説明

Fターム[5F049NA13]の内容

受光素子−フォトダイオード・Tr (21,418) | 目的、効果 (2,854) | 格子定数の制御 (18)

Fターム[5F049NA13]に分類される特許

1 - 18 / 18


【課題】シリコン基板上に形成したクラックおよび転位が少ない高品位の窒化物半導体素子の製造方法を提供する。
【解決手段】実施態様によれば、シリコン基板上に下地層と積層中間層と機能層とが形成された後に、前記シリコン基板が除去された窒化物半導体素子が提供される。前記窒化物半導体素子は、前記下地層と、前記積層中間層と、前記積層中間層と、を備える。前記下地層は、AlNバッファ層とGaN下地層とを含む。前記積層中間層は、前記下地層と前記機能層との間に設けられる。前記積層中間層は、AlN中間層と、AlGaN中間層と、GaN中間層と、を含む。前記AlGaN中間層は、前記AlN中間層に接する第1ステップ層を含む。前記第1ステップ層におけるAl組成比は、前記AlN中間層から前記第1ステップ層に向かう方向において、ステップ状に減少している。 (もっと読む)


【課題】任意の基板上に形成でき良好な結晶性を有する窒化物半導体素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法を提供する。
【解決手段】実施形態によれば、第1層と、機能層と、を備えた窒化物半導体素子が提供される。前記第1層は、非晶質層の上に形成され、窒化アルミニウムを含み、圧縮歪または引張歪を有する。前記機能層は、前記第1層の上に形成され、窒化物半導体を含む。 (もっと読む)


【課題】 波長域1800nm程度にまで受光感度を有し、微弱な光に対応して、暗電流を低くできる受光素子等を提供する。
【解決手段】 選択拡散によってpn接合15が形成され、受光層3は、第1の組成のInGa1−xAs3aと第2の組成のInGa1−yAs3bとが交互に2対以上積層されてなり、第1の組成のInGa1−xAs3aはその吸収端波長が1.8μm〜1.75μmの間にあり、かつ第2の組成のInGa1−yAs3bはそれより短く、InP窓層5と受光層3との間に、該InP窓層および受光層に接してInPに格子整合するIn0.53Ga0.47AsまたはInAl0.48As0.52の中間層4が位置することを特徴とする。 (もっと読む)


【課題】高品質なIII族窒化物を結晶成長させ、高品質な半導体装置を得ることが可能な半導体装置の製造方法を提供する。
【解決手段】窒化サファイア基板をアルカリエッチングし、窒化サファイア基板を清浄化する。その後、III族窒化物を結晶成長させることにより、極めて高品質なN極性結晶を得ることができる。 (もっと読む)


【課題】近赤外域〜遠赤外域にわたって高い受光感度を持ち、製造が容易であり、安定して高品質が得られる、受光デバイス、半導体エピタキシャルウエハ、これらの製造方法、および検出装置を提供する。
【解決手段】III−V族半導体基板と、III−V族半導体基板の上に位置し、(InAs/GaSb)が繰り返し積層された多重量子井戸構造の受光層3とを備え、III−V族半導体基板がInAs基板1であることを特徴とする。 (もっと読む)


【課題】SiCMOS技術と共存可能な高速高効率光検出器を作る問題に対処すること。
【解決手段】本構造は、薄いSOI基板の上のGe吸収層から成り、分離領域、交互になるn型およびp型コンタクト、および低抵抗表面電極を利用する。本デバイスは、下の基板で生成されたキャリアを分離するために埋込み絶縁物を利用して高帯域幅を、Ge吸収層を利用して広いスペクトルにわたった高量子効率を、薄い吸収層および狭い電極間隔を利用して低電圧動作を、さらに平面構造およびIV族吸収材料の使用によってCMOSデバイスとの共存性を、達成する。本光検出器を製作する方法は、薄いSOIまたはエピタキシャル酸化物へのGeの直接成長および高品質吸収層を達成するための後の熱アニールを使用する。この方法は、相互拡散に利用可能なSiの量を制限し、それによって、下のSiによるGe層の実質的な希釈を起こすことなく、Ge層をアニールすることができるようになる。 (もっと読む)


【課題】 結晶性を向上させることが可能な光電変換素子の製造方法および光電変換素子。
【解決手段】 本発明の光電変換素子の製造方法は、p型シリコン基板2上に、ガリウムヒ素を含む第1半導体層3を成長させる工程と、第1半導体層3を成長させたp型シリコン基板2を、リンを含む第1ガスの雰囲気内において第1温度で加熱することにより、第1半導体層3を経由させてp型シリコン基板2内にリンを拡散させる工程と、第1半導体層3上に、格子定数が、シリコンよりもガリウムヒ素に近い第2半導体層4を成長させる工程とを有する。そのため、p型シリコン基板内にリンを拡散させるとともに、第1半導体層の表面に成長させる半導体層の結晶性を向上させることができる。 (もっと読む)


【課題】 良好な結晶品質を確保しながら能率よく成長することができる、エピタキシャルウエハの製造方法および当該エピタキシャルウエハを得る。
【解決手段】 半導体の基板を準備する工程と、基板の上に、ペアをなす一方の層または両方の層にアンチモン(Sb)を含むタイプIIの多重量子井戸構造を、ペア数50以上700以下で、形成する工程と、InP表面層を形成する工程とを備え、多重量子井戸構造の形成工程の開始からInP表面層の形成工程の終了まで、再成長界面が含まれないように一つの成長槽内で処理し、すべての層を有機金属原料を用いる全有機気相成長法により形成することを特徴とする。 (もっと読む)


【課題】 近赤外域に受光感度を有し、良好な結晶性を得やすく、かつ、その一次元または二次元アレイを、高精度で形成しやすく、暗電流を低くできる受光素子の原料素材となる、エピタキシャルウエハおよびその製造方法を提供する。
【解決手段】 III−V族化合物半導体のエピタキシャル積層構造を有するウエハであって、InP基板1と、多重量子井戸構造3と、表面層を構成するInP層5とを備えることを特徴とする。 (もっと読む)


【課題】結晶性に優れたIII族窒化物の受光層を形成することのできる半導体積層構造、及びこれを用いた紫外線センサーを提供する。
【解決手段】所定の基材3上において、III族窒化物下地層4と、少なくともGaを含むIII族窒化物層5とを順次に積層し、その上にInおよびAl、あるいは一方を含むIII族窒化物からなるAlyInxGa1-x-yN受光層6を設けた半導体積層構造1、及びこれを用いて表面にショットキー電極7s、およびオーミック電極7oを形成させて紫外線センサー2を作製する。 (もっと読む)


【課題】 短波長側から長波長側の近赤外域にわたって、受光感度の変動を抑制した、受光素子等を提供する。
【解決手段】この受光素子50は近赤外域に感度を持ち、ペア数が50以上の、タイプ2型のMQWの受光層3と、受光層の中に位置し、または該受光層の外面に接して位置し、タイプ2型の遷移におけるバンドギャップよりも大きいバンドギャップを有する第2の受光層13と、エピタキシャル積層体の表面から該エピタキシャル積層体内へと位置する、p型領域6とを備え、そのp型領域は先端部にpn接合15を形成しており、そのpn接合が、該第2の受光層13よりもエピタキシャル積層体の表面に近い位置に位置することを特徴とする。 (もっと読む)


【課題】高品質な光デバイスをシリコン基板上にモノリシックに形成する。
【解決手段】シリコンを含むベース基板と、ベース基板上に設けられた複数のシード結晶と、複数のシード結晶に格子整合または擬格子整合する複数の3−5族化合物半導体とを備え、複数の3−5族化合物半導体のうちの少なくとも1つに、供給される駆動電流に応じて光を出力する発光半導体、または光の照射を受けて光電流を発生する受光半導体を含む光電半導体が形成されており、複数の3−5族化合物半導体のうち、光電半導体を有する3−5族化合物半導体以外の少なくとも1つの3−5族化合物半導体にヘテロ接合トランジスタが形成されている光デバイスを提供する。 (もっと読む)


【課題】大面積で均一な低転位密度窒化ガリウムおよびその製造プロセスを提供する。
【解決手段】15cmを超える大面積と、少なくとも1mmの厚さと、5E5cm−2を超えない平均転位密度と、25%未満の転位密度標準偏差比率と、を有する大面積で均一な低転位密度単結晶III−V族窒化物材料、たとえば窒化ガリウム。かかる材料は、(I)たとえばIII−V族窒化物材料の成長表面の少なくとも50%にわたってピットを形成するピット化成長条件下で、III−V族窒化物材料を基板上に成長させる第1段階であって、成長表面上のピット密度が、成長表面において少なくとも10ピット/cmである段階と、(II)ピット充填条件下でIII−V族窒化物材料を成長させる第2段階と、を含むプロセスによって基板上に形成することができる。 (もっと読む)


改良された特性を備えた半導体材料、基板、およびデバイスの製造方法および構造が開示される。歪みが低減された構造を形成するための構造および方法が、複数の実質的に歪み緩和されたアイランド構造を形成し、半導体材料の歪み緩和された実質的に連続した層を引き続きさらに成長するために、このようなアイランド構造を利用することを含む。 (もっと読む)


【課題】転位密度が低く、かつ、不純物の濃度が低いIII族窒化物結晶の製造方法、III族窒化物結晶基板およびIII族窒化物半導体デバイスを提供する。
【解決手段】本III族窒化物結晶の製造方法は、液相法により少なくとも1種類の金属元素を含有する溶媒とIII族元素とを含む結晶成長用液体2を用いて第1のIII族窒化物結晶10を成長させる工程と、金属元素の少なくとも1種類を含む結晶処理用液体4中で第1のIII族窒化物結晶10を熱処理する工程と、熱処理がされた第1のIII族窒化物結晶10上に気相法により第2のIII族窒化物結晶20を成長させる工程とを含む。 (もっと読む)


本発明は、小さい欠陥密度を有しかつ選択された結晶極性をオプションとして有する、III族窒化物半導体材料からなる実質的に連続的な層を製造するための方法を提供する。この方法は、テンプレート構造上に不規則に配置されたIII族窒化物材料からなる複数のピラー/アイランドの上部にエピタキシャル成長の核形成および/または播種することを含む。アイランドの上部は、小さい欠陥密度を有し、また、選択された結晶極性をオプションとして有する。本発明は、また、マスク材料からなる実質的に連続的な層を有するテンプレート構造を含み、ピラー/アイランドの上部は、このマスク材料から突き出る。本発明は、広範囲の元素半導体材料および化合物半導体材料に適用されてもよい。 (もっと読む)


本発明は、小さい欠陥密度を有するIII族窒化物半導体材料からなる実質的に連続的な層を製造するための方法を提供する。この方法は、ベース基板上において核形成層をエピタキシャル成長させ、この核形成層を熱処理し、不連続なマスク層をエピタキシャル成長させることを含む。簡単に説明されるこの方法は、マスクし、消滅させ、および、融合させることによって欠陥を減少させることを促進し、それによって、小さい欠陥密度の半導体構造をもたらす。本発明は、広い範囲の半導体材料に適用されてもよく、元素半導体、例えば、ひずみSi(sSi)と組み合わせたSi(シリコン)、および/または、Ge(ゲルマニウム)、および、化合物半導体、例えば、II−VI族およびIII−V族の化合物半導体材料のいずれにも適用されてもよい。 (もっと読む)


【課題】バンドギャップを利用した撮像装置において、結晶性の問題を解消する。
【解決手段】化合物半導体である混晶系の組成比を変えることでバンドギャップを制御する。たとえばAlGaInP系混晶やSiGeC系混晶やZnCdSe系混晶やAlGaInN系混晶にすることで格子不整Δaの絶対値を小さくする。Siの格子定数より大きいGeをSiCに混ぜるなどによって、格子不整の絶対値を小さくし、結晶性を高くする。また、SiとSiCまたはSiGeC系層の界面に、厚み10nm程度以下の超格子層を1層以上入れることで、結晶性をさらに高くする。 (もっと読む)


1 - 18 / 18