説明

Fターム[5F082BA35]の内容

バイポーラIC (6,722) | 素子構造 (2,196) | エミッタ−ベース (211)

Fターム[5F082BA35]の下位に属するFターム

Fターム[5F082BA35]に分類される特許

141 - 160 / 192


【課題】 半導体装置内で温度勾配が生じたとしても、所望のカレントミラー比を実現することができるカレントミラー回路を備えた半導体装置を提供する。
【解決手段】 各トランジスタ群A、B、Cに備えられる複数のトランジスタA1〜Ak、B1〜Bm、C1〜Cnを、各トランジスタ群A、B、C毎に集合配置するのではなく、トランジスタ群A、B、Cの順に交互に並べられたレイアウトとする。言い換えると、トランジスタ群Aを構成する複数のトランジスタA1〜Akの1つと、トランジスタ群Bを構成する複数のトランジスタB1〜Bmの1つと、トランジスタ群Cを構成する複数のトランジスタC1〜Cnの1つ(例えばトランジスタA1、B1、C1)を1纏めとしたものを1セットとして、そのセットが繰り返しパターンとして形成されたレイアウトとする。 (もっと読む)


【課題】増幅特性の劣化なしにインダクタで発生する逆起電力による破壊を防止することが可能な電力増幅器及び電力増幅器用バイアス回路を実現することができる半導体装置を提供する。
【解決手段】バイポーラトランジスタ2のコレクタ端子と電源端子6とを接続しているバイアス線路5に、アノードがコレクタ端子側になるように並列にダイオード9aを接続することにより、あるセルで暴走が始まったときは、ダイオード9aによりその逆起電圧をクリップして下げるため、バイポーラトランジスタ2に大きな電圧がかかるのを抑制するとともに、暴走の起こっていない段階では、ベース端子に供給される経路で抵抗成分等によるロスを無くし、結果的に従来のような高出力時の出力電力の低下を抑制する。 (もっと読む)


【課題】BiCMOSなどの半導体装置に搭載される用途の異なる各素子の性能を両立させることができる高性能な半導体装置及びその製造方法を提供する。
【解決手段】 P型Si基板上のPN接合バラクタの形成領域に高濃度のリンイオンを注入し、カーボンを注入した後、Si基板上に低濃度のN型Si層を形成する。N型Si層は約1000〜1200℃でエピタキシャル成長させるため、埋め込み型不純物層中の不純物がN型Si層側にせり上がってくるが、表面にカーボンが導入されているバラクタ形成領域は埋め込み不純物層からの不純物拡散が抑制され、リンのせり上がりを抑制できる。 (もっと読む)


【課題】放熱と接地の良さを維持しながら、高出力化が可能な電力増幅器を提供する。
【解決手段】バイポーラトランジスタ素子のエミッタ電極4にバンプ8が備えられて近距離接地されており、これらを複数個組み合わせて1つの構成単位としてのユニットセル7を形成することにより放熱と接地の良さを維持しながら、高出力化が可能な電力増幅器が実現する。 (もっと読む)


【課題】 HBTは、ベース−エミッタ間電流が正の温度係数を持つため、コレクタ電流も正の温度係数を持つ。従って、ベース電流を増加させて電流密度の向上を図ると、複数並列接続されたHBTの単位素子のうち、1つの単位素子に電流が集中して二次降伏を起し、破壊に至りやすくなる。
【解決手段】 HBTとFETを分離領域を介して隣接して配置し、HBTのベース電極にMESFETのソース電極を接続した単位素子を複数接続して能動素子を構成する。単位素子を並列に複数接続した能動素子において、単位素子毎に動作電流が不均一となっても、コレクタ電流が負の温度係数を持つため1つの単位素子に電流が集中することはなく二次降伏による破壊は発生しない (もっと読む)


【課題】 HBTは、HEMTより低オン抵抗を得ることができる。しかし各単位素子において動作上の微小なアンバランスから二次降伏による破壊を起こすため、信頼性が低い問題があった。
【解決手段】 単位HBTのベース電極に、ベース層に連続した抵抗層により形成されたバラスト抵抗を接続する。そしてHBTとバラスト抵抗が接続された単位素子を複数並列接続し、スイッチング素子を構成する。これにより各単位素子において単位HBTの発熱が直接バラスト抵抗に伝わる。抵抗は負の温度係数を持つため、単位HBTが発熱するとそれに接続するバラスト抵抗の抵抗値が大きくなりバラストとしての機能が増す。従って、HBTによるスイッチ回路装置において二次降伏による破壊を回避し、信頼性を大幅に向上させることができる。 (もっと読む)


【課題】 HBTのベースが直接制御端子に接続するスイッチ回路装置では、制御端子から、HBTの駆動に必要なベース電流を供給する必要がある。しかし、この回路構造ではHBTの電流増幅率hFEが限られているため、必要なベース電流を制御端子から十分に得られない問題があった。
【解決手段】スイッチング素子を構成するHBTのベースにソースが接続する駆動FETを設け、駆動FETのドレインを電源端子に接続し、ゲートを制御端子に接続する。制御信号により駆動FETが導通し、電源端子から供給される電流によってHBTが動作する。従って一般的な制御用LSIからの制御信号を利用できる。またHBTの各単位HBTに駆動FETの各単位FETを対応させることによりHBTの2次降伏による破壊を防止できる。 (もっと読む)


【課題】 HBTは、ベース−エミッタ間電流が正の温度係数を持つため、コレクタ電流も正の温度係数を持つ。従って、ベース電流を増加させて電流密度の向上を図ると、複数並列接続されたHBTの単位素子のうち、1つの単位素子に電流が集中して二次降伏を起し、破壊に至りやすくなる。
【解決手段】 HBTとFETを分離領域を介して隣接して配置し、HBTのベース電極にMESFETのソース電極を接続した単位素子を複数接続してスイッチ回路装置を構成する。単位素子を並列に複数接続したスイッチ回路装置において、単位素子毎に動作電流が不均一となっても、1つの単位素子に電流が集中することはなく二次降伏による破壊は発生しない (もっと読む)


【課題】 HBTとFETを1チップに集積化する際、HBTのエミッタキャップ層をFETのチャネル層としており、FETのピンチオフ性が悪く相互インダクタンスgmが低い。また、複数回のイオン注入、アニール、ベースペデスタルの形成、さらには2回のエピタキシャル成長を行うなど製造工程が複雑であった。
【解決手段】 HBTのエミッタ層とFETのチャネル層を、同一のn型InGaP層とする。また、HBTのベース層であるp+型GaAs層を、FETのp型バッファ層として利用する。これにより、FETのピンチオフ性が良好となり相互インダクタンスgmを高めることができる。またエピタキシャル成長が1回で、イオン注入、アニール工程も不要のため製造工程も簡素化でき、ウエハコストも低減できる。 (もっと読む)


【課題】HBTにおける高い耐電圧特性と優れた高速特性を維持した状態で、バラクタダイオードにおける広い容量可変幅を確保する。
【解決手段】1つの共通の半絶縁性基板1上に、HBT20とバラクタダイオード21とを形成したマイクロ波モノリシック集積回路において、HBTとバラクタダイオード21とに共通するコレクタ層を、コレクタコンタクト層4側に位置する第1のコレクタ層22a、22bと、反コレクタコンタクト層側に位置する第2のコレクタ層23a、23bとで構成し、さらに、第1のコレクタ層のキャリア濃度を第2のコレクタ層のキャリア濃度より高く設定している。そして、バラクタダイオード21においては、第2のコレクタ層23b上にショットキー電極24を形成する。 (もっと読む)


【課題】性能を向上する新規なバイポーラデバイスを提供する。
【解決手段】本発明は、バイポーラデバイス30を開示する。エミッタ33が半導体基板に形成される。コレクタ34が、エミッタ33から横方向に空間を置いて基板に設けられる。ゲート端子38は基板上に形成され、エミッタ33とコレクタ34間の空間を規定する。外部ベース35は、エミッタ33またはコレクタ34の何れか一方から所定の距離を隔てて、基板上に形成される。外部ベース35は、エミッタ33またはコレクタ34の何れか一方から所定の距離を有して基板上に形成され、基板に設けた分離構造31で周囲を囲まれた穴によって活性領域32を規定し、この活性領域32に、ベース35,エミッタ33,コレクタ34およびゲート端子38が配置される。 (もっと読む)


【課題】本発明は、高周波数帯で動作する半導体装置の特性の向上、ならびに信頼性の向上に関するものである。
【解決手段】半導体基板の表面側にキャリア走行層として積層された、サブコレクタ層、コレクタ層、ベース層、エミッタ層を用いて形成した単数もしくは複数のバイポーラトランジスタと、前記キャリア走行層の直下に設けられた絶縁層と、さらに前記絶縁層の直下に設けられた導電層と、前記導電層に到達するように形成された非貫通のバイアホールと、トランジスタの何れかの端子と電気的に接続された状態に半導体基板の表面に形成された金属配線層と、バイアホールの側壁及び底面に形成された金属配線層とを備えた構造とする。 (もっと読む)


【課題】HBT、HEMTという異種類のトランジスタを、極めて小さい接続抵抗の下で接続した構成を持つ化合物半導体エピタキシャルウェハを提供すること。
【解決手段】同一ウェハ内で、一単位のHBTエピタキシャル層(HBT構造40)の上に一単位のHEMTエピタキシャル層(HEMT構造50)を積層した構造とする。 (もっと読む)


【課題】静電気放電保護素子を提供する。
【解決手段】この素子はPNPN接合の正帰還及び空乏制御抵抗によって過多電流の発生を抑制する。第1導電型のウェルに第1導電型の第1拡散層が形成され、第2導電型のウェルには第1導電型の第2拡散層、第2導電型の第3拡散層及び第4拡散層が形成されている。本発明において、前記第2導電型のウェルは前記第3及び第4拡散層の間に幅が狭いスイッチング通路を含むことを特徴とする。 (もっと読む)


【課題】横型バイポーラトランジスタ、およびそれを有する半導体装置、ならびにそれらの製造方法において、エピタキシャル層表面近傍に潜在しているダメージによって横型バイポーラトランジスタの利得が得られないことを改善する。
【解決手段】ベース領域の上部に設けた不純物を含有する半導体層の前記不純物を熱拡散させてコレクタ拡散層とエミッタ拡散層とを並設してなる横型バイポーラトランジスタ、およびそれを有する半導体装置において、半導体層を横断させて不純物をさらにイオン注入した後に熱処理することによってコレクタ拡散層とエミッタ拡散層とを設ける。半導体層はシリコンゲルマニウム層とし、特に、半導体装置に横型バイポーラトランジスタとともに形成するシリコンゲルマニウムヘテロ接合バイポーラトランジスタの形成に用いるシリコンゲルマニウム層を利用する。 (もっと読む)


【課題】エミッタ端子及びベース端子が同一な高さを有する高速バイポーラトランジスタを提供する。
【解決手段】高速バイポーラトランジスタは、ベースのためのシリコン−ゲルマニウム膜(25a)をコレクタのための半導体膜(19)上に形成し、エミッタ端子及びコレクタ端子のための接触窓を有する層間絶縁膜(27)(29)を形成し開口する。ポリシリコンを蒸着した後ベース、エミッタ接触窓(35b)(35a)内にポリシリコンを充填し、イオン注入熱処理工程により、エミッタ拡散部(36)を形成する。その後、平坦化処理により、同一高さをもつポリシリコンエミッタ端子及びポリシリコンベース端子を形成する。更に、エミッタ及びベース接触窓と、金属配線との間に安定的なシリサイド膜を形成でき、低抵抗なエミッタ、ベース接触窓を持つバイポーラトランジスタを形成できる。 (もっと読む)


【課題】縦構造のバイポーラトランジスタを用い、コレクタの電極取り出しを基板の裏面側で行うことで、バイポーラトランジスタのデバイス面積を縮小化するとともに高速動作化を可能とする。
【解決手段】バイポーラトランジスタ100とMOS型トランジスタ200とを同一基板10に搭載した半導体集積回路装置1であって、バイポーラトランジスタ100は、エミッタ層120、ベース層110、コレクタ層130が基板10主面に対して垂直方向に配列されたものからなり、ベース層110に接続されるベース取り出し電極111が基板10の主面側に設けられ、エミッタ層120に接続されるエミッタ取り出し電極121が基板10の主面側に設けられ、コレクタ層130に接続されるコレクタ取り出し電極131が基板10の主面とは反対の裏面側に設けられたものである。 (もっと読む)


【課題】公知の解決法における問題点を克服する集積回路の製造方法を提供する。
【解決手段】単一ウエハ反応装置を用いて、第1の一定ドーピングレベルを有する下部と第1の一定ドーピングレベルより低い第2の一定ドーピングレベルを有する上部とを有するN型の単一のエピタキシャル層を形成し、上述の上部に選択的にN型のイオン打ち込みを行うことにより第2の一定ドーピングレベルを有する第1のゾーンと第1の一定ドーピングレベルを有する第2のゾーンとを形成し、次いで、第1のゾーンの上述の上部に、N型のエミッタ領域とベースドーピングレベルを有するP型のベース領域とN型のコレクタ領域とベースドーピングレベルより高いドーピングレベルを有し、エミッタ領域を横方向から囲んでいるP型の環状しゃ断領域とを備えた低雑音バイポーラトランジスタを形成する。 (もっと読む)


【課題】バイポーラトランジスタの電流増幅率hFEに影響を与えることなく、ツェナーダイオードのツェナー電圧Vzのみを高精度に調整することのできる、低コストの製造方法を提供する。
【解決手段】バイポーラトランジスタT2とツェナーダイオードD2が同一半導体基10上に形成されてなる半導体装置100の製造方法であって、バイポーラトランジスタT2を構成するp導電型およびn導電型の拡散領域とツェナーダイオードD2を構成するp導電型およびn導電型の拡散領域を、それぞれ、同じ拡散工程K2,K3を用いて形成すると共に、熱処理工程L1において、拡散工程K2,K3終了後の半導体基板10を、窒素雰囲気中、500℃以上、900℃以下の温度範囲で熱処理する。 (もっと読む)


【課題】 半導体装置の熱抵抗を低減すること、および小型化できる技術を提供する。
【解決手段】 複数の単位トランジスタQを有する半導体装置であって、半導体装置は、単位トランジスタQを第1の個数(7個)有するトランジスタ形成領域3a、3b、3e、3fと、単位トランジスタQを第2の個数(4個)有するトランジスタ形成領域3c、3dとを有し、トランジスタ形成領域3c、3dは、トランジスタ形成領域3a、3b、3e、3fの間に配置され、第1の個数は、第2の個数よりも多い。 (もっと読む)


141 - 160 / 192