説明

Fターム[5F048BA09]の内容

MOSIC、バイポーラ・MOSIC (97,815) | 基板 (9,458) | 基板中に絶縁層 (137)

Fターム[5F048BA09]に分類される特許

41 - 60 / 137


【課題】高い電流駆動力を有するn型半導体素子を提供する。
【解決手段】第1の主面を有し、III族の不純物を含み、1.2<N<10を満たすNを用いて(11N)面と表される、ないしはそれと結晶学的に等価な第1の面方位のみを前記第1の主面に有する、シリコンとゲルマニウムとの混晶層と、前記第1の主面上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されたゲート電極と、前記混晶層の[110]方向ないしそれと結晶学的に等価な方向に、前記ゲート電極を挟む様に形成され、V族の不純物を含む半導体よりなるソース・ドレイン領域と、を有し、前記混晶層は面内方向に圧縮歪みが印加されていることを特徴とする。 (もっと読む)


【課題】SOI構造を有するCMOSトランジスタにおいて、CMOSトランジスタのチャネル領域に応力を印加する構造の製造方法の提供。
【解決手段】単結晶のシリコン基板11の表面に素子分離領域13Iにより画成されたnチャネルMOSトランジスタ10Aが形成された第1の素子領域13AとpチャネルMOSトランジスタ10Bが形成された第2の素子領域13Bとを含む単結晶シリコンの活性層13を形成し、シリコン基板と活性層との間に形成されたシリコン酸化膜を有し、シリコン酸化膜は第1の素子領域の下および第2の素子領域の下に連続して延在し、nチャネルMOSトランジスタのチャネル領域のシリコン酸化膜は最大の膜厚を有し、ゲート長方向に向かって膜厚を減少させ、pチャネルMOSトランジスタのチャネル領域のシリコン酸化膜は最小またはゼロの膜厚を有し、チャネル領域から、ゲート長方向に向かって膜厚を増大させることを特徴とする。 (もっと読む)


【課題】DMOS電力回路、CMOSデジタル論理回路、及びコンプリメンタリバイポーラアナログ回路の全てを単一の集積化された回路チップ上に実現するBiCDMOS構造及びその製造方法を提供する。
【解決手段】基層10内に下向きに延出し、且つ基層の上に配置されたエピタキシャル層40内に上向きに延出し、かつエピタキシャル層の上側主面の下に配置された埋め込み絶縁領域21Bと、エピタキシャル層内のみに配置され、かつ埋め込み絶縁領域の上側主面から上向きに延出した埋め込みウェル領域44Bと、エピタキシャル層内に配置され、かつエピタキシャル層の上側主面からエピタキシャル層内に下向きに延出し、かつ埋め込みウェル領域の上側主面に接触する下側主面を備えたウェル領域51Bとを有し、バイポーラトランジスタがウェル領域内に形成され、MOSトランジスタがウェル領域外のエピタキシャル層の上側主面に形成される。 (もっと読む)


【課題】横方向固相エピタキシャル成長法において単結晶膜成膜工程に要する時間を短縮し、半導体装置の製造を短時間で行う。
【解決手段】単結晶シリコン部403及び絶縁膜401が表面において露出したウエハ200を、構成元素としてSiを含むガスの雰囲気中に曝露し、単結晶シリコン部403及び絶縁膜401の上にアモルファスのシリコン膜402を成膜する成膜工程と、成膜工程後に、シリコン膜402を加熱して、単結晶シリコン部403を基にしてシリコン膜402を単結晶化させる加熱工程と、加熱工程後に、ウエハ200を構成元素としてSiを含むガス及び構成元素としてClを含むガスの混合雰囲気中に曝露し、単結晶化した部分を残留させつつ、単結晶化しなかった部分を除去する選択成長工程と、を含む半導体装置の製造方法であって、ウエハ200に対して、成膜工程、加熱工程及び選択成長工程を繰り返す。 (もっと読む)


【課題】結晶欠陥が少なく結晶性の高い単結晶シリコン層が絶縁膜上に形成されてなる半導体装置の製造方法及び半導体装置を得るという課題があった。
【解決手段】基板1の一面1aに絶縁膜2を形成する工程と、絶縁膜2を開口して基板1を露出させる穴2cを形成する工程と、穴2cの内壁面を覆うように結晶成長補助膜3を形成する工程と、穴2cを充填するとともに、絶縁膜2の前記基板と反対側の面2aを覆うように非結晶シリコン層を形成する工程と、前記非結晶シリコン層を、レーザーアニール法により単結晶シリコン層5とする工程と、を有する半導体装置101の製造方法を用いることにより、上記課題を解決できる。 (もっと読む)


【課題】SOI基板を用いずに、単に導電材料を堆積するだけで素子形成領域を導電材料によって取り囲むことができる半導体装置を提供すること。
【解決手段】素子形成領域5を取り囲むように形成されたトレンチ3の側壁表面に絶縁材料を堆積させつつ、その中心軸付近の空洞に、比較的低融点の、例えば1100℃以下の融点を有する金属(銅又はアルミニウムなど)からなる導電材料14を充填し、一部のトレンチ3内の導電材料14をウェハ基板2の表面に設けられた電極9aと導通させる。トレンチ3に充填される導電材料14は、ウェハ基板2の裏面上にも堆積される。 (もっと読む)


【課題】半導体部材が単結晶の半導体材料からなり、特性が良好な半導体装置及びその製造方法を提供する。
【解決手段】単結晶のシリコンからなるシリコン基板11上に絶縁膜12を形成し、絶縁膜12に開口部12aを形成し、絶縁膜12上に開口部12aを介してシリコン基板11と接触するようにアモルファスシリコン膜を形成し、このアモルファスシリコン膜をシリコン基板11を起点として固相エピタキシャル成長させて、その後パターニングする。これにより、開口部12aの直上域から外れた領域の一部に、単結晶のシリコンからなるシード層を形成する。次に、このシード層を覆うようにアモルファスシリコン膜を堆積させ、このアモルファスシリコン膜をシード層を起点として固相エピタキシャル成長させて、単結晶シリコン膜を形成する。そして、この単結晶シリコン膜をパターニングすることにより、シリコンピラー33を形成する。 (もっと読む)


【課題】薄膜SOI領域を有する基板において、基板に第1半導体素子10と異なる第2半導体素子30、40を形成した際に、この第2半導体素子30、40の特性を従来の半導体装置より向上させることができる半導体装置を提供する。
【解決手段】基板のうち第1半導体素子10が形成される第1半導体素子形成領域1とは異なる部分を第2半導体素子形成領域2とし、第2半導体素子形成領域2に、基板の表裏を貫通する第1貫通トレンチ31を形成し、第1貫通トレンチ31の側壁に絶縁膜32を形成すると共に第1貫通トレンチ31の内部に第1埋込材料33を埋め込む。そして、第1埋込材料33を有する第2半導体素子30、40を形成して半導体装置を構成する。 (もっと読む)


【課題】3−5集積回路とシリコン集積回路とは別々の集積回路上に設けられてきた。3−5集積回路とシリコン集積回路等の相違する基板を必要とする複数の回路を1つの集積回路において組み合わせることを可能にするハイブリッド基板回路を提供すること。
【解決手段】ハイブリッド基板回路は、第1半導体材料の第1領域と、埋め込み酸化層および埋め込み酸化層の上方の第2半導体材料を含んでいる第2領域と、第1半導体材料内に形成された第1回路と、第2半導体材料内に形成された第2回路と、第1回路と第2回路との間のシャロー・トレンチ・アイソレーション領域103と、を含んでいる。第1半導体材料はシリコンを含み、第2半導体材料はシリコンを含んでいない。第1回路はCMOS回路101であり、第2回路は高電子移動度トランジスタ回路102である。 (もっと読む)


【課題】SOI層の膜厚が薄膜化してもMOSトランジスタの駆動能力の向上を図ることができる半導体装置及びその製造方法を得る。
【解決手段】NMOS形成領域A1に形成されるNMOSトランジスタQ11において、ソース・ドレイン領域15は埋め込み酸化膜4を貫通して半導体基板1の閾値電圧制御拡散層18に達して形成される。PMOS形成領域A2に形成されるPMOSトランジスタQ21において、ソース・ドレイン領域25は埋め込み酸化膜4を貫通して半導体基板1の閾値電圧制御拡散層28に達して形成される。 (もっと読む)


【課題】Si基板上にSOI構造を部分的に形成する際に、SOI層の意図しない削れを少なくすることができ、SOI層の膜厚均一性を向上できるようにした半導体装置の製造方法を提供する。
【解決手段】P型のSi基板(即ち、P−Si)上に例えばイントリンジックのSiGe層(即ち、i−SiGe)を形成する工程と、i−SiGe上にN型のSi層(即ち、N−Si)を形成する工程と、N−Si下のi−SiGeを選択的にエッチングして除去することにより、N−SiとP−Siとの間に空洞部を形成する工程と、を含む。i−SiGeを選択的にエッチングして除去する際に、P−Siからi−SiGeにホールを供給することができ、i−SiGeのエッチングを促すことができる。また、i−SiGeを完全に除去した後も、N−Siにホールが蓄積されることはないので、N−Siのエッチングを抑制することができる。 (もっと読む)


【課題】良好な特性を得ながら、小型化、高耐圧化および低消費電力化が可能な半導体装置を提供する。
【解決手段】この半導体装置1は、シリコンよりも大きいバンドギャップを有し、パワートランジスタ2が形成されたSiC層11と、SiC層11の主表面11aよりも上側の所定領域に形成されるとともに、制御回路用のNMOSトランジスタ3およびPMOSトランジスタ4が形成され、SiC層11とは別の層からなるシリコン層21と、SiC層11のパワートランジスタ2とシリコン層21のNMOSトランジスタ3およびPMOSトランジスタ4とを接続するAl配線5とを備える。 (もっと読む)


【課題】キャリアの移動度が高い歪SOI構造を、結晶欠陥少なく且つ安価に形成できるようにした半導体装置の製造方法及び半導体装置を提供する。
【解決手段】Si基板1上にSiGe層とSi層5とを順次形成し、その上にSi34膜9、13を形成する。次に、Si34膜9、13と、Si層5及びSiGe層を貫く支持体穴hを形成する。そして、支持体穴hを埋め込むようにSiO2膜21を形成する。次に、SiO2膜21とSi層5とを部分的にエッチングして、SiGe層を露出させる溝Hを形成する。そして、この溝Hを介してSiGe層をエッチングすることにより、Si層5とSi基板1との間に空洞部25を形成し、空洞部25を埋め込むようにSiO2膜を形成する。この際、Si34膜9が有する圧縮応力と、Si34膜13が有する引っ張り応力とをSi層5にそれぞれ作用させてSi層5の歪を増大させる。 (もっと読む)


【課題】薄膜BOX−SOI構造であり、ロジック回路の高速動作とメモリ回路の安定動作とを両立できる半導体装置を提供する。
【解決手段】 本発明に係る半導体装置は、半導体支持基板1、厚さ10nm以下の絶縁膜4、半導体層4を有している。半導体層4の上面内には、第一のゲート電極20を有し、ロジック回路を構成する第一の電界効果型トランジスタが形成されている。また、半導体層4の上面内には、第二のゲート電極を有し、メモリ回路を構成する第二の電界効果型トランジスタが形成されている。半導体支持基板1には、導電型の異なるウェル領域6,6T,7等が、少なくとも3以上形成されている。そして、当該ウェル領域により、第一のゲート電極の下方の半導体支持基板1の領域と、第二のゲート電極の下方の半導体支持基板1の領域とが、電気的に分離される。 (もっと読む)


【課題】 絶縁ゲート電界効果トランジスタ(100,100V,140,150,150V,160,170,170V,180,180V,190,210,210W,220,220U,220W,380,480,500,510,530又は540)は、そのソース/ドレインゾーンと隣接するボディ物質(108,268又は568)との間のPN接合に沿っての寄生容量を減少させるためにそのソース/ドレインゾーンの内の一つ(104,264又は564)下側にハイポアブラプトな垂直ドーパントプロフィルを有している。
【解決手段】 特に、該ボディ物質の導電型を画定する半導体ドーパントの濃度は、そのソース/ドレインゾーンから下方へ該ソース/ドレインゾーンよりも上部半導体表面下側に10倍を超えて一層深いものではない下側のボディ物質位置へ移る場合に、少なくとも10の係数だけ減少する。該ボディ物質は、好適には、他方のソース/ドレインゾーン(102,262又は562)に沿って位置されている一層高度にドープされたポケット部分(120,280又は580)を包含している。通常ドレインとして機能する最初に述べたソース/ドレインゾーン下側のハイポアブラプトな垂直ドーパントプロフィルと、通常ソースとして機能する2番目に述べたソース/ドレインゾーンに沿っての該ポケット部分との結合が、結果的に得られる非対称トランジスタを特に高速アナログ適用例に適したものとさせることを可能とさせる。 (もっと読む)


【課題】半導体装置を高集積化および高性能化することのできる技術を提供する。
【解決手段】SOI−MISFETは、SOI層3と、SOI層3上にゲート絶縁膜15を介して設けられたゲート電極35aと、ゲート電極35aの両側壁側のSOI層3上に、SOI層3からの高さがゲート電極35aよりも高く設けられ、ソース・ドレインを構成する積上げ層24とを有している。また、バルク−MISFETは、シリコン基板1上にゲート絶縁膜15より厚いゲート絶縁膜16を介して設けられたゲート電極35bと、ゲート電極35bの両側壁側の半導体基板1上に設けられたソース・ドレインを構成する積上げ層25とを有している。ここで、積上げ層24の厚さが、積上げ層25の厚さよりも厚く、ゲート電極35a、35bの全体、SOI−MISFETのソース・ドレインの一部、およびバルク−MISFETのソース・ドレインの一部がシリサイド化されている。 (もっと読む)


ナノチューブ電界効果トランジスタおよび製造方法を開示する。本方法は、開口部によって画定される導電層の領域と接触するようにするナノチューブの電気泳動堆積を含む。
(もっと読む)


【課題】所要電流の異なる複数の負荷の駆動に対しても、スイッチング速度の劣化やスイッチング損失の増大を伴わず、最適に対応することのできる半導体装置を提供する。
【解決手段】スイッチング電源を構成するスイッチング素子が、許容電流の異なる複数個のパワー素子P1〜P3に分割されてなり、パワー素子P1〜P3の第1電流端子が、共通する電源端子Dに接続され、パワー素子P1〜P3の第2電流端子が、共通する出力端子Tに接続され、パワー素子P1〜P3の各ゲート端子が、トランジスタからなるスイッチS1〜S3を介して、共通するゲート信号端子Gに接続されてなり、パワー素子P1〜P3とスイッチS1〜S3とで構成される出力回路部K1が、一つの第1半導体チップ10に形成されてなり、パワー素子P1〜P3が、スイッチS1〜S3により切り替えられて用いられる半導体装置100とする。 (もっと読む)


【課題】Ge原子を含有するチャネル領域を具備するようなマルチゲート構造の電界効果トランジスタに関して、新規な電界効果トランジスタを提案すること。
【解決手段】Si原子を含有する半導体基板と、前記半導体基板上に形成され、Si原子とGe原子とを含有する突起構造と、前記突起構造内に形成されており、Ge原子を含有するチャネル領域と、前記チャネル領域の下部に埋め込まれている絶縁膜と、前記突起構造内に形成されており、前記突起構造を通じて前記半導体基板とつながっているソース・ドレイン領域と、前記チャネル領域上に形成されたゲート絶縁膜と、前記チャネル領域上に前記ゲート絶縁膜を介して形成されたゲート電極とを具備する電界効果トランジスタ。 (もっと読む)


【課題】微細加工技術に依拠するのみでなく、半導体集積回路の高性能化を図ることを目的とする。また、半導体集積回路の低消費電力化を図ることを目的とする。
【解決手段】第1導電型のMISFETと第2導電型のMISFETとで単結晶半導体層の結晶方位又は結晶軸が異なる半導体装置を提供する。結晶方位又は結晶軸は、それぞれのMISFETにおいてチャネル長方向に走行するキャリアの移動度が高くなるように配設される。このような構成とすることで、MISFETのチャネルを流れるキャリアにとって移動度が高くなり、半導体集積回路の動作の高速化を図ることができる。また、低電圧で駆動することが可能となり、低消費電力化を図ることができる。 (もっと読む)


41 - 60 / 137