説明

Fターム[5F083JA56]の内容

半導体メモリ (164,393) | 材料 (39,186) | 層間絶縁膜材料 (2,215) | 無機系材料 (1,805)

Fターム[5F083JA56]の下位に属するFターム

SiOF (63)

Fターム[5F083JA56]に分類される特許

141 - 160 / 1,742


【課題】新たな構造の半導体装置を提供し、書き込み後の当該半導体装置のメモリセルのしきい値電圧のばらつきを小さくし、動作電圧を低減する、または記憶容量を増大する。
【解決手段】酸化物半導体を用いたトランジスタと、酸化物半導体以外の材料を用いたトランジスタとをそれぞれ有する複数のメモリセルと、複数のメモリセルを駆動する駆動回路と、駆動回路に供給する複数の電位を生成する電位生成回路と、を有し、駆動回路は、
データバッファと、複数のメモリセルのそれぞれに複数の電位のうちいずれか一の電位をデータとして書き込む書き込み回路と、メモリセルに書き込まれたデータを読み出す読み出し回路と、読み出されたデータと、データバッファに保持されたデータとが一致するか否かをベリファイするベリファイ回路と、を有する。 (もっと読む)


【課題】データ保持のためのリフレッシュ動作の頻度を低減し、消費電力の小さいDRAMを提供する。また、DRAMに占めるキャパシタの面積を縮小し、集積度の高い半導体記憶装置を提供する。
【解決手段】ビット線、ワード線、トランジスタおよびキャパシタからなる半導体記憶装置であり、トランジスタは、ソース電極およびドレイン電極と、少なくともソース電極およびドレイン電極の上面と接する酸化物半導体膜と、少なくとも酸化物半導体膜の上面と接するゲート絶縁膜とを有し、上面から見て網状の導電膜の網の目の部分に設けられる。ここで、キャパシタは、一対の電極の一方と、網状の導電膜と、一対の電極の一方および網状の導電膜の間に設けられた第2の絶縁膜と、を有する。 (もっと読む)


【課題】電源電圧の供給の停止及び再開を行う構成において、揮発性の記憶装置と不揮発性の記憶装置との間のデータの退避及び復帰の必要のない半導体記憶装置を提供する。
【解決手段】不揮発性の半導体記憶装置とする際、揮発性の記憶装置と不揮発性の記憶装置を分離することなく構成する。具体的に半導体記憶装置には、酸化物半導体を半導体層に有するトランジスタ及び容量素子に接続されたデータ保持部にデータを保持する構成とする。そしてデータ保持部に保持される電位は、電荷をリークすることなくデータの出力が可能なデータ電位保持回路及び電荷をリークすることなくデータ保持部に保持した電位を容量素子を介した容量結合により制御可能なデータ電位制御回路で制御される。 (もっと読む)


【課題】半導体装置を小型化する。また、メモリセルを有する半導体装置の駆動回路の面積を縮小する。
【解決手段】少なくとも第1の半導体素子を有する素子形成層と、素子形成層上に設けられた第1の配線と、第1の配線上に設けられた層間膜と、層間膜を介して第1の配線と重畳する第2の配線と、を有し、第1の配線と、層間膜と、第2の配線と、は、第2の半導体素子を構成し、第1の配線と、第2の配線と、は、同電位が供給される配線である半導体装置である。 (もっと読む)


【課題】メモリ・ロジック混載型の半導体装置の高性能化を可能にする技術を提供する。
【解決手段】ストッパ膜17は、ストッパ膜13及び層間絶縁膜14から成る絶縁層上に形成されている。コンタクトプラグ16,65,66のそれぞれは、その上面がストッパ膜17から露出するように、ソース・ドレイン領域9,59とそれぞれ電気的に接続されてストッパ膜13、層間絶縁膜14及びストッパ膜17に設けられている。絶縁層20は、ストッパ膜17及びコンタクトプラグ16,65,66の上に設けられている。キャパシタ82の下部電極は、メモリ形成領域において、コンタクトプラグ66の上面とストッパ膜17の上面とに接触するように絶縁層20内に設けられている。 (もっと読む)


【課題】可能な限り占有面積が削減され、データ保持期間の極めて長いメモリ装置を提供する。
【解決手段】メモリ装置内のメモリ素子のセルトランジスタとして、リーク電流の極めて小さいトランジスタを用いる。さらにメモリセルの占有面積を縮小するために、ビット線とワード線とが交差する領域に、当該トランジスタのソース及びドレインが縦方向に積層されるように形成すればよい。さらにキャパシタは、当該トランジスタの上方に積層すればよい。 (もっと読む)


【課題】回路面積を小さくする。
【解決手段】記憶データとしてデータを記憶するメモリセルと、出力信号線と、電圧が与えられる配線と、を具備し、メモリセルは、記憶データと検索データの比較演算を行い、演算結果に応じて導通状態又は非導通状態になる比較回路と、記憶データの書き込み及び保持を制御する電界効果トランジスタと、を備え、比較回路が導通状態のときに、出力信号線の電圧値が配線の電圧と同等の値になる記憶装置。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、配線数を削減することによって高集積化が図られた半導体装置を提供することを目的とする。
【解決手段】トランジスタのオフ電流を十分に小さくすることができる材料、例えば、ワイドギャップ半導体である酸化物半導体材料を用いて半導体装置を構成する。トランジスタのオフ電流を十分に小さくすることができる半導体材料を用いることで、長期間にわたって情報を保持することが可能である。また、書き込み用のワード線と読み出し用のワード線を共通化し、かつ書き込み用のビット線と読み出し用のビット線を共通化することにより配線数を削減し、更にソース線を削減することにより単位面積あたりの記憶容量を増加させる。 (もっと読む)


【課題】瞬断もしくは瞬時電圧低下等の極めて短時間の電源停止又は電源電圧低下の場合でさえ、揮発性メモリ内のデータが消失してしまう場合があった。そこで、高速データ処理のために揮発性メモリを用いた場合であっても、データの保持時間を延ばす。
【解決手段】容量素子及び酸化物半導体を用いたトランジスタを有するメモリに揮発性メモリのデータ内容をバックアップしておくことによって、データの保持時間を長くすることができる。 (もっと読む)


【課題】従来のDRAMは、データを保持するために数十ミリ秒間隔でリフレッシュをしなければならず、消費電力の増大を招いていた。また、頻繁にトランジスタのオン状態とオフ状態が切り換わるのでトランジスタの劣化が問題となっていた。この問題は、メモリ容量が増大し、トランジスタの微細化が進むにつれて顕著なものとなっていた。
【解決手段】ワイドギャップ半導体を有するトランジスタを用い、ゲート電極用のトレンチと、素子分離用のトレンチを有するトレンチ構造のトランジスタとする。ソース電極とドレイン電極との距離を狭くしてもゲート電極用のトレンチの深さを適宜設定することで、短チャネル効果の発現を抑制することができる。 (もっと読む)


【課題】ラッチ型メモリが搭載されたCPUを動作させるに際して、処理内容に応じて常時記憶方式と終了時記憶方式のいずれかを選択し、ラッチ型メモリが搭載されたCPUの消費電力を低減する。
【解決手段】ラッチ型メモリが搭載されたCPUを動作させるに際して、電源のオンオフの繰り返し動作が多い場合には常時記憶方式とし、電源のオンオフの繰り返し動作が少ない場合には終了時記憶方式とする。常時記憶方式と終了時記憶方式のどちらを選択するかは、消費電力に応じて決定したしきい値をもとにして決定する。 (もっと読む)


【課題】新たな構成の不揮発性の記憶素子、それを用いた信号処理回路を提供する。
【解決手段】第1の回路と第2の回路とを有し、第1の回路は第1のトランジスタと第2のトランジスタとを有し、第2の回路は第3のトランジスタと第4のトランジスタとを有する。第1の信号に対応する信号電位は、オン状態とした第1のトランジスタを介して第2のトランジスタのゲートに入力され、第2の信号に対応する信号電位は、オン状態とした第3のトランジスタを介して第4のトランジスタのゲートに入力される。その後、第1のトランジスタ及び第3のトランジスタをオフ状態とする。第2のトランジスタの状態と第4のトランジスタの状態との両方を用いて、第1の信号を読み出す。第1のトランジスタ及び第3のトランジスタは、チャネルが酸化物半導体層に形成されるトランジスタとする。 (もっと読む)


【課題】消費電力を低減することが可能な新たな構造の半導体装置及びその駆動方法を提供する。
【解決手段】メモリセルは、容量素子と、第1のトランジスタと、第1のトランジスタよりオフ電流の小さな第2のトランジスタとを有する。第1のトランジスタは、第2のトランジスタよりもスイッチング速度が速い。第1のトランジスタと第2のトランジスタと容量素子とは直列に電気的に接続されている。容量素子への電荷の蓄積、及び容量素子からの電荷の放出は、第1のトランジスタと第2のトランジスタの両方を介して行われる。こうして、半導体装置の消費電力を少なく、且つ情報の書き込み及び読み出し速度を高速化することができる。 (もっと読む)


【課題】占有面積が小さく、冗長性があり、かつリーク電流の小さい保護回路を提供する。
【解決手段】保護回路は、複数の非線形素子が重畳するように積層され、かつ該非線形素子が電気的に直列接続されている構成であり、該保護回路に含まれる少なくとも一つの非線形素子は、チャネル形成領域に酸化物半導体を用いたトランジスタをダイオード接続した素子であり、他の非線形素子は、チャネル形成領域にシリコンを用いたトランジスタをダイオード接続した素子、または、接合領域にシリコンを用いたダイオードとする。 (もっと読む)


【課題】記憶回路におけるデータの保持期間を長くする。また、消費電力を低減する。また、回路面積を小さくする。また、1回のデータの書き込みに対する該データの読み出し可能回数を増やす。
【解決手段】記憶回路を具備し、記憶回路は、ソース及びドレインの一方にデータ信号が入力される第1の電界効果トランジスタと、ゲートが第1の電界効果トランジスタのソース及びドレインの他方に電気的に接続される第2の電界効果トランジスタと、ソース及びドレインの一方が第2の電界効果トランジスタのソース又はドレインに電気的に接続される第3の電界効果トランジスタと、を備える。 (もっと読む)


【課題】電源電圧の供給の停止及び再開を行う構成において、揮発性の記憶装置と不揮発性の記憶装置との間のデータの退避及び復帰の必要のない半導体記憶装置を提供する。
【解決手段】不揮発性の半導体記憶装置とする際、揮発性の記憶装置と不揮発性の記憶装置を分離することなく構成する。具体的に半導体記憶装置には、酸化物半導体を半導体層に有するトランジスタ及び容量素子に接続されたデータ保持部にデータを保持する構成とする。そしてデータ保持部に保持される電位は、電荷をリークすることなくデータの出力が可能なデータ電位保持回路及び電荷をリークすることなくデータ保持部に保持した電位を容量素子を介した容量結合により制御可能なデータ電位制御回路で制御される。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供することを目的の一とする。
【解決手段】第1の半導体材料を用いたトランジスタと、第1の半導体材料とは異なる第2の半導体材料を用いたトランジスタと、容量素子とを有する複数のメモリセルを有し、書き込み期間にソース線に電源電位を供給する機能を有する電位切り替え回路を備えた半導体装置とする。これにより、半導体装置の消費電力を十分に抑えることができる。 (もっと読む)


【課題】不揮発性メモリを提供する。
【解決手段】一般的なSRAMと同様の回路構成を有し、該SRAMの記憶保持部と電源電位線の間にオフ電流の小さいトランジスタを配することで、記憶保持部からの電荷の漏れが防止された半導体装置(不揮発性メモリ)とする。ここで、記憶保持部からの電荷の漏れを防止するためのオフ電流の小さいトランジスタとしては、酸化物半導体膜により設けられたトランジスタを用いることが好ましい。このような構成はシフトレジスタにも適用することができ、消費電力の小さいシフトレジスタを得ることができる。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも
制限が無い、新たな構造の半導体装置を提供することを目的の一とする。
【解決手段】トランジスタのオフ電流を十分に小さくすることができる材料、例えば、ワ
イドギャップ半導体である酸化物半導体材料を用いて半導体装置を構成する。トランジス
タのオフ電流を十分に小さくすることができる半導体材料を用いることで、長期間にわた
って情報を保持することが可能である。また、信号線の電位変化のタイミングを、書き込
みワード線の電位変化のタイミングより遅らせる。これによって、データの書き込みミス
を防ぐことが可能である。 (もっと読む)


【課題】電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い、新たな構造の半導体装置を提供する。
【解決手段】酸化物半導体を用いたトランジスタ(より広義には、十分にオフ電流が小さいトランジスタ)を用いた記憶回路と、酸化物半導体以外の材料を用いたトランジスタ(換言すると、十分な高速動作が可能なトランジスタ)を用いた駆動回路などの周辺回路と、を一体に備える半導体装置とする。また、周辺回路を下部に設け、記憶回路を上部に設けることで、半導体装置の面積の縮小化及び小型化を実現することができる。 (もっと読む)


141 - 160 / 1,742