとPMOSトランジスタのアンバランス動作を解消して動作遅延を軽減する。
【解決手段】半導体装置は、半導体基板上にメモリセル領域と周辺回路領域とを有し、メモリセル領域と周辺回路領域に跨って延在し、メモリセル領域ではビット線を構成し、周辺回路領域では周辺回路用配線の一部とゲート電極の一部を構成するメタル積層配線を有する。メモリセル領域に配置されるメタル積層配線の底面の半導体基板上面からの高さが、周辺回路領域に配置されるメタル積層配線の底面の半導体基板上面からの高さと実質的に同じである。 (もっと読む)


【課題】トランジスタの耐圧を向上し得る半導体装置及びその製造方法を提供することにある。
【解決手段】半導体基板10内に形成された第1導電型の第1の不純物領域32、46と、半導体基板内に形成され、第1の不純物領域に隣接する第2導電型の第2の不純物領域34、48と、第2の不純物領域内に形成された第1導電型のソース領域30a、44aと、第1の不純物領域内に形成された第1導電型のドレイン領域30b、44bと、ソース領域とドレイン領域との間における第1の不純物領域内に、第2の不純物領域から離間して埋め込まれた、二酸化シリコンより比誘電率が高い絶縁層14と、ソース領域とドレイン領域との間における第1の不純物領域上、第2の不純物領域上及び絶縁層上に、ゲート絶縁膜22を介して形成されたゲート電極24a、24bとを有している。 (もっと読む)


201 - 220 / 3,186