説明

Fターム[5F049SS09]の内容

受光素子−フォトダイオード・Tr (21,418) | 基板 (1,382) | 面方位 (21)

Fターム[5F049SS09]に分類される特許

1 - 20 / 21


【課題】 半導体光集積素子及びその製造方法に関し、光導波路の伝播損失を増大させることなく、PDの暗電流を10nA以下まで低減する。
【解決手段】 n型クラッド層側から順に少なくとも光吸収層及びZnドープp型クラッド層が積層されたフォトダイオード領域の傾斜側面に対して[011]方向にバットジョイント結合した光導波路領域における光導波路層に(100)面方位での飽和濃度以下の濃度のFeをドープし、上側クラッド層に(100)面方位での飽和濃度以上の濃度のFeをドープする。 (もっと読む)


【課題】半導体紫外線受光素子の製造を容易にする。
【解決手段】 半導体紫外線受光素子の製造方法は、基板を準備する工程と、前記基板上の一部領域に極性反転層を形成する工程と、前記基板上及び前記極性反転層上に、−c極性ZnO系半導体層と+c極性ZnO系半導体層とを、同時にエピタキシャル成長させる工程と、前記−c極性ZnO系半導体層をエッチングにより除去する工程と、前記+c極性ZnO系半導体層上にショットキー電極を形成する工程と、前記ショットキー電極と対をなすオーミック電極を形成する工程とを有する。 (もっと読む)


【課題】 光検知素子の検知効率を高めることが望まれている。
【解決手段】 基板の上に、複数の量子ドットを含む量子ドット層が配置されている。量子ドット層の上に、再入射構造物が配置されている。再入射構造物は、量子ドット層を通過した光を反射して量子ドット層に再入射させると共に、第1の方向の偏光成分を、第1の方向とは異なる第2の方向の偏光成分に変換して量子ドット層に再入射させる。 (もっと読む)


【課題】赤外線撮像装置の分解能を向上することができる赤外線イメージセンサ及び赤外線撮像装置を提供する。
【解決手段】赤外線イメージセンサ11には、複数個の第1の画素1aが配列した第1の赤外線検知層1と、第1の赤外線検知層1上方に形成され、複数個の第2の画素2aが配列した第2の赤外線検知層2と、複数個の第1の画素1aの各々から信号を出力する第1の出力部3と、複数個の第2の画素2aの各々から信号を出力する第2の出力部4と、が設けられている。平面視で、複数個の第2の画素2aの配列が、複数個の第1の画素1aの配列からずれている。 (もっと読む)


【課題】結晶性の良好な化合物半導体層、特にIII族窒化物系化合物半導体層を有する半導体素子を作製する方法を提供する。
【解決手段】サファイア基板上に下地層を成膜する工程と、下地層上にSiO2 膜の帯状パターンマスクを形成し、次いで下地層及びサファイア基板の上部をエッチングして帯状の凸部と溝状の凹部とを交互に周期的に備えた凹凸構造を形成する工程と、その凹凸構造上にGaN層を横方向成長法により成長させる工程と、この横方向成長工程の前(または後)に、識別マークを基板の少なくとも一方の面側に形成する工程と、識別マークを基準にして低欠陥密度領域上に半導体素子形成領域を位置決めする位置決め工程とを含む。横方向成長工程において、低欠陥密度領域と高欠陥密度領域とが交互に周期的に形成されることを利用して、低欠陥密度領域の特定、および半導体素子形成領域の位置決めを行う。 (もっと読む)


【課題】光電流及び素子抵抗をともに大きくできるようにすること。
【解決手段】本発明の赤外線センサ100は、第1の光吸収層103及び第2の光吸収層106によって吸収された赤外線を光電流に変換するPNダイオードをトンネル接合によって直列接合させた構造である。半導体基板101上に設けられた第1のn型化合物半導体層102と、その上に設けられた第1の光吸収層103と、その上に設けられた第1のp型ワイドバンドギャップ層104と、その上に設けられた第2のn型化合物半導体層105と、その上に設けられた第2の光吸収層106と、その上に設けられた第2のp型ワイドバンドギャップ層107と、その上に設けられたp型キャップ層108と、第1のn型化合物半導体層102上及びp型キャップ層108上に電極110,109を備えている。 (もっと読む)


【課題】 低コストの酸化ガリウム単結晶基板を用いた紫外線センサ及びその製造方法を提供する。
【解決手段】 酸化ガリウム単結晶の成長方向に対して直交する直交面41または該直交面41から所定の角度傾斜した面を受光面12rとする酸化ガリウム単結晶基板11と、酸化ガリウム単結晶基板11の第1表面に形成されたオーミック電極13と、受光面12rを含む酸化ガリウム単結晶基板11の第2表面に形成されたショットキー電極12とを備えた。 (もっと読む)


CMOS製造プロセスとナノワイヤ製造プロセスとを結合してアクティブピクセル配列としてイメージングデバイスを形成する。配列内のピクセルはナノワイヤを囲む単一または複数のフォトゲートを含む。フォトゲートは、ナノワイヤのポテンシャルプロファイルを制御し、光生成電荷のナノワイヤ内の蓄積と、信号読み出しのための電荷の転送を可能とする。各ピクセルは、リセットトランジスタ、電荷転送スイッチトランジスタ、ソースフォロワー増幅器、およびピクセルセレクトトランジスタを含む読み出し回路を備えても良い。ナノワイヤは一般に、ナノワイヤの先端に衝突する光エネルギーを受けるためにバルク半導体基板上で垂直ロッドとして構成される。ナノワイヤは、光検出器、または光線をバルク基板に導くように設定された導波管、のいずれかとして機能するよう設定しても良い。ここでの実施形態では、ナノワイヤフォトゲートおよび基板フォトゲートの存在によって波長の異なる光を検出することができる。

(もっと読む)


【課題】 結晶性が良好な素子窒化物光半導体素子を提供することを目的とする。
【解決手段】 この窒化物光半導体素子は、A面サファイア基板1と、基板1上に設けられた厚さが1μmを超えるC面AlN層2と、AlN層2上に形成されたn型のIII族窒化物系半導体層4と、n型のIII族窒化物系半導体層4上に形成されたp型のIII族窒化物系半導体層9とを備えている。A面サファイア基板1上に、1μmを超えるC面AlN層を成長することによって、これにクラックが発生せず、平坦性と結晶性に優れたC面AlN層が得られる。 (もっと読む)


【課題】 昼夜によらずノイズや暗電流を抑制して鮮明な画像を得ることができる撮像装置、視界支援装置、暗視装置、航海支援装置および監視装置を提供する。
【解決手段】 多重量子井戸構造の受光層3と、受光層のInP基板1と反対側に位置する拡散濃度分布調整層4とを備え、受光層のバンドギャップ波長が1.65μm〜3μmであり、拡散濃度分布調整層のバンドギャップエネルギがInPよりも小さく、不純物元素の選択拡散によって受光素子ごとにpn接合を形成し、選択拡散された受光層における不純物濃度が、5×1016/cm以下であることを特徴とする。 (もっと読む)


【課題】 冷却機構なしで暗電流を減らし、受光感度を波長1.8μm以上に拡大したInP系フォトダイオードを用いて、水分を高感度で検出することができる水分検出装置等を提供する。
【解決手段】 受光層3がIII−V族半導体の多重量子井戸構造を有し、pn接合15は、不純物元素を受光層内に選択拡散して形成したものであり、受光層における不純物濃度が、5×1016/cm以下であり、検出装置は、波長3μm以下の水の吸収帯に含まれる、少なくとも1つの波長の光を受光して、水分を検出することを特徴とする。 (もっと読む)


【課題】製造が容易で且つ再現性の高い構造を備えた量子ドット赤外線光検出器を提供することである。
【解決手段】半導体基板と、前記半導体基板の上に形成された、導電性の半導体からなる第1の電極層と、前記第1の電極層の上に形成された前記第1の光電変換層と、前記第1の光電変換層の上に形成された、導電性の半導体からなる第2の電極層と、前記第2の電極層の上に形成された、第2の光電変換層と、前記第2の光電変換層の上に形成された、導電性の半導体からなる第3の電極層からなる赤外線を電気信号に変換する光半導体装置において、前記第1の光電変換層が、前記半導体基板の主面に投影した形状が、第1の方向に長軸を有する第1の量子ドットから成り、前記第2の光電変換層が、前記主面に投影した形状が、前記第1の方向にに交差する第の2の方向に長軸を有する第2の量子ドットから成ること。 (もっと読む)


【課題】垂直方向への貫通転位が抑制されて、結晶品質が優れたIII族窒化物半導体エピタキシャル基板を提供する。
【解決手段】基板1上に形成されたIII族窒化物層2上にAlGa1−xN(0≦x≦1)なる組成のELO成長層4が形成されてなり、ELO(Epitaxial Lateral Overgrowth)成長層4は、III族窒化物層2上に形成された炭素からなるマスクパターン3を用いて形成されたIII族窒化物半導体エピタキシャル基板10。 (もっと読む)


絶縁された電極を作成し、それらの電極間にナノワイヤを組み込む(600)方法(100)はそれぞれ、半導体層(210)上の半導体材料の横方向エピタキシャル過成長を使用して、同一結晶方位を有する絶縁電極(260、270)を形成する。この方法(100、600)は、半導体層上の絶縁膜(240)内の窓(242)を介した半導体機構要素(250)の選択的エピタキシャル成長(140)を含む。垂直ステム(252)は、窓を介して半導体層と接触し、レッジ(254)は、絶縁膜上の垂直ステムの横方向エピタキシャル過成長である。この方法は更に、半導体機構要素と半導体層から1対の絶縁電極(260、270)を作成(160)することを含む。ナノワイヤベースのデバイス(800)は、1対の絶縁電極と、1対の絶縁電極のそれぞれの表面間を架橋するナノワイヤ(280)とを含む。 (もっと読む)


【課題】注入ダメージや結晶格子の歪みなどを生じることなく、基板表面から浅い領域に活性化率が高い不純物領域を形成し、固体撮像装置の白傷欠陥不良を抑制する。
【解決手段】PDの高濃度P型不純物拡散領域4、読み出しゲート部のP型半導体領域5、ゲート部のP型半導体活性領域6、チャネルストップ領域8を、ボロンを少なくともその一部が6個のボロンからなる8面体構造のクラスタの形態で含有する不純物領域によって形成する。この不純物層は、ボロンの高濃度イオン注入、クラスタによるイオン注入、ボロンとシリコンを含む化合物の分解によって形成することができ、低温プロセスにより浅い接合深さで高濃度不純物領域を形成することができる。 (もっと読む)


【課題】ゲルマニウムは、半導体プロセスを用いて光電気混載LSIに搭載される長波長帯光デバイスに用いる場合、吸収の長波長化又は長波長帯での吸収が実用化されていない。
【解決手段】ゲルマニウム原子を主成分とする四面体結合される半導体であり、基板格子定数がゲルマニウムよりも小さく、基板面方位が{111}面であり、基板面と垂直な<111>軸方向に半導体格子を伸長される光電変換層を用いる光デバイスである。 (もっと読む)


【課題】素子容量が小さく、従来に比べてより一層の高速化が可能な半導体受光素子及びその製造方法を提供することである。
【解決手段】上面が(100)面のInP基板51を用意し、このInP基板51の上にクラッド層52、光導波路層53及びクラッド層54からなる光導波路を形成する。その後、クラッド層52、光導波路層53及びクラッド層54を異方性エッチングして傾斜面を形成する。次に、有機金属気相成長法により、傾斜面上にn−InP層56及び光吸収層57を順次形成した後、同時ドーピング法により、傾斜面上のみにZnが優先的に導入されたp−InP層58aを形成し、同時に平坦面上にSiが優先的に導入されたn−InP層58bを形成する。 (もっと読む)


【課題】窒化ガリウム系化合物半導体素子を提供する。
【解決手段】<0001>面に対して所定方向にその表面が0°より大きく、1°より小さい傾斜角ほど傾いたAlInGa1−x−yN基板(11)(0≦x≦1、0≦y≦1、そし及び0≦x+y≦1)と、基板(11)の表面上に成長された窒化ガリウム系化合物半導体層(20)とを備える窒化ガリウム系化合物半導体素子。 (もっと読む)


成長用基板(例えばInP基板)を基板支持具により保持し、有機金属気相成長法により前記成長用基板上に3元素または4元素からなる化合物半導体層(例えばInGaAs層、AlGaAs層、AlInAs層、AlInGaAs層等のIII−V族化合物半導体層)を成長させるエピタキシャル成長方法において、基板の有効利用領域全体にわたって、(100)方向からの傾斜角度が0.00°〜0.03°、または0.04°〜0.24°となるように研磨し、該成長用基板を用いて基板上に前記化合物半導体層を0.5μm以上の厚さで形成するようにした。
(もっと読む)


光検出器が、基板上面に形成された入口面と反射面とを備えた半導体基板を含む。反射面は基板表面と鋭角を成しており、そして入口面を通って基板内に透過される光ビームが、反射面から半導体上面に向かって内部反射されるように位置決めされている。基板上面上には光検出器活性領域が形成され、そして光検出器活性領域は、反射された光ビームが活性領域上に衝突するように位置決めされている。光検出器を第2基板上に載置することにより、第2基板上に形成されたプレーナー型導波路、又は第2基板上の溝内に載置された光ファイバーから光ビームを受容することができる。
(もっと読む)


1 - 20 / 21